Advertisement

Theoretical Analysis of the Reactivity of Carbon Nanotubes: Local Versus Topological Effects

  • Massimo Fusaro
  • Vincenzo Barone
  • Mauro Causa
  • Maddalena D’Amore
  • Carmine Garzillo
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 7)

Abstract

In carbon materials the mobile π electrons are situated in topologically different circumstances at edge sites, and their π electronic states, essentially controlled by the network structure of sp 2 carbon, may be significantly affected. In this work, we derived topological indications about the reactivity of carbon nanotubes and fullerenes with the hydroxyl radical (OH), the most important oxidizing species in the troposphere. For each molecular structure, we computed the local softness, the Mulliken charges of the reacting carbons of (n,n) and (n,0) clusters, and their Huckel-type aromaticity rules, as an index to determine topologically independent sites and predicting a certain grade of reactivity of the nanotube and fullerenic carbon atoms. Using local softness, closely related to the energy gap, it was possible to separate the periodical nanotubes in three families according to their reactivity. A connection between the reactivity index ΔE and the topology was established by means of the Fukui integrated function. It resulted that for (n,0) clusters, odd n implies aromaticity, whereas even n, non-aromaticity; (n,n) clusters are in any case non-aromatic. For a better understanding of some experimental results, we also discussed how edge effects can influence topological reactivity due to the increment of the number of benzene rings in some cluster arrangements.

Keywords

Reaction Energy Fukui Function Local Softness Chiral Vector Density Functional B3LYP Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arrais A, Boccaleri E, Diana E (2004) Fullerenes Nanotubes Carbon Nanostruct 12:789–809CrossRefGoogle Scholar
  2. Becke AD (1996) J Chem Phys 104:1040–1046CrossRefGoogle Scholar
  3. Bellucci S, Onorato P (2005) Phys Rev B 71:1–8Google Scholar
  4. Chandra AK, Nguyen MT (2002) Int J Mol Sci 3:310–315CrossRefGoogle Scholar
  5. Chermette HJ (1999) J Comput Chem 20:129–154CrossRefGoogle Scholar
  6. Dovesi R, Saunders VR, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Bush IJ, D’Arco P, Lunell M (2010) Crystal 2009 user manual. Turin University, Turin. Saunders VR, Dovesi R, Roetti C, Causa M, Harrison NM, Orlando R, Zicovich-Wilson CM (1998) CRYSTAL98 user manual. Turin University, TurinGoogle Scholar
  7. Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JAJ (1982) Chem Phys 77:3654Google Scholar
  8. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Inc., WallingfordGoogle Scholar
  9. Gonzalez-Lafont A, Villa J, Lluch JM, Bertran J, Steckler R, Truhlar DG (1998) J Phys Chem A 102:3420–3428CrossRefGoogle Scholar
  10. Gülseren O, Yildirim T, Ciraci S (2002) Phys Rev B 65:153405–153410CrossRefGoogle Scholar
  11. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612–5626CrossRefGoogle Scholar
  12. Kleiner A, Eggert S (2001) Phys Rev B 64:113402–113409CrossRefGoogle Scholar
  13. Maranzana A, Serra G, Giordana A, Tonachini G, Barco G, Causa M (2005) J Phys Chem A 109:10929–10939CrossRefGoogle Scholar
  14. Paritosh M, Kalyan KH, Ramesh C (2003) Phys Chem Commun 6:24–27Google Scholar
  15. Rioux F (1999) J Chem Educ 76:156–158CrossRefGoogle Scholar
  16. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Phys Rev B 46:1804–1811CrossRefGoogle Scholar
  17. Tasis D, Tagmatakis N, Bianco A, Prato M (2006) Chem Rev 105:1105–1122CrossRefGoogle Scholar
  18. White BCT, Mintmire JW (2005) J Phys Chem B 109:52–57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Massimo Fusaro
    • 1
  • Vincenzo Barone
    • 2
  • Mauro Causa
    • 1
  • Maddalena D’Amore
    • 1
  • Carmine Garzillo
    • 3
  1. 1.Department of Chemical SciencesUniversity “Federico II”NaplesItaly
  2. 2.Classe di Scienze, Scuola Normale SuperiorePisaItaly
  3. 3.Department of Preventive Medical SciencesUniversity “Federico II”NaplesItaly

Personalised recommendations