Skip to main content

Genome Sequencing and Comparative Genomics in Cereals

  • Chapter
  • First Online:
Cereal Genomics II
  • 1813 Accesses

Abstract

The economic and agricultural importance of cereals and millets has motivated whole-genome sequencing of many grass (Poaceae) taxa, empowering vigorous comparative genomics research in this family. Initial analyses of sequenced genomes have already contributed to an understanding of the occurrence of polyploidizations, genome structural changes, biological pathway evolution, evolution of gene repertoire, and other important dimensions of evolution of the members of the grass family. In-depth analysis of the sequenced genomes, along with on-going sequencing and re-sequencing efforts, will help generate knowledge about genes in cereal models. It will also shed light on other Poaceae species with more complex genomes, and will help enhance fundamental knowledge, which can be effectively used for sustainable improvement of agricultural productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Backstrom N, Ceplitis H et al (2005) Gene conversion drives the evolution of HINTW, an ampliconic gene on the female-specific avian W chromosome. Mol Biol Evol 22(10):1992–1999

    Article  PubMed  CAS  Google Scholar 

  • Baucom RS, Estill JC et al (2009) Exceptional diversity, non-random distribution, and rapid evolution of retro-elements in the B73 maize genome. PLoS Genet 5(11):e1000732

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Schmutz J et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30(6):555–561

    Article  PubMed  CAS  Google Scholar 

  • Bensen RJ, Johal GS et al (1995) Cloning and characterization of the maize An1 gene. Plant Cell 7(1):75–84

    PubMed  CAS  Google Scholar 

  • Bevan MW, Garvin DF et al (2010) Brachypodium distachyon genomics for sustainable food and fuel production. Curr Opin Biotechnol 21(2):211–217

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16(7):1679–1691

    Article  PubMed  CAS  Google Scholar 

  • Bomblies K, Lempe J et al (2007) Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol 5(9):e236

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE, Chapman BA et al (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422(6930):433–438

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE, Arias MA et al (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci USA A102(37):13206–13211

    Article  CAS  Google Scholar 

  • Bozza CG, Pawlowski WP (2008) The cytogenetics of homologous chromosome pairing in meiosis in plants. Cytogenet Genome Res 120(3–4):313–319

    Article  PubMed  CAS  Google Scholar 

  • Brown J, Ersland D et al (1982) Molecular aspects of storage protein synthesis during seed development. In: Khan A (ed) The physiology and biochemistry of seed development, dormancy, and germination. Elsevier Biomedical Press, Amsterdam, pp 3–42

    Google Scholar 

  • Brown NJ, Newell CA et al (2011) Independent and parallel recruitment of preexisting mechanisms underlying C photosynthesis. Science 331(6023):1436–1439

    Article  PubMed  CAS  Google Scholar 

  • Buell CR (2009) Poaceae genomes: going from unattainable to becoming a model clade for comparative plant genomics. Plant Physiol 149(1):111–116

    Article  PubMed  CAS  Google Scholar 

  • Calderon-Urrea A, Dellaporta SL (1999) Cell death and cell protection genes determine the fate of pistils in maize. Development 126(3):435–441

    PubMed  CAS  Google Scholar 

  • Cannon SB, Kozik A, Chan B, Michelmore R, Young ND (2003) DiagHunter and GenoPix2D: programs for genomic comparisons, large-scale homology discovery and visualization. Genome Biology 4:R68

    Article  PubMed  Google Scholar 

  • Carels N, Bernardi G (2000) Two classes of genes in plants. Genetics 154(4):1819–1825

    PubMed  CAS  Google Scholar 

  • Cerling TE, Harris JM et al (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158

    Article  CAS  Google Scholar 

  • Charlesworth B (2002) The evolution of chromosomal sex determination. Novartis Found Symp 244:207–219 (discussion 220–204, 253–207)

    Article  PubMed  Google Scholar 

  • Chen F, Mackey AJ et al (2007) Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS One 2(4):e383

    Article  PubMed  CAS  Google Scholar 

  • Chittenden LM, Schertz KF et al (1994) A detailed RFLP map of Sorghum bicolor and S. propinquum suitable for high-density mapping suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933

    Article  CAS  Google Scholar 

  • Christin PA, Osborne CP et al (2011) C4 eudicots are not younger than C4 monocots. J Exp Bot 62(9) : 3171–3181

    Google Scholar 

  • Christin PA, Besnard G et al (2008) Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr Biol 18(1):37–43

    Article  PubMed  CAS  Google Scholar 

  • Christin PA, Salamin N et al (2009) Integrating phylogeny into studies of C4 variation in the grasses”. Plant Physiol 149(1):82–87

    Article  PubMed  CAS  Google Scholar 

  • Datta A, Hendrix M et al (1997) Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci USA A94(18):9757–9762

    Article  Google Scholar 

  • DeLong A, Calderon-Urrea A et al (1993) Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74(4):757–768

    Article  PubMed  CAS  Google Scholar 

  • Devos KM (2010) Grass genome organization and evolution. Curr Opin Plant Biol 13(2):139–145

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Pittaway TS et al (2000) Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theoret Appl Genet 100(2):190–198

    Article  CAS  Google Scholar 

  • Ding DQ, Yamamoto A et al (2004) Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev Cell 6(3):329–341

    Article  PubMed  CAS  Google Scholar 

  • Duret L, Galtier N (2009) Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet 10:285–311

    Article  PubMed  CAS  Google Scholar 

  • Ehleringer JR, Bjorkman O (1978) A Comparison of Photosynthetic Characteristics of Encelia Species Possessing Glabrous and Pubescent Leaves. Plant Physiol 62(2):185–190

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Keller B (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci USA 96(14):8265–8270

    Article  PubMed  CAS  Google Scholar 

  • Freeling M (2001) Grasses as a single genetic system: reassessment 2001. Plant Physiol 125(3):1191–1197

    Article  PubMed  CAS  Google Scholar 

  • Galtier N (2003) Gene conversion drives GC content evolution in mammalian histones. Trends Genet 19(2):65–68

    Article  PubMed  CAS  Google Scholar 

  • Galtier N, Piganeau G et al (2001) GC-content evolution in mammalian genomes: the biased gene conversion hypothesis. Genetics 159(2):907–911

    PubMed  CAS  Google Scholar 

  • Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94(13):6809–6814

    Article  PubMed  CAS  Google Scholar 

  • Giussani LM, Cota-Sanchez JH et al (2001) A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. Am J Bot 88(11):1993–2012

    Article  PubMed  CAS  Google Scholar 

  • Global Perspective Studies Unit, F a A O o t U N (2006) FAQ: World Agriculture: towards 2030/2050. Interim Report, Rome, Italy

    Google Scholar 

  • Goff SA, Ricke D et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296(5565):92–100

    Article  PubMed  CAS  Google Scholar 

  • Gojobori T, Li WH et al (1982) Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol 18(5):360–369

    Article  PubMed  CAS  Google Scholar 

  • Haas BJ, Delcher AL et al (2003) Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31(19):5654–5666

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS (1932) The causes of evolution. Cornell University Press, Ithaca

    Google Scholar 

  • Hatch MD, Slack CR (1966) Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem J 101(1):103–111

    PubMed  CAS  Google Scholar 

  • Hattersley PG (1983) The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia 57:113–128

    Article  Google Scholar 

  • Hilu KW (2004) Phylogenetics and chromosomal evolution in the Poaceae (grasses). Aust J Bot 52:10

    Article  CAS  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463(7282):763–768

    Article  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436(7052):793–800

    Article  CAS  Google Scholar 

  • Jaillon O, Aury JM et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  PubMed  CAS  Google Scholar 

  • Kadyk LC, Hartwell LH (1992) Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132(2):387–402

    PubMed  CAS  Google Scholar 

  • Kellogg EA (1999) Phylogenetic aspects of the evolution of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, CA, pp 411–444

    Chapter  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125(3):1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Khakhlova O, Bock R (2006) Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J 46(1):85–94

    Article  PubMed  CAS  Google Scholar 

  • Kim JC, Laparra H et al (2007) Cell cycle arrest of stamen initials in maize sex determination. Genetics 177(4):2547–2551

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto NHH, Abe K, Arai S, Saito A, Higo K (1994) Identification of the duplicated segments in rice chromosomes 1 and 5 by linkage analysis of cDNA markers of known functions. Theor Appl Genet 88:722–726

    Article  CAS  Google Scholar 

  • Kudla G, Helwak A et al (2004) Gene conversion and GC-content evolution in mammalian Hsp70. Mol Biol Evol 21(7):1438–1444

    Article  PubMed  CAS  Google Scholar 

  • Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science 286(5441):964–967

    Article  PubMed  CAS  Google Scholar 

  • Lawson Handley LJ, Hammond RL et al (2006) Low Y chromosome variation in Saudi-Arabian hamadryas baboons (Papio hamadryas hamadryas). Heredity 96(4):298–303

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Piffanelli P et al (2008) Insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genomics 9:58

    Article  PubMed  CAS  Google Scholar 

  • Li L, Stoeckert CJ et al (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Byrnes JK et al (2006) Codon usage bias versus gene conversion in the evolution of yeast duplicate genes. Proc Natl Acad Sci USA 103:14412–14416

    Article  PubMed  CAS  Google Scholar 

  • Lohithaswa HC, Feltus FA et al (2007) Leveraging the rice genome sequence for comparative genomics in monocots. Theor Appl Genet 115:237–243

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Force AG (2000) The origin of interspecific genomic incompatibility via gene duplication. Am Nat 156(6):590–605

    Article  Google Scholar 

  • Lyons E, Pedersen B et al (2008) Finding and comparing syntenic regions among arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol 148(4):1772–1781

    Article  PubMed  CAS  Google Scholar 

  • Mayer KF, Martis M et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23(4):1249–1263

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Moore PH (2007) Genomics of sex chromosomes. Curr Opin Plant Biol 10(2):123–130

    Article  PubMed  CAS  Google Scholar 

  • Monson RK (2003) Gene duplication, neofunctionalization, and the evolution of C4 photosynthesis. Int J Plant Sci 164(6920):S43–S54

    Article  CAS  Google Scholar 

  • Mulhaidat R, Sage RF et al (2007) Diversity of kranz anatomy and biochemistry in C4 eudicots. Am J Bot 94(3):20

    Google Scholar 

  • Murat F, Xu JH et al (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res 20(11):1545–1557

    Article  PubMed  CAS  Google Scholar 

  • Nagamura YIT, Antonio B, Shimano T, Kajiya H, Shomura A, Lin S, Kuboki Y, Kurata N et al (1995) Conservation of duplicated segments between rice chromosomes 11 and 12. Breed Sci 45:373–376

    CAS  Google Scholar 

  • O’Brien KP, Remm M et al (2005) In paranoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res 33:D476–D480 (database issue)

    Article  PubMed  Google Scholar 

  • Paterson AH (2005) Polyploidy, evolutionary opportunity and crop adaptation. Genetica 123(1–2):191–196

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH (2008) Paleopolyploidy and its Impact on the Structure and Function of Modern Plant Genomes. Genome Dyn 4:1–12

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE et al (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101(26):9903–9908

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Chapman BA et al (2006) Convergent retention or loss of gene/domain families following independent whole-genome duplication events in Arabidopsis, Oryza, Saccharomyces, and Tetraodon. Trends Genet 22:597–602

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE et al (2009a) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE et al (2009b) Comparative genomics of grasses promises a bountiful harvest. Plant Physiol 149(1):125–131

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BS, Tang H et al (2011) Gobe: an interactive, web-based tool for comparative genomic visualization. Bioinformatics 27(7):1015–1016

    Article  PubMed  CAS  Google Scholar 

  • Puchta H, Dujon B et al (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci USA 93(10):5055–5060

    Article  PubMed  CAS  Google Scholar 

  • Pyankov VI, Artyusheva EG et al (2001) Phylogenetic analysis of tribe Salsoleae (Chenopodiaceae) based on ribosomal ITS sequences: implications for the evolution of photosynthesis types. Am J Bot 88(7):1189–1198

    Article  PubMed  CAS  Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370

    Article  CAS  Google Scholar 

  • Salse J, Abrouk M et al (2009) Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci USA 106(35):14908–14913

    Article  PubMed  CAS  Google Scholar 

  • Schnable JC, Freeling M (2011) Genes identified by visible mutant phenotypes show increased bias toward one of two subgenomes of maize. PLoS One 6(3):e17855

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Schnable JC, Springer NM et al (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci USA 108(10):4069–4074

    Article  PubMed  CAS  Google Scholar 

  • Seemann JR, Sharkey TD et al (1987) Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiol 84(3):796–802

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Wang X et al (2007) Evidence that natural selection is the primary cause of the GC content variation in rice genes. J Integr Plant Biol 49(9):1393–1399

    Google Scholar 

  • Singh NK, Dalal V et al (2007) Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes. Funct Integr Genomics 7(1):17–35

    Article  PubMed  CAS  Google Scholar 

  • Soderstrom TR, Hilu KW, Campbell CS, Barkworth MA (1987) Grass systematics and evolution. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Soltis PS (2005) Ancient and recent polyploidy in angiosperms. New Phytol 166(1):5–8

    Article  PubMed  Google Scholar 

  • Storm CE, Sonnhammer EL (2003) Comprehensive analysis of orthologous protein domains using the HOPS database. Genome Res 13(10):2353–2362

    Article  PubMed  CAS  Google Scholar 

  • Swigonova ZJ, Lai S et al (2004b) Close split of sorghum and maize genome progenitors. Genome Res 14(10A):1916–1923

    Google Scholar 

  • Swigonova Z, Lai JS et al (2004a) On the tetraploid origin of the maize genome. Compa Funct Genomics 5(3):281–284

    Article  CAS  Google Scholar 

  • Tang HB, Wang XY et al (2008b) Unraveling ancient hexaploidy through multiply aligned angiosperm gene maps. Genome Res 18(12):1944–1954

    Google Scholar 

  • Tang H, Bowers JE et al (2008a) Synteny and colinearity in plant genomes. Science 320:486–488

    Article  PubMed  CAS  Google Scholar 

  • Tang H, Bowers JE et al (2010) Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Natl Acad Sci USA 107(1):472–477

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815

    Article  Google Scholar 

  • The Rice Chromosomes 11 and 12 Sequencing Consortia (2005) The sequence of rice chromosomes 11 and 12, rice in disease resistance genes and recent gene duplications. BMC Biol 3:20

    Article  CAS  Google Scholar 

  • Thomas BC, Pedersen B et al (2006) Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homology leaving clusters enriched in dose-sensitive genes. Genome Res 16(7):934–946

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y (2004) Computational approaches to unveiling ancient genome duplications. Nat Rev Genet 5(10):752–763

    Article  PubMed  CAS  Google Scholar 

  • Vandepoele K, Saeys Y et al (2002) The automatic detection of homologous regions (ADHoRe) and its application to microcolinearity between Arabidopsis and rice. Genome Res 12(11):1792–1801

    Article  PubMed  CAS  Google Scholar 

  • Vandepoele K, Simillion C et al (2003) Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15(9):2192–2202

    Article  PubMed  CAS  Google Scholar 

  • Vicentini A, Barber JC et al (2008) The age of the grasses and clusters of origins of C4 photosynthesis. Glob Change Biol 14:15

    Article  Google Scholar 

  • Wang HC, Singer GA et al (2004) Mutational bias affects protein evolution in flowering plants. Mol Biol Evol 21(1):90–96

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Shi X et al (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165(3):937–946

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Shi X et al (2006) Statistical inference of chromosomal homology based on gene colinearity and applications to Arabidopsis and rice. BMC Bioinf 7(1):447

    Article  CAS  Google Scholar 

  • Wang X, Tang H et al (2007) Extensive concerted evolution of rice paralogs and the road to regaining independence. Genetics 177(3):1753–1763

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Gowik U et al (2009a) Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol 10(6):R68

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Tang H et al (2009b) Comparative inference of illegitimate recombination between rice and sorghum duplicated genes produced by polyploidization. Genome Res 19(6):1026–1032

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Tang H et al (2011) Seventy million years of concerted evolution of a homoeologous chromosome pair, in parallel, in major Poaceae lineages. Plant Cell 23(1):27–37

    Article  PubMed  CAS  Google Scholar 

  • Watson L, Dallwitz MJ (1992) The grass genera of the world. CAB International, Wallingford

    Google Scholar 

  • Werth CR, Windham MD (1991) A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate-gene expression. Am Nat 137(4):515–526

    Article  Google Scholar 

  • Wicker T, Mayer KF et al (2011) frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 23(5): 1706–1718

    Google Scholar 

  • Winkler RG, Freeling M (1994) Physiological genetics of the dominant gibberellin-nonresponsive maize dwarfs, dwarf-8 and dwarf-9. Planta 193(3):341–348

    Article  CAS  Google Scholar 

  • Wong GK, Wang J et al (2002) Compositional gradients in Gramineae genes. Genome Res 12(6):851–856

    Article  PubMed  CAS  Google Scholar 

  • Woodhouse MR, Schnable JC et al (2010) Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homologs. PLoS Biol 8(6):e1000409

    Article  PubMed  CAS  Google Scholar 

  • Yin T, Difazio SP et al (2008) Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genome Res 18(3):422–430

    Article  PubMed  CAS  Google Scholar 

  • Youens-Clark K, Buckler E et al (2011) Gramene database in 2010: updates and extensions. Nucleic Acids Res 39:D1085–D1094 (database issue)

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565):79–92

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Wang J et al (2005) The genomes of Oryza sativa: a history of duplications. Plos Biol 3(2):266–281

    Article  CAS  Google Scholar 

  • Zhang G, Liu X et al (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30(6):549–554

    Article  PubMed  CAS  Google Scholar 

  • Zhou T, Wang Y et al (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics 271(4):402–415

    Article  PubMed  CAS  Google Scholar 

  • Zmasek CM, Eddy SR (2002) RIO: analyzing proteomes by automated phylogenomics using resampled inference of orthologs. BMC Bioinf 3:14

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to members in Paterson lab for useful discussion and collaboration in publishing many high-impact papers in comparative genomics. We appreciate financial support from the US National Science Foundation (MCB-1021718) and the J. S. Guggenheim Foundation to AHP, and from the China National Science Foundation (30971611, 31170212), and Hebei Natural Science Foundation distinguished young scholorship project China-Hebei New Century 100 Creative Talents Project to XW.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-Yin Wang or Andrew H. Paterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wang, XY., Paterson, A.H. (2013). Genome Sequencing and Comparative Genomics in Cereals. In: Gupta, P., Varshney, R. (eds) Cereal Genomics II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6401-9_5

Download citation

Publish with us

Policies and ethics