Advertisement

Genome Sequencing and Comparative Genomics in Cereals

  • Xi-Yin Wang
  • Andrew H. Paterson
Chapter

Abstract

The economic and agricultural importance of cereals and millets has motivated whole-genome sequencing of many grass (Poaceae) taxa, empowering vigorous comparative genomics research in this family. Initial analyses of sequenced genomes have already contributed to an understanding of the occurrence of polyploidizations, genome structural changes, biological pathway evolution, evolution of gene repertoire, and other important dimensions of evolution of the members of the grass family. In-depth analysis of the sequenced genomes, along with on-going sequencing and re-sequencing efforts, will help generate knowledge about genes in cereal models. It will also shed light on other Poaceae species with more complex genomes, and will help enhance fundamental knowledge, which can be effectively used for sustainable improvement of agricultural productivity.

Keywords

Gene Conversion Duplicate Gene Duplicate Region Homoeologous Chromosome Illegitimate Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to members in Paterson lab for useful discussion and collaboration in publishing many high-impact papers in comparative genomics. We appreciate financial support from the US National Science Foundation (MCB-1021718) and the J. S. Guggenheim Foundation to AHP, and from the China National Science Foundation (30971611, 31170212), and Hebei Natural Science Foundation distinguished young scholorship project China-Hebei New Century 100 Creative Talents Project to XW.

References

  1. Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  2. Backstrom N, Ceplitis H et al (2005) Gene conversion drives the evolution of HINTW, an ampliconic gene on the female-specific avian W chromosome. Mol Biol Evol 22(10):1992–1999PubMedCrossRefGoogle Scholar
  3. Baucom RS, Estill JC et al (2009) Exceptional diversity, non-random distribution, and rapid evolution of retro-elements in the B73 maize genome. PLoS Genet 5(11):e1000732PubMedCrossRefGoogle Scholar
  4. Bennetzen JL, Schmutz J et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30(6):555–561PubMedCrossRefGoogle Scholar
  5. Bensen RJ, Johal GS et al (1995) Cloning and characterization of the maize An1 gene. Plant Cell 7(1):75–84PubMedGoogle Scholar
  6. Bevan MW, Garvin DF et al (2010) Brachypodium distachyon genomics for sustainable food and fuel production. Curr Opin Biotechnol 21(2):211–217PubMedCrossRefGoogle Scholar
  7. Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16(7):1679–1691PubMedCrossRefGoogle Scholar
  8. Bomblies K, Lempe J et al (2007) Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol 5(9):e236PubMedCrossRefGoogle Scholar
  9. Bowers JE, Chapman BA et al (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422(6930):433–438PubMedCrossRefGoogle Scholar
  10. Bowers JE, Arias MA et al (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci USA A102(37):13206–13211CrossRefGoogle Scholar
  11. Bozza CG, Pawlowski WP (2008) The cytogenetics of homologous chromosome pairing in meiosis in plants. Cytogenet Genome Res 120(3–4):313–319PubMedCrossRefGoogle Scholar
  12. Brown J, Ersland D et al (1982) Molecular aspects of storage protein synthesis during seed development. In: Khan A (ed) The physiology and biochemistry of seed development, dormancy, and germination. Elsevier Biomedical Press, Amsterdam, pp 3–42Google Scholar
  13. Brown NJ, Newell CA et al (2011) Independent and parallel recruitment of preexisting mechanisms underlying C photosynthesis. Science 331(6023):1436–1439PubMedCrossRefGoogle Scholar
  14. Buell CR (2009) Poaceae genomes: going from unattainable to becoming a model clade for comparative plant genomics. Plant Physiol 149(1):111–116PubMedCrossRefGoogle Scholar
  15. Calderon-Urrea A, Dellaporta SL (1999) Cell death and cell protection genes determine the fate of pistils in maize. Development 126(3):435–441PubMedGoogle Scholar
  16. Cannon SB, Kozik A, Chan B, Michelmore R, Young ND (2003) DiagHunter and GenoPix2D: programs for genomic comparisons, large-scale homology discovery and visualization. Genome Biology 4:R68PubMedCrossRefGoogle Scholar
  17. Carels N, Bernardi G (2000) Two classes of genes in plants. Genetics 154(4):1819–1825PubMedGoogle Scholar
  18. Cerling TE, Harris JM et al (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158CrossRefGoogle Scholar
  19. Charlesworth B (2002) The evolution of chromosomal sex determination. Novartis Found Symp 244:207–219 (discussion 220–204, 253–207)PubMedCrossRefGoogle Scholar
  20. Chen F, Mackey AJ et al (2007) Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS One 2(4):e383PubMedCrossRefGoogle Scholar
  21. Chittenden LM, Schertz KF et al (1994) A detailed RFLP map of Sorghum bicolor and S. propinquum suitable for high-density mapping suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933CrossRefGoogle Scholar
  22. Christin PA, Osborne CP et al (2011) C4 eudicots are not younger than C4 monocots. J Exp Bot 62(9) : 3171–3181 Google Scholar
  23. Christin PA, Besnard G et al (2008) Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr Biol 18(1):37–43PubMedCrossRefGoogle Scholar
  24. Christin PA, Salamin N et al (2009) Integrating phylogeny into studies of C4 variation in the grasses”. Plant Physiol 149(1):82–87PubMedCrossRefGoogle Scholar
  25. Datta A, Hendrix M et al (1997) Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci USA A94(18):9757–9762CrossRefGoogle Scholar
  26. DeLong A, Calderon-Urrea A et al (1993) Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74(4):757–768PubMedCrossRefGoogle Scholar
  27. Devos KM (2010) Grass genome organization and evolution. Curr Opin Plant Biol 13(2):139–145PubMedCrossRefGoogle Scholar
  28. Devos KM, Pittaway TS et al (2000) Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theoret Appl Genet 100(2):190–198CrossRefGoogle Scholar
  29. Ding DQ, Yamamoto A et al (2004) Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev Cell 6(3):329–341PubMedCrossRefGoogle Scholar
  30. Duret L, Galtier N (2009) Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet 10:285–311PubMedCrossRefGoogle Scholar
  31. Ehleringer JR, Bjorkman O (1978) A Comparison of Photosynthetic Characteristics of Encelia Species Possessing Glabrous and Pubescent Leaves. Plant Physiol 62(2):185–190PubMedCrossRefGoogle Scholar
  32. Feuillet C, Keller B (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci USA 96(14):8265–8270PubMedCrossRefGoogle Scholar
  33. Freeling M (2001) Grasses as a single genetic system: reassessment 2001. Plant Physiol 125(3):1191–1197PubMedCrossRefGoogle Scholar
  34. Galtier N (2003) Gene conversion drives GC content evolution in mammalian histones. Trends Genet 19(2):65–68PubMedCrossRefGoogle Scholar
  35. Galtier N, Piganeau G et al (2001) GC-content evolution in mammalian genomes: the biased gene conversion hypothesis. Genetics 159(2):907–911PubMedGoogle Scholar
  36. Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94(13):6809–6814PubMedCrossRefGoogle Scholar
  37. Giussani LM, Cota-Sanchez JH et al (2001) A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. Am J Bot 88(11):1993–2012PubMedCrossRefGoogle Scholar
  38. Global Perspective Studies Unit, F a A O o t U N (2006) FAQ: World Agriculture: towards 2030/2050. Interim Report, Rome, ItalyGoogle Scholar
  39. Goff SA, Ricke D et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296(5565):92–100PubMedCrossRefGoogle Scholar
  40. Gojobori T, Li WH et al (1982) Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol 18(5):360–369PubMedCrossRefGoogle Scholar
  41. Haas BJ, Delcher AL et al (2003) Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31(19):5654–5666PubMedCrossRefGoogle Scholar
  42. Haldane JBS (1932) The causes of evolution. Cornell University Press, IthacaGoogle Scholar
  43. Hatch MD, Slack CR (1966) Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem J 101(1):103–111PubMedGoogle Scholar
  44. Hattersley PG (1983) The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia 57:113–128CrossRefGoogle Scholar
  45. Hilu KW (2004) Phylogenetics and chromosomal evolution in the Poaceae (grasses). Aust J Bot 52:10CrossRefGoogle Scholar
  46. The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463(7282):763–768CrossRefGoogle Scholar
  47. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436(7052):793–800CrossRefGoogle Scholar
  48. Jaillon O, Aury JM et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467PubMedCrossRefGoogle Scholar
  49. Kadyk LC, Hartwell LH (1992) Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132(2):387–402PubMedGoogle Scholar
  50. Kellogg EA (1999) Phylogenetic aspects of the evolution of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, CA, pp 411–444CrossRefGoogle Scholar
  51. Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125(3):1198–1205PubMedCrossRefGoogle Scholar
  52. Khakhlova O, Bock R (2006) Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J 46(1):85–94PubMedCrossRefGoogle Scholar
  53. Kim JC, Laparra H et al (2007) Cell cycle arrest of stamen initials in maize sex determination. Genetics 177(4):2547–2551PubMedCrossRefGoogle Scholar
  54. Kishimoto NHH, Abe K, Arai S, Saito A, Higo K (1994) Identification of the duplicated segments in rice chromosomes 1 and 5 by linkage analysis of cDNA markers of known functions. Theor Appl Genet 88:722–726CrossRefGoogle Scholar
  55. Kudla G, Helwak A et al (2004) Gene conversion and GC-content evolution in mammalian Hsp70. Mol Biol Evol 21(7):1438–1444PubMedCrossRefGoogle Scholar
  56. Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science 286(5441):964–967PubMedCrossRefGoogle Scholar
  57. Lawson Handley LJ, Hammond RL et al (2006) Low Y chromosome variation in Saudi-Arabian hamadryas baboons (Papio hamadryas hamadryas). Heredity 96(4):298–303PubMedCrossRefGoogle Scholar
  58. Lescot M, Piffanelli P et al (2008) Insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genomics 9:58PubMedCrossRefGoogle Scholar
  59. Li L, Stoeckert CJ et al (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189PubMedCrossRefGoogle Scholar
  60. Lin Y, Byrnes JK et al (2006) Codon usage bias versus gene conversion in the evolution of yeast duplicate genes. Proc Natl Acad Sci USA 103:14412–14416PubMedCrossRefGoogle Scholar
  61. Lohithaswa HC, Feltus FA et al (2007) Leveraging the rice genome sequence for comparative genomics in monocots. Theor Appl Genet 115:237–243PubMedCrossRefGoogle Scholar
  62. Lynch M, Force AG (2000) The origin of interspecific genomic incompatibility via gene duplication. Am Nat 156(6):590–605CrossRefGoogle Scholar
  63. Lyons E, Pedersen B et al (2008) Finding and comparing syntenic regions among arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol 148(4):1772–1781PubMedCrossRefGoogle Scholar
  64. Mayer KF, Martis M et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23(4):1249–1263PubMedCrossRefGoogle Scholar
  65. Ming R, Moore PH (2007) Genomics of sex chromosomes. Curr Opin Plant Biol 10(2):123–130PubMedCrossRefGoogle Scholar
  66. Monson RK (2003) Gene duplication, neofunctionalization, and the evolution of C4 photosynthesis. Int J Plant Sci 164(6920):S43–S54CrossRefGoogle Scholar
  67. Mulhaidat R, Sage RF et al (2007) Diversity of kranz anatomy and biochemistry in C4 eudicots. Am J Bot 94(3):20Google Scholar
  68. Murat F, Xu JH et al (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res 20(11):1545–1557PubMedCrossRefGoogle Scholar
  69. Nagamura YIT, Antonio B, Shimano T, Kajiya H, Shomura A, Lin S, Kuboki Y, Kurata N et al (1995) Conservation of duplicated segments between rice chromosomes 11 and 12. Breed Sci 45:373–376Google Scholar
  70. O’Brien KP, Remm M et al (2005) In paranoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res 33:D476–D480 (database issue)PubMedCrossRefGoogle Scholar
  71. Paterson AH (2005) Polyploidy, evolutionary opportunity and crop adaptation. Genetica 123(1–2):191–196PubMedCrossRefGoogle Scholar
  72. Paterson AH (2008) Paleopolyploidy and its Impact on the Structure and Function of Modern Plant Genomes. Genome Dyn 4:1–12PubMedCrossRefGoogle Scholar
  73. Paterson AH, Bowers JE et al (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101(26):9903–9908PubMedCrossRefGoogle Scholar
  74. Paterson AH, Chapman BA et al (2006) Convergent retention or loss of gene/domain families following independent whole-genome duplication events in Arabidopsis, Oryza, Saccharomyces, and Tetraodon. Trends Genet 22:597–602PubMedCrossRefGoogle Scholar
  75. Paterson AH, Bowers JE et al (2009a) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556PubMedCrossRefGoogle Scholar
  76. Paterson AH, Bowers JE et al (2009b) Comparative genomics of grasses promises a bountiful harvest. Plant Physiol 149(1):125–131PubMedCrossRefGoogle Scholar
  77. Pedersen BS, Tang H et al (2011) Gobe: an interactive, web-based tool for comparative genomic visualization. Bioinformatics 27(7):1015–1016PubMedCrossRefGoogle Scholar
  78. Puchta H, Dujon B et al (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci USA 93(10):5055–5060PubMedCrossRefGoogle Scholar
  79. Pyankov VI, Artyusheva EG et al (2001) Phylogenetic analysis of tribe Salsoleae (Chenopodiaceae) based on ribosomal ITS sequences: implications for the evolution of photosynthesis types. Am J Bot 88(7):1189–1198PubMedCrossRefGoogle Scholar
  80. Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370CrossRefGoogle Scholar
  81. Salse J, Abrouk M et al (2009) Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci USA 106(35):14908–14913PubMedCrossRefGoogle Scholar
  82. Schnable JC, Freeling M (2011) Genes identified by visible mutant phenotypes show increased bias toward one of two subgenomes of maize. PLoS One 6(3):e17855PubMedCrossRefGoogle Scholar
  83. Schnable PS, Ware D et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115PubMedCrossRefGoogle Scholar
  84. Schnable JC, Springer NM et al (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci USA 108(10):4069–4074PubMedCrossRefGoogle Scholar
  85. Seemann JR, Sharkey TD et al (1987) Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiol 84(3):796–802PubMedCrossRefGoogle Scholar
  86. Shi X, Wang X et al (2007) Evidence that natural selection is the primary cause of the GC content variation in rice genes. J Integr Plant Biol 49(9):1393–1399Google Scholar
  87. Singh NK, Dalal V et al (2007) Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes. Funct Integr Genomics 7(1):17–35PubMedCrossRefGoogle Scholar
  88. Soderstrom TR, Hilu KW, Campbell CS, Barkworth MA (1987) Grass systematics and evolution. Smithsonian Institution Press, Washington, DCGoogle Scholar
  89. Soltis PS (2005) Ancient and recent polyploidy in angiosperms. New Phytol 166(1):5–8PubMedCrossRefGoogle Scholar
  90. Storm CE, Sonnhammer EL (2003) Comprehensive analysis of orthologous protein domains using the HOPS database. Genome Res 13(10):2353–2362PubMedCrossRefGoogle Scholar
  91. Swigonova ZJ, Lai S et al (2004b) Close split of sorghum and maize genome progenitors. Genome Res 14(10A):1916–1923Google Scholar
  92. Swigonova Z, Lai JS et al (2004a) On the tetraploid origin of the maize genome. Compa Funct Genomics 5(3):281–284CrossRefGoogle Scholar
  93. Tang HB, Wang XY et al (2008b) Unraveling ancient hexaploidy through multiply aligned angiosperm gene maps. Genome Res 18(12):1944–1954Google Scholar
  94. Tang H, Bowers JE et al (2008a) Synteny and colinearity in plant genomes. Science 320:486–488PubMedCrossRefGoogle Scholar
  95. Tang H, Bowers JE et al (2010) Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Natl Acad Sci USA 107(1):472–477PubMedCrossRefGoogle Scholar
  96. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815CrossRefGoogle Scholar
  97. The Rice Chromosomes 11 and 12 Sequencing Consortia (2005) The sequence of rice chromosomes 11 and 12, rice in disease resistance genes and recent gene duplications. BMC Biol 3:20CrossRefGoogle Scholar
  98. Thomas BC, Pedersen B et al (2006) Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homology leaving clusters enriched in dose-sensitive genes. Genome Res 16(7):934–946PubMedCrossRefGoogle Scholar
  99. Van de Peer Y (2004) Computational approaches to unveiling ancient genome duplications. Nat Rev Genet 5(10):752–763PubMedCrossRefGoogle Scholar
  100. Vandepoele K, Saeys Y et al (2002) The automatic detection of homologous regions (ADHoRe) and its application to microcolinearity between Arabidopsis and rice. Genome Res 12(11):1792–1801PubMedCrossRefGoogle Scholar
  101. Vandepoele K, Simillion C et al (2003) Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15(9):2192–2202PubMedCrossRefGoogle Scholar
  102. Vicentini A, Barber JC et al (2008) The age of the grasses and clusters of origins of C4 photosynthesis. Glob Change Biol 14:15CrossRefGoogle Scholar
  103. Wang HC, Singer GA et al (2004) Mutational bias affects protein evolution in flowering plants. Mol Biol Evol 21(1):90–96PubMedCrossRefGoogle Scholar
  104. Wang X, Shi X et al (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165(3):937–946PubMedCrossRefGoogle Scholar
  105. Wang X, Shi X et al (2006) Statistical inference of chromosomal homology based on gene colinearity and applications to Arabidopsis and rice. BMC Bioinf 7(1):447CrossRefGoogle Scholar
  106. Wang X, Tang H et al (2007) Extensive concerted evolution of rice paralogs and the road to regaining independence. Genetics 177(3):1753–1763PubMedCrossRefGoogle Scholar
  107. Wang X, Gowik U et al (2009a) Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol 10(6):R68PubMedCrossRefGoogle Scholar
  108. Wang X, Tang H et al (2009b) Comparative inference of illegitimate recombination between rice and sorghum duplicated genes produced by polyploidization. Genome Res 19(6):1026–1032PubMedCrossRefGoogle Scholar
  109. Wang X, Tang H et al (2011) Seventy million years of concerted evolution of a homoeologous chromosome pair, in parallel, in major Poaceae lineages. Plant Cell 23(1):27–37PubMedCrossRefGoogle Scholar
  110. Watson L, Dallwitz MJ (1992) The grass genera of the world. CAB International, WallingfordGoogle Scholar
  111. Werth CR, Windham MD (1991) A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate-gene expression. Am Nat 137(4):515–526CrossRefGoogle Scholar
  112. Wicker T, Mayer KF et al (2011) frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 23(5): 1706–1718Google Scholar
  113. Winkler RG, Freeling M (1994) Physiological genetics of the dominant gibberellin-nonresponsive maize dwarfs, dwarf-8 and dwarf-9. Planta 193(3):341–348CrossRefGoogle Scholar
  114. Wong GK, Wang J et al (2002) Compositional gradients in Gramineae genes. Genome Res 12(6):851–856PubMedCrossRefGoogle Scholar
  115. Woodhouse MR, Schnable JC et al (2010) Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homologs. PLoS Biol 8(6):e1000409PubMedCrossRefGoogle Scholar
  116. Yin T, Difazio SP et al (2008) Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genome Res 18(3):422–430PubMedCrossRefGoogle Scholar
  117. Youens-Clark K, Buckler E et al (2011) Gramene database in 2010: updates and extensions. Nucleic Acids Res 39:D1085–D1094 (database issue)PubMedCrossRefGoogle Scholar
  118. Yu J, Hu S et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565):79–92PubMedCrossRefGoogle Scholar
  119. Yu J, Wang J et al (2005) The genomes of Oryza sativa: a history of duplications. Plos Biol 3(2):266–281CrossRefGoogle Scholar
  120. Zhang G, Liu X et al (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30(6):549–554PubMedCrossRefGoogle Scholar
  121. Zhou T, Wang Y et al (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics 271(4):402–415PubMedCrossRefGoogle Scholar
  122. Zmasek CM, Eddy SR (2002) RIO: analyzing proteomes by automated phylogenomics using resampled inference of orthologs. BMC Bioinf 3:14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Plant Genome Mapping LaboratoryUniversity of GeorgiaAthensUSA
  2. 2.Center for Genomics and Computational Biology, School of Life Sciences and School of SciencesHebei United UniversityTangshanChina

Personalised recommendations