Marker-Assisted Selection in Cereals: Platforms, Strategies and Examples

  • Yunbi Xu
  • Chuanxiao Xie
  • Jianmin Wan
  • Zhonghu He
  • Boddupalli M. Prasanna
Chapter

Abstract

Cereals are the world’s most important sources of food, both for direct human consumption and indirectly, as inputs to livestock production. Millions of farmers and consumers in both the developed and the developing world depend on cereals as their preferred staple food. The future of cereal production, affects not only the global food security, but also the livelihoods of several million small farmers worldwide.

Keywords

Fusarium Head Blight Stripe Rust Favorable Allele Target Trait Quality Protein Maize 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmadi N, Albar L, Pressoir G, Pinel A, Fargette D, Ghesquiere A (2001) Genetic basis and mapping of the resistance to rice yellow mottle virus. III. Analysis of QTL efficiency in introgressed progenies confirmed the hypothesis of complementary epistasis between two resistance QTL. Theor Appl Genet 103:1084–1092CrossRefGoogle Scholar
  2. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathnell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 13:1409–1420CrossRefGoogle Scholar
  3. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles RE, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedCrossRefGoogle Scholar
  4. Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JD, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631PubMedCrossRefGoogle Scholar
  5. Babar MA, Reynolds MP, van Ginkel M, Klatt AR, Raun WR, Stone ML (2006) Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll and canopy temperature in wheat. Crop Sci 46:1046–1057CrossRefGoogle Scholar
  6. Babar MA, van Ginkel M, Klatt AR, Prasad B, Reynold MP (2007) The potential of using spectral reflectance indices to estimate yield in wheat grown under reduced irrigation. Euphytica 150:155–172CrossRefGoogle Scholar
  7. Babu R, Nair SK, Kumar A, Venkatesh S, Sekhar JC, Singh NN, Srinivasan G, Gupta HS (2005) Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to Quality Protein Maize (QPM). Theor Appl Genet 111:888–897PubMedCrossRefGoogle Scholar
  8. Bagge M, Xia X, Lübberstedt TL (2007) Functional markers in wheat. Curr Opin Plant Biol 10:211–216PubMedCrossRefGoogle Scholar
  9. Bänziger M, Setimela PS, Hodson D, Vivek B (2006) Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agric Water Manag 80:212–224CrossRefGoogle Scholar
  10. Barrière Y, Thomas J, Denoue D (2008) QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838 X F286. Plant Sci 175:585–595CrossRefGoogle Scholar
  11. Basavaraj SH, Singh VK, Singh A, Singh A, Singh A, Anand D, Yadav S, Ellur RK, Singh D, Krishnan SG, Nagarajan M, Mohapatra T, Prabhu KV, Singh AK (2010) Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrid. Mol Breed 26:293–305CrossRefGoogle Scholar
  12. Beavis WD (1998) QTL analyses: power, precision and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–162Google Scholar
  13. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664CrossRefGoogle Scholar
  14. Bernardo R (2010) Genomewide selection with minimal crossing in self-pollinated crops. Crop Sci 50:624–627CrossRefGoogle Scholar
  15. Bernardo R, Charcosset A (2006) Usefulness of gene information in marker-assisted recurrent selection: a simulation appraisal. Crop Sci 46:614–621CrossRefGoogle Scholar
  16. Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090CrossRefGoogle Scholar
  17. Bhatia D, Sharma R, Vikal Y, Mangat GS, Mahajan R, Sharma N, Lore JS, Singh N, Bharaj TS, Singh K (2011) Marker-assisted development of bacterial blight resistant, dwarf, and high yielding versions of two traditional basmati rice cultivars. Crop Sci 51:759–770CrossRefGoogle Scholar
  18. Bidinger FR, Serraj R, Rizvi SMH, Howarth C, Yadav RS, Hash CT (2005) Field evaluation of drought tolerance QTL effects on phenotype and adaptation in pearl millet (Pennisetum glaucum (L.) R. Br.) top cross hybrids. Field Crops Res 94:14–32CrossRefGoogle Scholar
  19. Bonnet DG, Rebetzke GJ, Spielmeyer W (2005) Strategies for efficient implementation of molecular markers in wheat breeding. Mol Breed 15:75–85CrossRefGoogle Scholar
  20. Cakir M, Drake-Brockman F, Shankar M, Golzar H, McLean R, Bariana H, Wilson R, Barclay I, Moore C, Jones M, Loughman R (2008) Molecular mapping and marker-assisted improvement of rust resistance in the Australian wheat germplasm, p 1–3. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proceedings of 11th International Wheat Genet Symposium, Brisbane Australia, 24–29 August 2008. Sydney University Press, Sydney. http://hdl.handle.net/2123/3317
  21. Casao MC, Igartua E, Karsai I, Bhat PR, Cuadrado N, Gracia MP, Lasa JM, Casas AM (2011) Introgression of an intermediate VRNH1 allele in barley (Hordeum vulgare L.) leads to reduced vernalization requirement without affecting freezing tolerance. Mol Breed 28:475–484Google Scholar
  22. Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221PubMedCrossRefGoogle Scholar
  23. Chen S, Lin XH, Xu CG, Zhang Q (2000) Improvement of bacterial blight resistance of ‘Minghui63’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Sci 40:239–244CrossRefGoogle Scholar
  24. Chen L, Zhao Z, Liu X, Liu L, Jiang L, Liu S, Zhang W, Wang Y, Liu Y, Wan J (2011) Marker-assisted breeding of a photoperiod-sensitive male sterile japonica rice with high cross-compatibility with indica rice. Mol Breed 27:247–258CrossRefGoogle Scholar
  25. Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC, Gore M, Guill KE, Holland J, Hufford MB, Lai J, Li M, Liu X, Lu Y, McCombie R, Nelson R, Poland J, Prasanna BM, Pyhäjärvi T, Rong T, Sekhon RS, Sun Q,Tenaillon MI, Tian F, Wang J, Xu X, Zhang Z, Kaeppler SM, Ross-Ibarra J, McMullen MD, Buckler ES, Zhang G, Xu Y, Ware D (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44:803–807Google Scholar
  26. Close T, Bhat P, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J, Wanamaker S, Bozdag S, Roose M, Moscou M, Chao S, Varshney R, Szucs P, Sato K, Hayes P, Matthews D, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton R, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582PubMedCrossRefGoogle Scholar
  27. Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486PubMedCrossRefGoogle Scholar
  28. Crosbie TM, Eathington SR, Johnson GR, Edwards M, Reiter R, Stark S, Mohanty RG, Oyervides M, Buehler RE, Walker AK, Dobert R, Delannay X, Pershing JC, Hall MA, Lamkey KR (2006) Plant breeding: past, present, and future, p 3–50. In K.R. Lamkey and M. Lee (eds) Plant breeding: the Arnel R. Hallauer international symposiumGoogle Scholar
  29. Delannay X, McLaren G, Ribaut JM (2012) Fostering molecular breeding in developing countries. Mol Breed 29:857–873CrossRefGoogle Scholar
  30. DePauw RM, Townley-Smith TF, Humphreys G, Knox RE, Clarke FR, Clarke JM (2005) Lillian hard red spring wheat. Can J Plant Sci 85:397–401CrossRefGoogle Scholar
  31. DePauw RM, Knox RE, Thomas JB, Smith M, Clarke JM, Clarke FR, McCaig TN, Fernandez MR (2009) Goodeve hard red spring wheat. Can J Plant Sci 89:937–944CrossRefGoogle Scholar
  32. Dubcovsky J (2004) Marker-assisted selection in public breeding programs: the wheat experience. Crop Sci 44:1895–1898CrossRefGoogle Scholar
  33. Dwivedi SL, Crouch JH, Mackill DJ, Xu Y, Blair MW, Ragot M, Upadhyaya HD, Ortiz R (2007) The molecularization of public sector crop breeding: progress, problems and prospects. Adv Agron 95:163–318CrossRefGoogle Scholar
  34. Eathington SR (2005) Practical applications of molecular technology in the development of commercial maize hybrids. In: Proceedings of the 60th Annual Corn and Sorghum Seed Research Conference, Chicago [CD-ROM]. 7–9 Dec 2005. American Seed Trade Association, Washington, DCGoogle Scholar
  35. Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47(S3): S154–S163Google Scholar
  36. Edmeades GO, Bänziger M, Ribaut JM (2000) Maize improvement for drought-limited environments. In: Otegui ME, Slafer GA (eds) Physiological bases for maize improvement. Food Products Press, New York, pp 75–111Google Scholar
  37. Edwards M, Johnson L (1994) RFLPs for rapid recurrent selection. In: Proceedings of Symposium on Analysis of Molecular Marker Data. American Society of Horticultural Science and Crop Science Society of America, Corvallis, Oregon, pp 33–40Google Scholar
  38. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379PubMedCrossRefGoogle Scholar
  39. Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:211–3222CrossRefGoogle Scholar
  40. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Ann Rev Plant Biol 54:357–374CrossRefGoogle Scholar
  41. Friedt W, Ordon F (2007) Molecular markers for gene pyramiding and disease resistance breeding in barley. In: Varshney RK, Tuberosa R (eds) Genomics-Assisted Crop Improvement. Vol.2 Genomics Application in Crops, Springer, pp 81–101Google Scholar
  42. Frisch M (2004) Breeding strategies: optimum design of marker-assisted backcross programs. In: Lörz H, Wenzl G (eds) Biotechnology in agriculture and forestry, vol 55., Molecular marker systems in plant breeding and crop improvementSpringer, Berlin, pp 319–334Google Scholar
  43. Gao S, Martinez C, Skinner DJ, Krivanek AF, Crouch JH, Xu Y (2008) Development of a seed DNA-based genotyping system for marker-assisted selection in maize. Mol Breed 22:477–494CrossRefGoogle Scholar
  44. Gao S, Babu R, Lu Y, Martinez C, Hao Z, Krivanek AF, Wang J, Rong T, Crouch JH, Xu Y (2011) Revisiting the hetero-fertilization phenomenon in maize. PLoS ONE 6(1):e16101PubMedCrossRefGoogle Scholar
  45. Genc Y, Oldach K, Verbyla A, Lott G, Hassan M, Tester M, Wallwork H, McDonald G (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121:877–894PubMedCrossRefGoogle Scholar
  46. Glover JD, Reganold JP, Bell LW, Borevitz J, Brummer EC, Buckler ES, Cox CM, Cox TS, Crews TE, Culman SW, DeHaan LR, Eriksson D, Gill BS, Holland J, Hulke BS, Ibrahim AMH, Jackson W, Jones SS, Murray SC, Paterson AH, Ploschuk E, Sacks EJ, Snapp S, Tao D, Van Tassel DL, Wade LJ, Wyse DL, Xu Y (2010) Increased food and ecosystem security via perennial grains. Science 328:1638–1639PubMedCrossRefGoogle Scholar
  47. Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:323–330PubMedCrossRefGoogle Scholar
  48. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117PubMedCrossRefGoogle Scholar
  49. Grewal TS, Rossnagel BG, Scoles GJ (2010) Validation of molecular markers associated with net blotch resistance and their utilization in barley breeding. Crop Sci 50:177–184CrossRefGoogle Scholar
  50. Gupta PK, Kumar J, Mir RR, Kumar A (2009) Marker-assisted selection as a component of conventional plant breeding. Plant Breed Rev 33:145–217Google Scholar
  51. Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161CrossRefGoogle Scholar
  52. Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13CrossRefGoogle Scholar
  53. Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan J, Buckler ES (2008) Natural genetic variation in Lycopene Epsilon Cyclase tapped for maize biofortification. Science 319:330–333PubMedCrossRefGoogle Scholar
  54. Hash CT (2005) Opportunities for application of molecular markers for sustainable crop production in stress environments: sorghum and pearl millet. In: International Conference on Sustainable Crop Production in Stress Environments: Management and Genetic Options, pp 113 (abstract). Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, IndiaGoogle Scholar
  55. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443PubMedCrossRefGoogle Scholar
  56. He Y, Chen C, Tu J, Zhou P, Jiang G, Tan Y, Xu C, Zhang Q (2002) Improvement of an elite rice hybrid, Shanyou 63, by transformation and maker-assisted selection. In: Abstracts of the Fourth International Symposium on Hybrid Rice, 14–17 May 2002, Hanoi, Vietnam, p 43Google Scholar
  57. He ZH, Xia XC, Chen XM, Zhang QS (2011) Progress of wheat breeding in China and the future perspective. Acta Agronomica Sinica 37:202–215CrossRefGoogle Scholar
  58. Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690CrossRefGoogle Scholar
  59. Hospital F (2009) Challenges for effective marker-assisted selection in plants. Genetica 136:303–310PubMedCrossRefGoogle Scholar
  60. Hospital F, Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147:1469–1485PubMedGoogle Scholar
  61. Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866PubMedCrossRefGoogle Scholar
  62. Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Wang Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076PubMedCrossRefGoogle Scholar
  63. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967PubMedCrossRefGoogle Scholar
  64. Iftekharuddaula KM, Newaz MA, Salam MA, Ahmed HU, Mahbub MAA, Septiningsih EM, Collard BCY, Sanchez DL, Pamplona AM, Mackill DJ (2011) Rapid and high-precision marker assisted backcrossing to introgress the SUB1 QTL into BR11, the rainfed lowland rice mega variety of Bangladesh. Euphytica 178:83–97CrossRefGoogle Scholar
  65. International HapMap 3 Consortium (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467:52–58CrossRefGoogle Scholar
  66. James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142:1537–1547PubMedCrossRefGoogle Scholar
  67. Jannink JL, Walsh B (2002) Association mapping in plant populations. In: Kang MS (ed) Quantitative Genetics, Genomics and Plant Breeding. CAB International, Wallingford, UK, pp 59–68Google Scholar
  68. Jena KK, Mackill DJ (2008) Molecular markers and their use in marker-assisted selection in rice. Crop Sci 48:1266–1276CrossRefGoogle Scholar
  69. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucl Acids Res 29:e25Google Scholar
  70. Joseph M, Gopalakrishnan S, Sharma RK, Singh VP, Singh AK, Singh NK, Mohapatra T (2004) Combining bacterial blight resistance and basmati quality characteristics by phenotypic and molecular marker assisted selection in rice. Mol Breed 13:377–387CrossRefGoogle Scholar
  71. Khanduri A, Tiwari A, Prasanna BM, Hossain F, Kumar R, Prakash O, Singh SB (2010) Conversion of elite maize lines in India into QPM versions using an integrated phenotypic and molecular marker-assisted selection strategy. In: Zaidi PH, Azrai M, Pixley KV (eds) Maize for Asia: emerging Trends and Technologies. Proceeding of The 10th Asian Regional Maize Workshop, Makassar, Indonesia, 20–23 Oct 2008. CIMMYT, Mexico D.F., p 233–236Google Scholar
  72. Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S, Ecker JR, Weigel D, Nordborg M (2007) Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet 39:1151–1155PubMedCrossRefGoogle Scholar
  73. Knoll JE, Ejeta G (2008) Marker-assisted selection for early season cold tolerance in sorghum: QTL validation across populations and environments. Theor Appl Genet 116:541–553PubMedCrossRefGoogle Scholar
  74. Kuchel H, Fox R, Hollamby G, Reinheimer JL, Jefferies SP (2008) The challenges of integrating new technologies into a wheat breeding programme, p 1–5. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proceedings of 11th International Wheat Genet Symposium. Brisbane, 24–29 Aug 2008. Sydney University Press. http://hdl.handle.net/2123/3400
  75. Kumar J, Mir RR, Kumar N, Kumar A, Mohan A, Prabhu KV, Balyan HS, Gupta PK (2010) Marker assisted selection for pre-harvest sprouting tolerance and leaf rust resistance in bread wheat. Plant Breed 12:617–621CrossRefGoogle Scholar
  76. Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168PubMedCrossRefGoogle Scholar
  77. Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898PubMedCrossRefGoogle Scholar
  78. Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756PubMedGoogle Scholar
  79. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedGoogle Scholar
  80. Langridge P, Paltridge N, Fincher G (2006) Functional genomics of abiotic stress tolerance in cereals. Briefings Funct Genomics Proteomics 4:343–354CrossRefGoogle Scholar
  81. Lebowitz RL, Soller M, Beckmann JS (1987) Trait-based analysis for the detection of linkage between marker loci and quantitative trait loci in cross between inbred lines. Theor Appl Genet 73:556–562CrossRefGoogle Scholar
  82. Lee M (1995) DNA markers and plant breeding programs. Adv Agron 55:265–344CrossRefGoogle Scholar
  83. Li Y, Wang JK, Qiu LJ, Ma YZ, Li XH, Wan JM (2010) Crop molecular breeding in China: current status and perspectives. Acta Agron Sinica 36:1425–1430Google Scholar
  84. Li JZ, Zhang ZW, Li YL, Wang QL, Zhou YG (2011) QTL consistency and meta-analysis for grain yield components in three generations in maize. Theor Appl Genet 122:771–782PubMedCrossRefGoogle Scholar
  85. Liang F, Deng Q, Wang Y, Xiong Y, Jin D, Li J, Wang B (2004) Molecular marker-assisted selection for yield-enhancing genes in the progeny of ‘9311 × O. rufipogon’ using SSR. Euphytica 139:159–165CrossRefGoogle Scholar
  86. Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31:1105–1114CrossRefGoogle Scholar
  87. Liu Y, He Z, Appels R, Xia X (2012) Functional markers in wheat: current status and future prospects. Theor Appl Genet 125:1–10Google Scholar
  88. Löffler M, Schön CC, Miedaner T (2009) Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol Breed 23:473–488CrossRefGoogle Scholar
  89. Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161PubMedCrossRefGoogle Scholar
  90. Lu Y, Zhang SH, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut JM, Cao M, Rong T, Xu Y (2010) Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci USA 107:19585–19590PubMedCrossRefGoogle Scholar
  91. Lu Y, Xu J, Yuan Z, Hao Z, Xie C, Li X, Shah T, Lan H, Zhang S, Rong T, Xu Y (2012) Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Mol Breed 30:407–418Google Scholar
  92. Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26PubMedCrossRefGoogle Scholar
  93. Mace ES, Rami JF, Bouchet S, Klein PE, Klein RP, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13PubMedCrossRefGoogle Scholar
  94. Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63PubMedCrossRefGoogle Scholar
  95. Mago R, Lawrence GJ, Ellis JG (2011) The application of DNA marker and doubled-haploid technology for stacking multiple stem rust resistance genes in wheat. Mol Breed 27:329–335CrossRefGoogle Scholar
  96. Mammadov J, Chen W, Mingus J, Thompson S, Kumpatla S (2012) Development of versatile gene-based SNP assays in maize (Zea mays L.). Mol Breed 29:779–790Google Scholar
  97. Manenti G, Galvan A, Pettinicchio A, Trincucci G, Spada E, Zolin A, Milani S, Gonzalez-Neira A, Dragani TA (2009) Mouse genome-wide association mapping needs linkage analysis to avoid false-positive loci. PLoS Genet 5:e1000331PubMedCrossRefGoogle Scholar
  98. McCouch SR, Sweeney M, Li J, Jiang H, Thomson M, Septiningsih E, Edwards J, Moncada P, Xiao J, Garris A, Tai T, Martinez C, Tohme J, Sugiono M, McClung A, Yuan LP, Ahn SN (2007) Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 154:317–339CrossRefGoogle Scholar
  99. McCouch SR, Zhao K, Wright M, Tung CW, Ebana K, Thomson M, Reynolds A, Wang D, DeClerck G, Ali ML, McClung A, Eizenga G, Bustamante C (2010) Development of genome-wide SNP assays for rice. Breed Sci 60:524–535CrossRefGoogle Scholar
  100. McNally K, Childs K, Bohnert R, Davidson R, Zhao K, Ulat V, Zeller G, Clark R, Hoen D, Bureau T, Stokowski R, Ballinger D, Frazer K, Cox D, Padhukasahasram B, Bustamante C, Weigel D, Mackill D, Bruskiewich R, Rätsch G, Buell C, Leung H, Leach J (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA 106:12273–12278PubMedCrossRefGoogle Scholar
  101. Meuwissen TH (2009) Accuracy of breeding values of ‘unrelated’ individuals predicted by dense SNP genotyping. Genet Sel Evol 41:35PubMedCrossRefGoogle Scholar
  102. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genomewide dense marker maps. Genetics 157:1819–1829PubMedGoogle Scholar
  103. Miura K, Ashikari M, Matsuoka M (2011) The role of QTLs in the breeding of high-yielding rice. Trends in Plant Science 16:319–326Google Scholar
  104. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202PubMedCrossRefGoogle Scholar
  105. Nguyen B, Brar D, Bui B, Nguyen T, Pham L, Nguyen H (2003) Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (Oryza sativa L.). Theor Appl Genet 106:583–593PubMedGoogle Scholar
  106. Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334PubMedCrossRefGoogle Scholar
  107. Podlich DW, Winkler CR, Cooper M (2004) Mapping as you go: an effective approach for marker-assisted selection of complex traits. Crop Sci 44:560–1571CrossRefGoogle Scholar
  108. Prasanna BM, Pixley K, Warburton ML, Xie CX (2010) Molecular marker-assisted breeding options for maize improvement in Asia. Mol Breed 26:339–356CrossRefGoogle Scholar
  109. Qiu LJ, Guo Y, Li Y, Wang XB, Zhou GA, Liu ZX, Zhou SR, Li XH, Ma YZ, Wang JK, Wan JM (2011) Novel gene discovery of crops in China: status, challenging, and perspective. Acta Agron Sinica 37:1–17CrossRefGoogle Scholar
  110. Rae SJ, Macaulay M, Ramsay L, Leigh F, Mathews D, O’Sullivan DM, Donini P, Morris PC, Powell W, Marshall DF, Waugh R, Thomas WTB (2007) Molecular barley breeding. Euphytica 158:295–303CrossRefGoogle Scholar
  111. Ragot M, Lee M (2007) Marker-assisted selection in maize: current status, potential, limitations and perspectives from the private and public sectors. In: Guimarães EP et al (eds) Marker-assisted selection, current status and future perspectives in crops, livestock, forestry, and fish. FAO, Rome, pp 117–150Google Scholar
  112. Ragot M, Gay D, Muller JP, Durovray J (2000) Efficient selection for the adaptation to the environment through QTL mapping and manipulation in maize. In: Ribaut JM, Poland D (eds) Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments. CIMMYT, Mexico, D.F, pp 128–130Google Scholar
  113. Ramlingam J, Basharat HS, Zhang G (2002) STS and microsatellite marker-assisted selection for bacterial blight resistance and waxy gene in rice, Oryza sativa L. Euphytica 127:255–260CrossRefGoogle Scholar
  114. Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptations in maize: the backcross approach, perspectives, limitations and alternatives. J Exp Bot 58:351–360PubMedCrossRefGoogle Scholar
  115. Ribaut JM, Bänziger M, Betran J, Jiang C, Edmeades GO, Dreher K, Hoisington D (2002) Use of molecular markers in plant breeding: drought tolerance improvement in tropical maize. In: Kang MS (ed) Quantitative Genetics. Genomics and Plant Breeding CAB International, Wallingford, pp 85–99Google Scholar
  116. Ribaut JM, de Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13:213–218PubMedCrossRefGoogle Scholar
  117. Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:1–8CrossRefGoogle Scholar
  118. Rutkoski JE, Heffner EL, Sorrells ME (2011) Genomic selection for durable stem rust resistance in wheat. Euphytica 179:161–173CrossRefGoogle Scholar
  119. Salameh A, Buerstmayr M, Steiner B, Neumayer A, Lemmens M, Buerstmayr H (2011) Effects of introgression of two QTL for fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on fusarium head blight resistance, yield and quality traits. Mol Breed 28:485–494Google Scholar
  120. Schmierer DA, Kandemir N, Kudrna DA, Jones BL, Ullrich SE, Kleinhofs A (2004) Molecular marker-assisted selection for enhanced yield in malting barley. Mol Breed 14:463–473CrossRefGoogle Scholar
  121. Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160PubMedCrossRefGoogle Scholar
  122. Servin B, Martin OC, Mézard M, Hospital F (2004) Toward a theory of marker-assisted gene pyramiding. Genetics 168:513–523PubMedCrossRefGoogle Scholar
  123. Shen L, Courtois B, McNally KL, Robin S, Li Z (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103:75–83CrossRefGoogle Scholar
  124. Siangliw M, Toojinda T, Tragoonrung S, Vanavichit A (2003) Thai Jasmine rice carrying QTLch9 (SubQTL) is submergence tolerant. Ann Bot 91:255–261PubMedCrossRefGoogle Scholar
  125. Sorrells ME (2007) Application of new knowledge, technologies, and strategies to wheat improvement. Euphytica 157:299–306CrossRefGoogle Scholar
  126. Stam P (1995) Marker-assisted breeding. In: Van Ooijen JW and Jansen J (eds) Biometrics in plant breeding: applications of molecular markers. Proceedings of the 9th meeting of EUCARPIA section on biometrics in plant breeding (1994). Centre for Plant Breeding and Reproduction Research, Wageningen, Netherlands, pp 32–44Google Scholar
  127. Stam P (2003) Marker-assisted introgression: speed at any cost? In: van Hintum Th.JL, Lebeda A, Pink D, Schut JW (eds) Proceedings of the Eucarpia meeting on leafy vegetables genetics and breeding, 19–21 March 2003, Noordwijkerhout, Netherlands. Centre for Genetic Resources (CGN), Wageningen, Netherlands, pp 117–124Google Scholar
  128. Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to introgress rice QTL controlling root traits into an Indian upland rice variety. Theor Appl Genet 112:208–221PubMedCrossRefGoogle Scholar
  129. Sun Y, Wang J, Crouch JH, Xu Y (2010) Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement. Mol Breed 26:493–511CrossRefGoogle Scholar
  130. Sundaram RM, Vishnupriya MR, Laha GS, Shobha Rani N, Srinivas Rao P, Balachandaran SM, Asho Reddy G, Sarma NP, Shonti RV (2009) Introduction of bacterial blight resistance into Triguna, a high yielding, mid-early duration rice variety. Biotechnol J 4:400–407PubMedCrossRefGoogle Scholar
  131. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162PubMedCrossRefGoogle Scholar
  132. Tommasini L, Yahiaoui N, Srichumpa P, Keller B (2006) Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theor Appl Genet 114:165–175PubMedCrossRefGoogle Scholar
  133. Trebbi D, Maccaferri M, de Heer P, Sørensen A, Giuliani S, Salvi S, Sanguineti MC, Massi A, van der Vossen EAG, Tuberosa R (2011) High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet 123:555–569PubMedCrossRefGoogle Scholar
  134. Truntzler M, Barrière Y, Sawkins MC, Lespinasse D, Betran J, Charcosset A, Moreau L (2010) Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. Theor Appl Genet 121:1465–1482PubMedCrossRefGoogle Scholar
  135. van Berloo R, Stam P (1998) Marker-assisted selection in autogamous RIL populations: a simulation study. Theor Appl Genet 96:147–154CrossRefGoogle Scholar
  136. van Berloo R, Stam P (2001) Simultaneous marker-assisted selection for multiple traits in autogamous crops. Theor Appl Genet 102:1107–1112CrossRefGoogle Scholar
  137. Van Damme V, Gómez-Paniagua H, de Vicente MC (2011) The GCP molecular marker toolkit, an instrument for use in breeding food security crops. Mol Breed 28:597–610PubMedCrossRefGoogle Scholar
  138. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530PubMedCrossRefGoogle Scholar
  139. Wang YH, Liu SJ, Ji SL, Zhang WW, Wang CM, Jiang L, Wan JM (2005) Fine mapping and marker-assisted selection (MAS) of a low glutelin content gene in rice. Cell Res 15:622–630PubMedCrossRefGoogle Scholar
  140. Wang J, Chapman SC, Bonnett DG, Rebetzke GJ, Crouch J (2007) Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection. Crop Sci 47:582–588CrossRefGoogle Scholar
  141. Wang CL, Zhang YD, Zhu Z, Chen T, Zhao L, Lin J, Zhou LH (2009) Development of a new japonica rice variety Nanjing 46 with good eating quality by marker assisted selection. Mol Plant Breed 7:1070–1076Google Scholar
  142. Wang C, Chen S, Yu S (2011a) Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice. Theor Appl Genet 122:905–913PubMedCrossRefGoogle Scholar
  143. Wang L, Wang A, Huang X, Zhao Q, Dong G, Qian Q, Sang T, Han B (2011b) Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theor Appl Genet 122:327–340PubMedCrossRefGoogle Scholar
  144. Wei X, Jin Liu L L, Xu JF, Jiang L, Zhang WW, Wang JK, Zhai HQ, Wan JM (2009) Breeding strategies for optimum heading date using genotypic information in rice. Mol Breed 25:287–298CrossRefGoogle Scholar
  145. Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR and RFLP loci and agronomic traits. BMC Genomics 7:206–228PubMedCrossRefGoogle Scholar
  146. Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16:45–55CrossRefGoogle Scholar
  147. William HM, Trethowan R, Crosby-Galvan EM (2007) Wheat breeding assisted by markers: CIMMYT’s experience. Euphytica 157:307–319CrossRefGoogle Scholar
  148. Witcombe JR, Hash CT (2000) Resistance gene deployment strategies in cereal hybrids using marker-assisted selection: gene pyramiding, three-way hybrids and synthetic parent populations. Euphytica 112:175–186CrossRefGoogle Scholar
  149. Wong CK, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824PubMedCrossRefGoogle Scholar
  150. Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA 107:10578–10583PubMedCrossRefGoogle Scholar
  151. Xu Y (1997) Quantitative trait loci: separating, pyramiding, and cloning. Plant Breed Rev 15:85–139Google Scholar
  152. Xu Y (2002) Global view of QTL: rice as a model. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CABI Publishing, Wallingford, pp 109–134Google Scholar
  153. Xu Y (2003) Developing marker-assisted selection strategies for breeding hybrid rice. Plant Breed Rev 23:73–174Google Scholar
  154. Xu Y (2010) Molecular plant breeding. CAB International, Wallingford, p 734CrossRefGoogle Scholar
  155. Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407CrossRefGoogle Scholar
  156. Xu K, Xia X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AI, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene response factor-like gene that confers submergence tolerance to rice. Nature 442:705–708PubMedCrossRefGoogle Scholar
  157. Xu J, Liu Y, Liu J, Cao M, Wang J, Lan H, Xu Y, Lu Y, Guangtang Pan G, Rong T (2012a) The genetic architecture of flowering time and photoperiod sensitivity in maize as revealed by QTL review and meta analysis. J Integr Plant Biol 54:358–373Google Scholar
  158. Xu X, Xin Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, Li J, He W, Zhang G, Zheng X, Zhang F, Li Y, Yu C, Kristiansen K, Zhang X, Wang J, Wright M, McCouch S, Nielsen R, Wang J, Wang W (2012b) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotech 30: 105–111Google Scholar
  159. Xu Y, Lu Y, Xie C, Gao S, Wan J, Prasanna BM (2012c) Whole genome strategies for marker-assisted plant breeding. Mol Breed 29:833–854CrossRefGoogle Scholar
  160. Yamamoto T, Nagasaki H, Yonemaru J, Ebana K, Nakajima M, Shibaya T, Yano M (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11:267PubMedCrossRefGoogle Scholar
  161. Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS ONE 4:e8451PubMedCrossRefGoogle Scholar
  162. Yan J, Yang X, Shah T, Sánchez-Villeda H, Li J, Warburton M, Zhou Y, Crouch JH, Xu Y (2010a) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed 25:441–451CrossRefGoogle Scholar
  163. Yan J, Kandianis CB, Harjes CE, Bai L, Kim E, Yang X, Skinner D, Fu Z, Mitchell S, Li Q, Fernandez MGS, Zaharieva M, Babu R, Fu Y, Palacios N, Li J, DellaPenna D, Brutnell T, Buckler ES, Warburton ML, Rocheford T (2010b) Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat Genet 42:322–327PubMedCrossRefGoogle Scholar
  164. Yoon DB, Kang KH, Kim HJ, Ju HG, Kwon SJ, Suh JP, Jeong OY, Ahu SN (2006) Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. japonica cultivar Hwaseongbyeo. Theor Appl Genet 112:1052–1062PubMedCrossRefGoogle Scholar
  165. Yu J, Hollan JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551PubMedCrossRefGoogle Scholar
  166. Zhong SQ, Dekkers JCM, Fernando RL, Jannink JL (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364PubMedCrossRefGoogle Scholar
  167. Zhou PH, Tan YF, He YA, Xu CG, Zhang A (2003) Simultaneous improvement of four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet 106:326–331PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yunbi Xu
    • 1
  • Chuanxiao Xie
    • 2
  • Jianmin Wan
    • 2
  • Zhonghu He
    • 1
  • Boddupalli M. Prasanna
    • 3
  1. 1.Institute of Crop Sciences/International Maize and Wheat Improvement Center (CIMMYT)Chinese Academy of Agricultural SciencesBeijingChina
  2. 2.Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
  3. 3.International Maize and Wheat Improvement Center (CIMMYT)NairobiKenya

Personalised recommendations