Role of Rheology in Melt Processing

  • John M. Dealy
  • Jian Wang
Part of the Engineering Materials and Processes book series (EMP)


Rheological properties govern the behavior of polymers in melt forming operations. This chapter first explores melt behavior in channels, dies and extruders where the viscometric functions play a dominant role. Extrudate swell, wall slip, flow instabilities, and die build-up are described. The remaining operations dealt with are those in which elasticity is important. Processes for making sheet and film are described and processing problems related to rheology are explained. The roles of rheology in blow molding, injection molding, rotational molding and foam formation are taken up in the remainder of the chapter.


Shear Rate Wall Shear Rate Machine Direction Thickness Swell Blow Molding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agassant JF, Avenas P, Sergent JP, Caarreau PJ (1991) Polymer processing: principles and modeling. Hanser Publishers, MunichGoogle Scholar
  2. 2.
    Tadmor Z, Gogos CG (2006) Principles of polymer processing, 2nd edn. Wiley Interscience, HobokenGoogle Scholar
  3. 3.
    Lee K, Mackley MR, McLeish TCB, Nicholson TM, Harlen OG (2001) Experimental observation of transient “stress fangs” within flowing molten polyethylene. J Rheol 45:1261–1277CrossRefGoogle Scholar
  4. 4.
    Verbeeten WMH, Peters GWM, Baaijens FPT (2002) Viscoelastic analysis of complex polymer melt flows using the extended pom–pom model. J Nonnewton Fluid Mech 108:301–326CrossRefGoogle Scholar
  5. 5.
    Michaeli W (2003) Extrusion dies for plastics and rubber, 3rd edn. Hanser, MunichCrossRefGoogle Scholar
  6. 6.
    Debbaut B, Avalosse T, Dooley J, Hughes K (1997) On the development of secondary motions in straight channels induced by the second normal stress difference: experiments and simulations. J Nonnewton Fluid Mech 69:255–271CrossRefGoogle Scholar
  7. 7.
    Dooley J, Hughes K (2000) Measurement of layer deformation in coextrusion using unique feedblock technology. SPE-ANTEC technical papers 46, 36Google Scholar
  8. 8.
    Yue P, Dooley J, Feng JJ (2008) A general criterion for viscoelastic secondary flow in pipes of noncircular cross section. J Rheol 52:315–332CrossRefGoogle Scholar
  9. 9.
    Dooley J (2005) Coextrusion instabilities. In: Hatzikiriakos SG, Migler KB (eds) Polymer processing instabilities. Marcel Dekker, New YorkGoogle Scholar
  10. 10.
    Chung CI (2011) Extrusion of polymers: theory and practice, 2nd edn. Hanser Publishers, MunichGoogle Scholar
  11. 11.
    Rauwendaal C (1986) Polymer extrusion. Hanser Publishers, MunichGoogle Scholar
  12. 12.
    Rauwendaal C (1986) Throughput-pressure relationships for power-law fluids in single-screw extruders. Polym Eng Sci 26:1240–1244CrossRefGoogle Scholar
  13. 13.
    Zi Z, Gotsis AD (1992) Numerical study of slip at the walls in the extruder. Int Polym Process 7:132–139Google Scholar
  14. 14.
    Koopmans R, Doelder J, Molenaar J (2011) Polymer melt fracture. CRC Press, New YorkGoogle Scholar
  15. 15.
    Moon D, Rur AJ, Migler KB (2008) Multi-sample micro-slit rheometry. J Rheol 52:1131–1142CrossRefGoogle Scholar
  16. 16.
    Laun HM, Schuch H (1989) Transient elongational viscosities and drawability of polymer melts. J Rheol 33:119–175CrossRefGoogle Scholar
  17. 17.
    Han CD, Charles M, Philipoff W (1970) Rheological implications of the exit pressure and die swell in steady capillary flow of polymer melts. I. The primary normal stress difference and the effect of L/D ratio on elastic properties. Trans Soc Rheol 14:393–419CrossRefGoogle Scholar
  18. 18.
    Utracki LA, Bakerdjian Z, Kamal MR (1975) A method for the measurement of the true die swell of polymer melts. J Appl Polym Sci 19:481–501CrossRefGoogle Scholar
  19. 19.
    Garcia-Rejon A, Dealy JM (1982) Swell of extrudate from an annular die. Polym Eng Sci 22:158–165CrossRefGoogle Scholar
  20. 20.
    Orbey N, Dealy JM (1984) Isothermal swell of extrudate from annular dies; Effects of die geometry, flow rate and resin characteristics. Polym Eng Sci 24:511–518CrossRefGoogle Scholar
  21. 21.
    Henderson AM, Rudin A (1986) Effects of die temperature on extrudate swell in screw extrusion. J Appl Polym Sci 31:353–365CrossRefGoogle Scholar
  22. 22.
    White JL, Huang D (1981) Extrudate swell and extrusion pressure loss of polymer melts flowing through rectangular and trapezoidal dies. Polym Eng Sci 21:1101–1107CrossRefGoogle Scholar
  23. 23.
    Huang DC, White JL (1979) Extrudate swell from slit and capillary dies: an experimental and theoretical study. Polym Eng Sci 19:609–616CrossRefGoogle Scholar
  24. 24.
    Stevenson JF, Lee LJ, Griffith RM (1986) Multidimensional control of profile extrusion. Polym Eng Sci 26:233–238CrossRefGoogle Scholar
  25. 25.
    Hogan TA, Wall P, Dems BC (2008) Investigation of the relationships between die build up and die swell. Polym Eng Sci 48:334–343Google Scholar
  26. 26.
    Musin J, Zatloukal M (2012) Experimental investigation of flow-induced molecular weight fractionation for two linear HDPE polymer melts. Chem Eng Sci 81:146–156CrossRefGoogle Scholar
  27. 27.
    Giacomin AJ, Schmalzer AM (2012) Die drool theory. J Polym Eng 33(1):1–18Google Scholar
  28. 28.
    Gander JD, Giacomin AJ (1997) Review of die lip buildup in plastics extrusion. Polym Eng Sci 37:1113–1126CrossRefGoogle Scholar
  29. 29.
    Van den Bossche L, Georgon O, Donders T, Focquet K, Dewitte G, Briers J (2000) Dyneon Tech Rep 16, BelgiumGoogle Scholar
  30. 30.
    Satoh N, Tomiyama H, Kjiwara T (2001) Viscoelastic simulation of film casing process for a polymer melt. Polym Eng Sci 41:1564–1579CrossRefGoogle Scholar
  31. 31.
    Dobroth T, Erwin L (1986) Causes of edge beads in cast films. Polym Eng Sci 26:462–467CrossRefGoogle Scholar
  32. 32.
    Bezigian T (ed) (1999) Extrusion coating manual, 4th edn. Tappi Press, AtlantaGoogle Scholar
  33. 33.
    Co A (2005) Draw resonance in film casting. In: Hatzikiriakos SG, Migler KB (eds) Polymer processing instabilities. Marcel Dekker, New YorkGoogle Scholar
  34. 34.
    Wang J, Mangnus M, Yau W, deGroot W, Karjala T, Demirors M (2008) Structure-property relationships of LDPE. Soc Plast Eng ANTEC:878-881Google Scholar
  35. 35.
    Clevenhag P-A, Oveby C (2005) Rheological indicators to predict the extrusion coating performance of LDPE. TAPPI J 4:21–23Google Scholar
  36. 36.
    Roberts EH, Lucchesi PJ, Kurtz SJ (1986) Draw resonance reduction in melt embossing and extrusion coating resins. Adv Polym Technol 6:65–71CrossRefGoogle Scholar
  37. 37.
    Steward EL, Cline AW (1987) Barrier screw hikes quality of HMW-HDPE blown film. Plast Eng, September ‘87:45Google Scholar
  38. 38.
    Proctor B (1972) Flow analysis in extrusion dies. SPE J 28 (Feb) 34Google Scholar
  39. 39.
    Rauwendaal C (1987) Flow distribution in spiral mandrel dies. Polym Eng Sci 27:186–191CrossRefGoogle Scholar
  40. 40.
    Vlcek J, Vlachopoulos J, Perdikoulias J (1988) Determination of output uniformity from spiral mandrel dies. Int Polym Process 2 ¾:174–181Google Scholar
  41. 41.
    PerdikouIias J, Vlcek J, Vlachopoulos J (1987) Polymer flow through spiral mandrel dies: a comparison of models. Adv Polym Technol 7:333–341Google Scholar
  42. 42.
    Kalyon DM, Yu JS, Du C-C (1987) A distributed model of flow in a spiral mandrel die. Polym Proc Eng 5(2):179–207Google Scholar
  43. 43.
    Gates PC (1987) Film quality improvement through effective die design. SPE ANTEC Tech. Papers XXXIII: 181–183Google Scholar
  44. 44.
    Housiades KD (2011) A mathematical model to study the effect of the air jet in the film blowing process. Polym Eng Sci 41:301–1315Google Scholar
  45. 45.
    Zhang Z, Lafleur PG, Bertrand F (2006) Effect of aerodynamics on film blowing process. Int Polym Process 21:527–535Google Scholar
  46. 46.
    Meissner J (1975) Basic parameters melt rheology, processing and end-use properties of three similar low-density polyethylene samples. Pure Appl Chem 42:553–612CrossRefGoogle Scholar
  47. 47.
    Farber R, Dealy J (1974) Strain history of the melt in film blowing. Polym Eng Sci 14:435–440CrossRefGoogle Scholar
  48. 48.
    Huang TA, Campbell GA (1985) Deformational history of LLDPE/LDPE blends on blown film equipment. Adv Polym Technol 5(3):181–192CrossRefGoogle Scholar
  49. 49.
    Liu T, Harrison IR (1988) Shrinkage of low-density polyethylene film. Polym Eng Sci 28:517–521CrossRefGoogle Scholar
  50. 50.
    Butler RI (2000) Blown film bubble instability induced by fabrication conditions. SPE ANTEC 46:156–164Google Scholar
  51. 51.
    Jung HWJ, Hyun JC (2005) Fiber spinning and film blowing instabilities. In: Hatzikiriakos SG, Migler KB (eds) Polymer processing instabilities. Marcel Dekker, New YorkGoogle Scholar
  52. 52.
    Winter HH (1983) A collaborative study on the relationship between film blowing performance and rheological properties of two low-density and two high-density plolyethylene samples. Pure Appl Chem 55:943–976CrossRefGoogle Scholar
  53. 53.
    Micic P, Bhattacharya SN (2000) Rheology of LLDPE, LDPE and LLDPE/LDPE blends and its relevance to the film blowing process. Polym Int 49:1580–1589CrossRefGoogle Scholar
  54. 54.
    Higuchi H, Fujikawa S, Sato M, Koyama K (2004) Thickness uniformity of HDPE blown film: relation to rheological properties and density. Polym Eng Sci 44:965–972CrossRefGoogle Scholar
  55. 55.
    Pearson JRA, Petrie CJS (1970) The flow of a tubular film, part 1. Formal mathematical representation. J Fluid Mech 40:1–19; Part 2, Interpretation of the model and discussion of solutions. J Fluid Mech 42:609–625Google Scholar
  56. 56.
    Jim MK, Lee JS, Jung HW, Hyun JC (2011) Frequency response analysis of nonisothermal film blowing process using transient simulations. J Appl Polym Sci 123:3028–3035Google Scholar
  57. 57.
    Kim HT, Darby JP, Wilson GF (1973) Study of the variables affecting pressure drop and temperature rise in blow molding dies. Poly Eng Sci 13:372–381CrossRefGoogle Scholar
  58. 58.
    Pritchatt RJ, Parnaby J, Worth RA (1975) Design considerations in development of extrudate wall-thickness control in blow molding. Plast Polym 43:55–64CrossRefGoogle Scholar
  59. 59.
    Winter HH, Fritz HG (1986) Design of dies for the extrusion of sheets and annular parisons: the distribution problem. Polym Eng Sci 26:543–553CrossRefGoogle Scholar
  60. 60.
    KaIyon DM, Kamal MR (1986) An experimental investigation of capillary extrudate swell in relation to parison swell behavior in blow molding. Polym Eng Sci 26:508–516CrossRefGoogle Scholar
  61. 61.
    Cogswell FN, Webb PC, Weeks JC, Maskell SG, Rice PDR (1971) Scientific design of fabrication processes-blow molding. Plast Polym 39:340Google Scholar
  62. 62.
    Koopmans RJ (1988) Die swell–molecular structure model for linear polyethylene. J Polym Sci A 26:1157–1164CrossRefGoogle Scholar
  63. 63.
    Henze ED, Wu WCL (1973) Variables affecting parison diameter swell and their correlation with rheological parameters. Polym Eng Sci 13:153–159CrossRefGoogle Scholar
  64. 64.
    Jivraj N, Sehanobish K, Ramanathan R, Garcia-Rejon A, Carmel M (2001) Large part blow molding of HDPE resins: parison extrusion behavior and its relationship with resin rheological parameters. Soc Plast Eng ANTEC 876–880Google Scholar
  65. 65.
    Kalyon D, Tan Kamal MR (1980) The dynamics of parison development in blow molding. Polym Eng Sci 20:773–777CrossRefGoogle Scholar
  66. 66.
    Yousefi A-M, den Doelder J, Rainville M-A, Koppi KA (2009) A modeling approach to the effect of resin characteristics on parison formation in extrusion blow molding. Polym Eng Sci 49:251–263CrossRefGoogle Scholar
  67. 67.
    Ajroldi G (1978) Determination of rheological parameters from parison extrusion experiments. Polym Eng Sci 18:742–749CrossRefGoogle Scholar
  68. 68.
    Sebastion DH, Dearborn JR (1983) Elongation rheology of polyolefin’s and its relation to processability. Polym Eng Sci 23:572–575CrossRefGoogle Scholar
  69. 69.
    Swerdlow M, CogsweIl FN, Krul N (1980) Plast Rubber ProcessGoogle Scholar
  70. 70.
    Ryan ME, Dutta A (1982) The dynamics of parison free inflation in extrusion blow molding. Polym Eng Sci 22:569–577CrossRefGoogle Scholar
  71. 71.
    Erwin L, Pollack MA, Gonsalez H (1983) Blowing of oriented PET bottles: predictions of free blown size and shape. Polym Eng Sci 23:826–829CrossRefGoogle Scholar
  72. 72.
    Jabarin SA, Lofgren EA (1986) Effects of water absorption on physical properties and degree of molecular orientation of poly (ethylene terephthalate). Polym Eng Sci 26:620–625CrossRefGoogle Scholar
  73. 73.
    Fifer RL (1981) PET stretch blow molding: experimental data showing container physical characteristics related to a variable container size. SPE ANTEC Tech Pap 27:696Google Scholar
  74. 74.
    Cakmak M, White JL, Spruiell JE (1985) an investigation of the kinematics of stretch blow molding poly(ethylene-terephthalate) bottles. J Appl Polym Sci 30:3679–3695CrossRefGoogle Scholar
  75. 75.
    Schaul JS, Hannon MJ, Wisbrun KF (1975) Analysis of factors determining parison properties in high shear rate blow molding. Trans Soc Rheol 19:351–377CrossRefGoogle Scholar
  76. 76.
    Kennedy P (1995) Flow analysis of injection molding. Hanser Publishers, MunichGoogle Scholar
  77. 77.
    Kamal MR, Goyal SK, Chu E (1988) Simulation of injection mold filling of viscoelastic polymer with fountain flow. AICHE J 34:94–106CrossRefGoogle Scholar
  78. 78.
    Richardson SM (1985) Injection moulding of thermoplastics, II. Freezing-off in cavities. Rheol Acta 24:509–518CrossRefGoogle Scholar
  79. 79.
    Hieber CA, Chiang HH, Ricketoson RC, Jong WR, Wang KK (1987) Melt viscosity characteristics via spiral mold. SPE ANTEC Tech Pap 33:938–941Google Scholar
  80. 80.
    Hull AM, Richardson SM, Selopranoto JH (1986) Plast Rubber Proc Appl 6:189Google Scholar
  81. 81.
    Fritch LW (1986) Honing molding parameters by measuring flow length. Plast Eng 42:41–44Google Scholar
  82. 82.
    Furches BJ, Kachin GA (1989) SPE Tech Pap 35:1663Google Scholar
  83. 83.
    Jain NS, Barry CMF, Barry MF (2001) Criteria for flow instabilities in end-gated injection molds. Soc Plast Eng ANTEC 47:471–475Google Scholar
  84. 84.
    Oda K, White JL, Clark ES (1976) Jetting in injection mold filling. Polym Eng Sci 16:585–592CrossRefGoogle Scholar
  85. 85.
    Bogaerds ACB, Peters GWM, Baaijens FTP (2005) Instabilities in injection molding. In: Hatzikiriakos SG, Migler KB (eds) Polymer processing instabilities. Marcel Dekker, New YorkGoogle Scholar
  86. 86.
    Kontopoulou M, Vlachopoulos J (2001) Melting and densification of thermoplastic powders. Polym Eng Sci 41:155–169CrossRefGoogle Scholar
  87. 87.
    Crawford RJ, Throne JL (2002) Rotational molding technology. PDI-William Andrew Publishing, NorwichGoogle Scholar
  88. 88.
    Gendron R (2005) Rheological behavior relevant to extrusion foaming. In: Gendron R (ed) Thermoplastic foam processing. CRC Press, Boca RatonGoogle Scholar
  89. 89.
    Munstedt H, Kurzbeck S, Stange J (2006) Advances in film blowing, thermoforming, and foaming by using long-chain branched polymers. Macromol Symp 245–246:181–190CrossRefGoogle Scholar
  90. 90.
    Stange J, Münstedt H (2006) Rheological properties and foaming behavior of polypropylenes with different molecular structures. J Rheol 50:907–923CrossRefGoogle Scholar
  91. 91.
    Mihai M, Huneault MA, Favis BD (2010) Rheology and extrusion foaming of long-chain-branched poly (lactic acid). Polym Eng Sci 50:630–642CrossRefGoogle Scholar
  92. 92.
    Zhang Y, Kontopoulou M, Ansari M, Hatzidiriakos S, Park CB (2011) Effect of molecular structure and rheology on compression foam molding of ethylene-α-olefin copolymers. Polym Eng Sci 51:1145–1154CrossRefGoogle Scholar
  93. 93.
    Qin X, Thompson MR, Hrymak AN (2007) Rheology studies of foam flow during injection mold filling. Polym Eng Sci 47:522–527CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.MontrealCanada
  2. 2.FreeportUSA

Personalised recommendations