Skip to main content

Nonlinear Viscoelasticity: Phenomena

  • Chapter
  • First Online:
  • 3211 Accesses

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

While linear viscoelastic properties are very helpful in establishing the molecular structure of polymers, the deformations that occur in processing machinery are always large and rapid, and under these conditions melt behavior is decidedly nonlinear. One manifestation of this is that the response to a shearing deformation no longer provides a complete description of rheological behavior. The molecular processes that give rise to nonlinear viscoelasticity are described as well as several large and rapid deformations that used to obtain information about nonlinear behavior. These include large-amplitude oscillatory shear and extensional flow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New York

    Google Scholar 

  2. Larson RG (1984) A constitutive equation for polymer melts based on partially extending strand convection. J Rheol 28:545–571

    Article  CAS  Google Scholar 

  3. Osaki K, Nishizawak K, Kurata M (1982) Material time constant characterization of nonlinear viscoelasticity of entangled polymeric solutions. Macromol 15:1068–1071

    Article  CAS  Google Scholar 

  4. Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworth-Heinemann, Boston

    Google Scholar 

  5. Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymers melts with dissipative convective constraint release. J Rheol 45:1387–1412

    Article  CAS  Google Scholar 

  6. Urakawa O, Takahashi M, Masuda T, Ebrahimi NG (1995) Damping functions and chain relaxation in uniaxial and biaxial extensions: comparison with the Doi-Edwards theory. Macromol 28:7196–7201

    Article  CAS  Google Scholar 

  7. Yamaguchi M, Takashi M (2001) Rheological properties of low-density polyethylenes produced by tubular and vessel processes. Polymer 42:8663–8670

    Article  CAS  Google Scholar 

  8. Islam MT, Archer LA, Varshney SK (2001) Linear rheology of entangled six-arm and eight-arm polybutadienes. Macromol 34:6438–6449

    Article  CAS  Google Scholar 

  9. McLeish TCB et al (1999) Dynamics of entangled H-polymers: theory, rheology, and neutron scattering. Macromol 32:6734–6758

    Article  Google Scholar 

  10. Kasehagen LJ, Macosko CW (1998) Nonlinear shear and extensional rheology of long-chain randomly branched polybutadiene. J Rheol 42:1303–1327

    Article  CAS  Google Scholar 

  11. Morrison FA, Larson RG (1992) A study of shear-stress relaxation anomalies in binary mixtures of monodisperse polystyrenes. J Polym Sci Phys Ed 30:943–950

    Article  CAS  Google Scholar 

  12. Sanchez-Reyes J, Archer LA (2002) Step shear dynamics of entangled polymer liquids. Macromol 35:5194–5202

    Article  CAS  Google Scholar 

  13. Mills NJ (1969) The rheological properties of PDMS. Eur Poly J 5:675–695

    Article  CAS  Google Scholar 

  14. Lodge AS, Meissner J (1972) On the use of instantaneous strains to test the Gaussian network hypothesis. Rheol Acta 11:351–352

    Article  CAS  Google Scholar 

  15. Lodge AS (1978) Elastic liquids. Academic Press, New York, chap 6

    Google Scholar 

  16. Laun HM (1978) Description of the non-linear shear behavior of a low-density polyethylene melt. Rheol Acta 17:1–15

    Article  CAS  Google Scholar 

  17. Brown EF, Burghardt WR, Kahvand H, Venerus DC (1995) Comparison of optical and mechanical measurements of second normal stress difference relaxation following step strain. Rheol Acta 34:221–234

    Article  CAS  Google Scholar 

  18. Ianniruberto G, Marrucci G (2002) A multi-mode CCR model for entangled polymers with chain stretch. J Non-Newt Fl Mech 102:383–395

    Article  CAS  Google Scholar 

  19. Menezes EV, Graessley WW (1980) Study of the nonlinear response of a polymer solution to various uniaxial shear flow histories. Rheol Acta 19:38–50

    Article  CAS  Google Scholar 

  20. Schweizer T, van Meerveld J, Öttinger HC (2004) Nonlinear shear rheology of polystyrene melt with narrow molecular weight distribution–Experiment and theory. J Rheol 48:1345–1363

    Article  CAS  Google Scholar 

  21. Stratton RA, Butcher AF (1973) Stess relaxation upon cessation of steady flow and the overshoot effect of polymer solutions. J Polym Sci Polym Phys Ed 11:1747–1758

    CAS  Google Scholar 

  22. Tsang WKW, Dealy JM (1981) The use of large transient deformations to evaluate rheological models for molten polymers. J Non-Newt Fl Mech 9:203–222

    Article  CAS  Google Scholar 

  23. Seay CW, Baird DG (2004) The use of interrupted stress growth in assessing branching structure in metallocene catalyzed polyethylene. In Proceedings of the 14th International Congress Rheology paper MS10, The Korean Society of Rheology, Seoul

    Google Scholar 

  24. Robertson CG, Warren S, Plazek DJ, Roland CM (2004) Re-entanglement kinetics in sheared polybutadiene solutions. Macromol 37:10018–10022

    Article  CAS  Google Scholar 

  25. Agarwal PK, Plazek D (1977) Shear creep recovery behavior of IUPAC low-density polyethylenes. J Appl Polym Sci 21:3251–3260

    Article  CAS  Google Scholar 

  26. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753

    Article  CAS  Google Scholar 

  27. Giacomin AJ, Bird RB, Johnson LM, Mix AW (2011) Large-amplitude oscillatory shear from the corotational Maxwell model. J Non-Newt Fl Mech 166:1081–1099

    Article  CAS  Google Scholar 

  28. Krieger IM, Niu TF (1973) A rheometer for oscillatory studies of nonlinear fluids. Rheol Acta 12:567–571

    Article  Google Scholar 

  29. Wilhelm M, Reinheimer P, Ortseifer M (1999) High sensitivity fourier-transform rheology. Rheol Acta 38:349–356

    Article  CAS  Google Scholar 

  30. Tee TT, Dealy JM (1975) Nonlinear viscoelasticity of molten polymers. Trans Soc Rheol 19:595–615

    Article  CAS  Google Scholar 

  31. Reimers M, Dealy JM (1998) Sliding plate rheometer studies of concentrated polystyrene solutions: nonlinear viscoelasticity and wall slip of two high molecular weight polymers in tricresyl phosphate. J Rheol 42:527–548

    Article  CAS  Google Scholar 

  32. Pearson DS, Rochefort WE (1982) Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields. J Polym Sci 20:83–98

    CAS  Google Scholar 

  33. Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude shear. J Rheol 52:1427–1428

    Article  CAS  Google Scholar 

  34. Huang Q, Skov AL, Rasmussen HK, Hassager O, Harlen O, Hoyle DM, McLeish TC, Hassel D, Lord TD, Mackley MR (2011) Stress maximum and steady extensional flow of branched polymer melts. Society of Rheology 83rd Ann Mtg, Cleveland, Ohio, October 2011

    Google Scholar 

  35. Rasmussen HK, Nielsen JK, Bach A, Hassager O (2005) Viscosity overshoot in the start-up uniaxial elongation of low density polyethylene melts. J Rheol 49:369–381

    Article  CAS  Google Scholar 

  36. Burghelea TI, Starý Z, Münstedt H (2011) On the ‘viscosity overshoot’ during uniaxial extension of a low density polyethylene. J Non-Newt Fl Mech 166:1198–1209

    Article  CAS  Google Scholar 

  37. Münstedt H, Laun HM (1979) Elongational behavior of a low density polyethylene melt II. Transient behavior in constant stretching rate and tensile creep experiments. Rheol Acta 18:492–504

    Article  Google Scholar 

  38. Wood-Adams PM, Dealy JM, deGroot AW, Redwine OD (2000) Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromol 33:7489–7499

    Article  CAS  Google Scholar 

  39. Vega JF, Fernández M, Santamaráa A, Muñoz-Escalona, Lafuente P (1999) Rheological criteria to characterize metallocene catalyzed polyethylenes. Macromol Chem Phys 200:2257–2268

    Article  CAS  Google Scholar 

  40. Bach A, Almdal K, Rasmussen HK, Hassager O (2003) Elongational viscosity of narrow molar mass distribution polystyrene. Macromol 36:5174–5179

    Article  CAS  Google Scholar 

  41. Münstedt H (1980) Dependence of the elongational behavior of polystyrene melts on molecular weight and molecular weight distribution. J Rheol 24:847–867

    Article  Google Scholar 

  42. Frank A, Meissner J (1984) The influence of blending polystyrenes of narrow molecular weight distribution on melt creep flow and creep recovery in elongation. Rheol Acta 23:117–123

    Article  CAS  Google Scholar 

  43. Minegishi A, Nishioka A, Takahashi T, Masubuchi Y, Takimoto J, Koyama K (2001) Uniaxial elongational viscosity of PS/a small amount of UHMW-PS blends. Rheol Acta 40:329–338

    Article  CAS  Google Scholar 

  44. Linster JJ, Meissner J (1996) Melt elongation and structure of linear polyethylene (HDPE). Polym Bull 16:187–194

    Article  Google Scholar 

  45. Sugimoto M, Masubuchi Y, Takimoto J, Koyama K (2001) Melt rheology of polypropylene containing small amounts of high-molecular weight chain. 2. Uniaxial and biaxial extensional flow. Macromol 34:6056–6063

    Article  CAS  Google Scholar 

  46. Ye X, Sridhar T (2001) Shear and extensional properties of three-arm polystyrene solutions. Macromol 34:8270–8277

    Article  CAS  Google Scholar 

  47. Kurzbeck C, Oster F, Münstedt H, Nguyen TQ, Gensler R (1999) Rheological properties of two polypropylenes with different molecular structure. J Rheol 43:359–374

    Article  CAS  Google Scholar 

  48. Hingmann R, Marczinke BL (1994) Shear and elongational flow properties of polypropylene melts. J Rheol 38:573–587

    Article  CAS  Google Scholar 

  49. Kasehagen LJ, Macosko CW (1998) Non-linear shear and extensional rheology of long-chain randomly branched polybutadiene. J Rheol 42:1303–1327

    Article  CAS  Google Scholar 

  50. Gabriel C, Munstedt H (2003) Strain hardening of various polyolefins in uniaxial elongational flow. J Rheol 47:619–630

    Article  CAS  Google Scholar 

  51. Hanson DE (1969) Shear modification of polyethylene. Polym Eng Sci 9:405–414

    Google Scholar 

  52. Rokudai M, Mihara S, Fujiki TJ (1979) Influence of shearing history on the rheological properties and processability of branched polymers. J Appl Polym Sci 32:463–471

    Article  Google Scholar 

  53. Leblans PJR, Bastiaansen C (1989) Shear modification of low-density polyethylene: its origin and its effect on the basic rheological functions of the melt. Macromol 22:3312–3317

    Article  CAS  Google Scholar 

  54. Bourrigaud S, Marin G, Poitou A (2003) Shear modification of long-chain branched polymers: a theoretical approach using the pom-pom model. Macromol 36:1388–1394

    Article  CAS  Google Scholar 

  55. Yamaguchi M, Gogos CG (2001) Quantitative relation between shear history and rheological properties of LDPE. Adv Polym Technol 20:261–269

    Article  CAS  Google Scholar 

  56. Yamaguchi M, Todd D, Gogos CG (2003) Rheological properties of LDPE processed by conventional processing machines. Adv Polym Technol 22(3):179–187

    Article  CAS  Google Scholar 

  57. Yamaguchi M, Takashi M (2001) Rheological properties of low-density polyethylenes produced by tubular and vessel processes. Polymer 42:8663–8670

    Article  CAS  Google Scholar 

  58. Graessley WW (2008) Polymeric liquids and networks: dynamics and rheology. Garland Science, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Dealy .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dealy, J.M., Wang, J. (2013). Nonlinear Viscoelasticity: Phenomena. In: Melt Rheology and its Applications in the Plastics Industry. Engineering Materials and Processes. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6395-1_4

Download citation

Publish with us

Policies and ethics