Advertisement

Two C28 Clathrates

  • Marzio de Corato
  • Davide M. Proserpio
  • Marco Bernasconi
  • Giorgio Benedek
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 6)

Abstract

Although carbon fullerenic clathrates, characterized by eclipsed bonds, have not been synthesized yet, their structure may be reflected in the assembly of tetrahedral diamondoid clusters (hollow diamonds) due to their assembling into the eclipsed configuration. The detection by El Goresy et al. (Lunar Planetary Sci 34:art. No. 1016, 2003a; C R Geosci 335:889–898, 2003b; Meteorit Planet Sci 39:A36, 2004) in highly shocked meteoritic rocks of a cubic diamond-like polymorph with almost 400 atoms per unit cell stimulated the present investigation on hypothetical small carbon clathrates with 4-membered rings on which hollow diamonds can be constructed via a cluster assembly. Two polytypes of a novel C28 clathrate, one body-centered orthorhombic (bco) and the other simple cubic (sc), are proposed, with a detailed ab initio characterization of the electronic and zero-wave-vector vibrational structures of the bco phase. The assembly of C14 diamondoid clusters into the sc-C28 array is briefly discussed in comparison with the above polymorph in order to illustrate a viable method of topological analysis of complex crystalline structures.

Keywords

Bulk Modulus Cohesive Energy Phonon Spectrum Electronic Band Structure Dangling Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Prof. Mircea Diudea for many illuminating discussions on the beauty of exotic carbon structures and the power of topological analysis. One of us (GB) acknowledges the support of the Alexander-von-Humboldt Stiftung, and thanks Drs. Igor Baburin, Yanming Ma, and Artem Oganov for useful discussions.

References

  1. Baroni S, de Gironcoli S, Dal Corso A, Giannozi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562CrossRefGoogle Scholar
  2. Benedek G, Colombo L (1996) Hollow diamonds from fullerenes. In: Sattler K (ed) Cluster assembled materials. Trans Tech Publications Ltd, Zürich, pp 247–274Google Scholar
  3. Benedek G, Galvani E, Sanguinetti S (1995) Hollow diamonds: stability and elastic properties. Chem Phys Lett 244:339–344CrossRefGoogle Scholar
  4. Benedek G, Colombo L, Gaito S, Serra S (1997) Exotic diamonds from topology and simulation. In: Paoletti A, Tucciarone A (eds) The physics of diamond. Ios Press, Amsterdam, pp 575–598Google Scholar
  5. Benedek G, Bernasconi M, Gambirasio A (2003) The carbon clathrate hex-C16. Phys Status Solidi (b) 237:296–300CrossRefGoogle Scholar
  6. Blase X, Benedek G, Bernasconi M (2010) Structural, mechanical, and superconducting properties of clathrates. In: Colombo L, Fasolino AL (eds) Computer-based modeling of novel carbon systems and their properties. Carbon materials: chemistry and physics 3. Chapter 6. Springer, Berlin/HeidelbergGoogle Scholar
  7. Blatov VA (2006) IUCr CompComm newsletter 7:4–38. Available at http://www.topos.samsu.ru. Accessed Mar 2013
  8. Delgado-Friedrichs O (2008) The gavrog project. Available at http://gavrog.sourceforge.net. Accessed Mar 2013
  9. Diudea MV, Nagy CL (2007) Periodic nanostructures. Springer, DordrechtCrossRefGoogle Scholar
  10. Dodziuk H (ed) (2009) Strained hydrocarbons. Wiley-VCH Verlag, WeinheimGoogle Scholar
  11. Eaton PE (1992) Cubanes: starting materials for the chemistry of the 1990s and the new century. Angew Chem 104:1421–1436CrossRefGoogle Scholar
  12. Eaton PE, Cole TW (1964) Cubane. J Am Chem Soc 86:962–964CrossRefGoogle Scholar
  13. El Goresy A, Dubrovinsky LS, Gillet Ph, Mostefaoui S, Graup G, Drakonopoulos M, Simionovici AS, Swamy V, Masaitis VL (2003a) A novel cubic, transparent and super-hard polymorph of carbon from the Ries and Popigai craters: implications to understanding dynamic-induced natural high-pressure phase transitions in the carbon systems. Lunar Planetary Sci 34:art. No. 1016Google Scholar
  14. El Goresy A, Dubrovinsky LS, Gillet P, Mostefaoui S, Graup G, Drakopoulos M, Simionovici AS, Swamy V, Masaitis VL (2003b) A new natural, super-hard, transparent polymorph of carbon from the Popigai impact crater, Russia. C R Geosci 335:889–898CrossRefGoogle Scholar
  15. El Goresy A, Gillet P, Dubrovinsky L, Chen M, Nakamura T (2004) A super-hard, transparent carbon form, diamond, and secondary graphite in the Havero ureilite: a fine-scale micro-Raman and synchrotron tomography. Meteorit Planet Sci 39:A36Google Scholar
  16. Ferroir T, Dubrovinsky L, El Goresy A, Simionovici A, Nakamura T, Gillet P (2010) Carbon polymorphism in shocked meteorites: evidence for new natural ultrahard phases. Earth Planet Sci Lett 290:150–154CrossRefGoogle Scholar
  17. Galvani G, Onida G, Serra S, Benedek G (1996) First principles study of a new large-gap nonoporous silicon crystal: hex-Si40. Phys Rev Lett 77:3573–3576CrossRefGoogle Scholar
  18. Giannozzi P et al (2009) Quantum Espresso: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502CrossRefGoogle Scholar
  19. Gogotsi YG, Kailer A, Nickel KG (1998) Pressure-induced phase transformation in diamond. J Appl Phys 84:1299–1304CrossRefGoogle Scholar
  20. Hirai H, Kondo K (1991) Modified phases of diamond formed under shock compression and rapid quenching. Science 253:772–774CrossRefGoogle Scholar
  21. Iqbal Z, Zhang Y, Grebel H, Vijayalakshmi S, Lahamer A, Benedek G, Bernasconi M, Cariboni J, Spagnolatti I, Sharma R, Owens KJ, Kozlov ME, Rao KV, Muhammed M (2003) Evidence for a solid phase of dodecahedral C20. Eur Phys J B 31:509–515CrossRefGoogle Scholar
  22. Kozlov ML, Hirabayashi M, Nozaki K, Tukumoto M, Ihara H (1995) Transformation of C60 fullerenes into a superhard form of carbon at moderate pressure. Appl Phys Lett 66:1199–1201CrossRefGoogle Scholar
  23. Kozlov ML, Yase K, Minami N, Fons P, Durand H-A, Obraztsov AN, Nozaki K, Tokumoto M (1996) Observation of diamond crystallites in thin films prepared by laser ablation of hard fullerene-based carbon. J Phys D Appl Phys 29:929–933CrossRefGoogle Scholar
  24. Li Q, Ma Y, Oganov AR, Wang H, Xu Y, Cui T, Mao H-K, Zou G (2009) Superhard monoclinic polymorph of carbon. Phys Rev Lett 102:175506 (1–4); The progress in the search of novel structures by means of ab-initio evolutionary algorithms is well illustrated in the recent comprehensive paper by Zhu Q, Zeng Q, Oganov AR (2012) Systematic search for low-enthalpy sp(3) carbon allotropes using evolutionary metadynamics. Phys Rev B 85:201407Google Scholar
  25. Mackay AL, Terrones H (1991) Diamond from graphite. Nature 352:762CrossRefGoogle Scholar
  26. Mansoori SA, de Araujo PLB, de Araujo ES (2012) Diamondoid molecules. World Scientific, SingaporeGoogle Scholar
  27. Mao WL, Mao HK, Eng PJ, Trainor TP, Newville M, Kao CC, Heinz DL, Shu JF, Meng Y, Hemley RJ (2003) Bonding changes in compressed superhard graphite. Science 302:425–427CrossRefGoogle Scholar
  28. Milani C, Giambelli C, Roman HE, Alasia F, Benedek G, Broglia RA, Sanguinetti S, Yabana K (1996) The valence of small fullerenes. Chem Phys Lett 258:554–558CrossRefGoogle Scholar
  29. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  30. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci 30:244–247CrossRefGoogle Scholar
  31. O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM (2008) The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc Chem Res 41:1782–1789CrossRefGoogle Scholar
  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  33. Pickard CJ, Milman V, Winkler B (2001) Is there theoretical evidence for a metallic carbon polymorph with space group symmetry Fm(3)over-barm at ambient conditions? Diam Relat Mater 10:2225–2227CrossRefGoogle Scholar
  34. Ribeiro FJ, Tangney P, Louie SG, Cohen ML (2006) Hypothetical hard structures of carbon with cubic symmetry. Phys Rev B 74:172101CrossRefGoogle Scholar
  35. Scandolo S, Chiarotti GL, Tosatti E (1996) A metallic phase of carbon at terapascal pressures. Phys Rev B 54:5051–5054CrossRefGoogle Scholar
  36. Selli D, Baburin IA, Martoňák R, Leoni S (2011) Superhard sp3 carbon allotropes with odd and even ring topologies. Phys Rev B 84:161411CrossRefGoogle Scholar
  37. Serra S, Benedek G, Facchinetti M, Miglio L (1998) Possible high-pressure phase of diamond. Phys Rev B 57:5661–5667 (The new structure described in this paper was originally assigned to a triclinic form of diamond. Igor Baburin (private communication) recognized the base-centred monoclinic structure for this lattice)Google Scholar
  38. Umemoto K, Wentzcovitch RM, Saito S, Miyake T (2010) Body-centered tetragonal C4: a viable sp3 carbon allotrope. Phys Rev Lett 104:125504 (1–4), and references thereinGoogle Scholar
  39. Zhou X-F, Qian G-R, Dong X, Zhang L, Tian Y, Wang H-T (2010) Ab initio study of the formation of transparent carbon under pressure. Phys Rev B 82:134126CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Marzio de Corato
    • 1
    • 2
    • 3
  • Davide M. Proserpio
    • 4
  • Marco Bernasconi
    • 1
  • Giorgio Benedek
    • 1
    • 5
  1. 1.Dipartimento di Scienza dei MaterialiUniversitá di Milano-BicoccaMilanItaly
  2. 2.Centro S3, CNR-Istituto NanoscienzeModenaItaly
  3. 3.Dipartimento di FisicaUniversitá di Modena e Reggio EmiliaModenaItaly
  4. 4.Dipartimento di ChimicaUniversitá degli Studi di MilanoMilanItaly
  5. 5.Donostia International Physics Center (DIPC)University of the Basque Country (UPV-EHU)Donostia – San SebastiánSpain

Personalised recommendations