Advertisement

Quasicrystals: Between Spongy and Full Space Filling

  • Mircea V. Diudea
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 6)

Abstract

Quasicrystals are structures showing long-range ordering rather than translational periodicity and could be either spongy or filled ones. Spongy structures are hollow-containing materials, encountered either in natural zeolites or in synthesized spongy carbon. Filled structures consist of small cages and/or tiles that can fill a given space. The design and topological study of some hypothetical structures is presented in terms of map operations and genus calculation of their associated graphs, respectively. Among the discussed structures, one remarks some novel spongy hyper-dodecahedra that can evolve with 1 periodicity. Other spherical multi-shell cages represent aggregates of smaller cages, the classical C60 fullerene included. A whole gallery of nanostructures is presented in the Appendices.

Keywords

Icosahedral Symmetry Regular Polytope Penrose Tiling Point Symbol Spongy Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aradi B, Hourahine B, Frauenheim T (2007) DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111:5678–5684CrossRefGoogle Scholar
  2. Baake M, Kösters H (2011) Random point sets and their diffraction. Philos Mag 91:2671–2679CrossRefGoogle Scholar
  3. Baake M, Moody RV (2000) Directions in mathematical quasicrystals. American Mathematical Society, ProvidenceGoogle Scholar
  4. Baake M, Grimm U, Moody RV (2002) What is aperiodic order? arXiv:math/0203252Google Scholar
  5. Bak P (1986) Icosahedral crystals: where are the atoms? Phys Rev Lett 56:861–864CrossRefGoogle Scholar
  6. Bendersky L (1985) Quasicrystal with one–dimensional translational symmetry and a tenfold rotation axis. Phys Rev Lett 55:1461–1463CrossRefGoogle Scholar
  7. Benedek G, Colombo L (1996) Hollow diamonds from fullerenes. Mater Sci Forum 232:247–274CrossRefGoogle Scholar
  8. Benedek G, Vahedi-Tafreshi H, Barborini E, Piseri P, Milani P, Ducati C, Robertson J (2003) The structure of negatively curved spongy carbon. Diam Relat Mater 12:768–773CrossRefGoogle Scholar
  9. Benedek G, Bernasconi M, Cinquanta E, D’Alessio L, De Corato M (2011) The topological background of schwarzite physics. In: Cataldo F, Graovac A, Ori O (eds) The mathematics and topology of fullerenes. Springer, Dordrecht, pp 217–247CrossRefGoogle Scholar
  10. Bindi L, Steinhardt PJ, Yao N, Lu PJ (2009) Natural quasicrystals. Science 324:1306–1309CrossRefGoogle Scholar
  11. Bindi L, Steinhardt PJ, Yao N, Lu PJ (2011) Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal. Am Mineral 96:928–931CrossRefGoogle Scholar
  12. Blasé X, Benedek G, Bernasconi M (2010) Structural, mechanical, and superconducting properties of clathrates. In: Colombo L, Fasolino A (eds) Computer-based modeling of novel carbon systems and their properties. Carbon materials: chemistry and physics 3. Springer, DordrechtGoogle Scholar
  13. Blatov VA (2012) Nanocluster analysis of intermetallic structures with the program package TOPOS. Struct Chem 23:955–963CrossRefGoogle Scholar
  14. Bonnet O (1853) Note sur la therorie generale des surfaces. C R Acad Sci Paris 37:529–532Google Scholar
  15. Breza J, Kadlečikova M, Vojs M, Michalka M, Vesely M, Danis T (2004) Diamond icosahedron on a TiN-coated steel substrate. Microelectron J 35:709–712CrossRefGoogle Scholar
  16. Burns MM, Fournier J-M, Golovchenko JA (1990) Optical matter: crystallization and binding in intense optical fields. Science 249:749–754CrossRefGoogle Scholar
  17. Ceulemans A, King RB, Bovin SA, Rogers KM, Troisi A, Fowler PW (1999) The heptakisoctahedral group and its relevance to carbon allotropes with negative curvature. J Math Chem 26:101–123CrossRefGoogle Scholar
  18. Cigher S, Diudea MV (2006) Omega counter. Babes-Bolyai Univ, ClujGoogle Scholar
  19. Conway JH, Torquato S (2006) Packing, tiling and covering with tetrahedral. Proc Natl Acad Sci 103:10612–10617CrossRefGoogle Scholar
  20. Coxeter HSM (1958) Close-packing and so forth. Ill J Math 2:746–758Google Scholar
  21. Coxeter HSM (1961) Close packing of equal spheres. In: Coxeter HSM (ed) Introduction to geometry, 2nd edn. Wiley, New York, pp 405–411Google Scholar
  22. Coxeter HSM (1973) Regular polytopes, 3rd edn. Dover Publications, New YorkGoogle Scholar
  23. Dandoloff R, Döhler G, Bilz H (1980) Bond charge model of amorphous tetrahedrally coordinated solids. J Non-Cryst Solids 35–36:537–542CrossRefGoogle Scholar
  24. Danzer L (1989) Three-dimensional analogs of the planar Penrose tiling and quasicrystals. Discret Math 76:1–7CrossRefGoogle Scholar
  25. De Boissieu M (2012) Atomic structure of quasicrystals. Struct Chem 23:965–976CrossRefGoogle Scholar
  26. de Bruijn NG (1981) Algebraic theory of Penrose’s non-periodic tilings of the plane, I. Kon Nederl Akad Wetensch Proc Ser A 84:39–66Google Scholar
  27. Deloudi S, Steurer W (2007) Systematic cluster-based modeling of the phases in the stability region of decagonal Al-Co-Ni. Philos Mag 87:2727–2732CrossRefGoogle Scholar
  28. Deza M, Shtogrin MI (2003) Octahedrites. Symmetry: Cult Sci Spec Issue Polyhedra Sci Art 11:27–64Google Scholar
  29. Deza M, Dutour-Sikirić M, Shtogrin MI (2013) Fullerene-like spheres with faces of negative curvature, Chapter 13. In: Diamond and related nanostructures. Springer, Dordrecht, pp 249–272Google Scholar
  30. Diudea MV (2003) Capra-a leapfrog related operation on maps. Studia Univ “Babes-Bolyai” 48:3–16Google Scholar
  31. Diudea MV (2004) Covering forms in nanostructures. Forma (Tokyo) 19:131–163Google Scholar
  32. Diudea MV (2005a) Covering nanostructures. In: Diudea MV (ed) Nanostructures-novel architecture. NOVA, New York, pp 203–242Google Scholar
  33. Diudea MV (2005b) Nanoporous carbon allotropes by septupling map operations. J Chem Inf Model 45:1002–1009CrossRefGoogle Scholar
  34. Diudea MV (2010a) Nanomolecules and nanostructures – polynomials and indices. MCM, No 10. University of Kragujevac, SerbiaGoogle Scholar
  35. Diudea MV (2010b) Diamond D5, a novel allotrope of carbon. Studia Univ Babes-Bolyai Chemia 55:11–17Google Scholar
  36. Diudea MV, John PE (2001) Covering polyhedral tori. MATCH Commun Math Comput Chem 44:103–116Google Scholar
  37. Diudea MV, Nagy CL (2007) Periodic nanostructures. Springer, DordrechtCrossRefGoogle Scholar
  38. Diudea MV, Nagy CL (2012) All pentagonal ring structures related to the C20 fullerene: diamond D5. Diam Relat Mater 23:105–108CrossRefGoogle Scholar
  39. Diudea MV, Petitjean M (2008) Symmetry in multi tori. Symmetry Cult Sci 19:285–305Google Scholar
  40. Diudea MV, Schefler B (2012) Nanotube junctions and the genus of multi-tori. Phys Chem Chem Phys 14:8111–8115CrossRefGoogle Scholar
  41. Diudea MV, Parv B, Ursu O (2003) TORUS. Babes-Bolyai University, ClujGoogle Scholar
  42. Diudea MV, Ştefu M, John PE, Graovac A (2006) Generalized operations on maps. Croat Chem Acta 79:355–362Google Scholar
  43. Eberhard V (1891) Zur Morphologie der polyeder. B. G. Teubner, LeipzigGoogle Scholar
  44. Euler L (1758) Elementa doctrinae solidorum. Novi Comm Acad Sci Imp Petrop 4:109–160Google Scholar
  45. Fowler PW (1986) How unusual is C60? Magic numbers for carbon clusters. Chem Phys Lett 131:444–450CrossRefGoogle Scholar
  46. Frank FC, Kasper JS (1958) Complex alloy structures regarded as sphere packings. Definitions and basic principles. Acta Cryst 11:184–190CrossRefGoogle Scholar
  47. Fujiwara T, Ishii Y (2008) Quasicrystals. Elsevier, AmsterdamGoogle Scholar
  48. Gardner M (2001) Packing spheres. In: The colossal book of mathematics: classic puzzles, paradoxes, and problems. W.W. Norton, New York, pp 128–136Google Scholar
  49. Goldberg M (1937) A class of multi-symmetric polyhedral. Tôhoku Math J 43:104–108Google Scholar
  50. Goldberg M (1971) On the densest packing of equal spheres in a cube. Math Mag 44:199–208CrossRefGoogle Scholar
  51. Grünbaum B (1967) Convex polytopes. Wiley, New YorkGoogle Scholar
  52. Grünbaum B, Shephard GS (1987) Tilings and patterns. W.H. Freeman, New YorkGoogle Scholar
  53. Haji-Akbari A, Engel M, Keys AS, Zheng X, Petschek RG, Palffy-Muhoray P, Glotzer ShC (2010) Disordered, quasicrystalline and crystalline phases of densely packed tetrahedral. arXiv:10125138Google Scholar
  54. Hales TC (1992) The sphere packing problem. J Comput Appl Math 44:41–76CrossRefGoogle Scholar
  55. Hales TC (2005) A proof of the Kepler conjecture. Ann Math 162:1065–1185CrossRefGoogle Scholar
  56. Hales TC (2006) Historical overview of the Kepler conjecture. Discret Comput Geom 36:5–20CrossRefGoogle Scholar
  57. Harary F (1969) Graph theory. Addison-Wesley, ReadingGoogle Scholar
  58. Hargittai I (ed) (1992) Fivefold symmetry. World Scientific, SingaporeGoogle Scholar
  59. Hargittai M, Hargittai I (2010) Symmetry through the eyes of a chemist. Springer, DordrechtGoogle Scholar
  60. Hayashida K, Dotera T, Takano T, Matsushita Y (2007) Polymeric quasicrystal:mesoscopic quasicrystalline tiling in ABS star polymers. Phys Rev Lett 98:195502CrossRefGoogle Scholar
  61. Hermann C (1949) Kristallographie in Raumen Beiliebiger Dimenzionszahl 1 Die Symmetrieoperationen. Acta Crystallogr 2:139–145CrossRefGoogle Scholar
  62. Hyde ST, Ramsden S (2000) Chemical frameworks and hyperbolic tilings. In: Hansen P, Fowler P, Zheng M (eds) Discrete mathematical chemistry. DIMACS series in discrete mathematics and theoretical computer science, vol 51. American Mathematical Society, Providence, pp 203–224Google Scholar
  63. Ishimasa T (2008) New group of icosahedral quasicrystals. In: Fujiwara T, Ishii Y (eds) Quasicrystals. Elsevier, Amsterdam, pp 49–74CrossRefGoogle Scholar
  64. Kallus Y, Elser V, Gravel S (2009) A dense periodic packing of tetrahedra with a small repeating unit. arXiv:09105226Google Scholar
  65. Kramer P (1982) Non-periodic central space filling with icosahedral symmetry using copies of seven elementary cells. Acta Cryst A 38:257–264CrossRefGoogle Scholar
  66. Lenosky T, Gonze X, Teter M, Elser V (1992) Energetics of negatively curved graphitic carbon. Nature 355:333–335CrossRefGoogle Scholar
  67. Levine D, Steinhardt PJ (1984) Quasicrystals: a new class of ordered systems. Phys Rev Lett 53:2477–2480CrossRefGoogle Scholar
  68. Mackay AL (1962) A dense non-crystallographic packing of equal spheres. Acta Crystallogr 15:916–918CrossRefGoogle Scholar
  69. Mackay AL (1982) Crystallography and the Penrose pattern. Physica 114A:609–613Google Scholar
  70. Mackay AL (1985) Periodic minimal surfaces. Nature 314:604–606CrossRefGoogle Scholar
  71. Mackay AL (1987) Quasi-crystals and amorphous materials. J Non-Cryst Solids 97–98:55–62CrossRefGoogle Scholar
  72. Mackay AL (1990) Quasicrystals turn to the sixth-dimension. Nature 344:21–21CrossRefGoogle Scholar
  73. Mackay AL, Terrones H (1991) Diamond from graphite. Nature 352:762–762CrossRefGoogle Scholar
  74. Mackay AL, Terrones H (1993) Hypothetical graphite structures with negative Gaussian curvature. Philos Trans R Soc A 343:113–127CrossRefGoogle Scholar
  75. Mikhael J, Roth J, Helden L, Bechinger C (2008) Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature 454:501–504CrossRefGoogle Scholar
  76. Müller A, Roy S (2003) En route from the mystery of molybdenum blue via related manipulatable building blocks to aspects of materials science. Coord Chem Rev 245:153–166CrossRefGoogle Scholar
  77. Müller A, Kögerler P, Dress AWM (2001) Giant metal-oxide-based spheres and their topology: from pentagonal building blocks to keplerates and unusual spin systems. Coord Chem Rev 222:193–218CrossRefGoogle Scholar
  78. Nagy CL, Diudea MV (2005a) Nanoporous carbon structures. In: Diudea MV (ed) Nanostructures – novel architecture. NOVA, New York, pp 311–334Google Scholar
  79. Nagy CL, Diudea MV (2005b) JSChem. Babes-Bolyai University, ClujGoogle Scholar
  80. Nagy CL, Diudea MV (2009) NANO-Studio. Babes-Bolyai University, ClujGoogle Scholar
  81. O’Keeffe M, Hyde BG (1996) Crystal structures: I. Patterns and symmetry. BookCrafters, Inc, CelseaGoogle Scholar
  82. O’Keeffe M, Adams GB, Sankey OF (1992) Predicted new low energy forms of carbon. Phys Rev Lett 68:2325–2328CrossRefGoogle Scholar
  83. Pearson WB (1972) The crystal chemistry and physics of metals and alloys. Wiley, New YorkGoogle Scholar
  84. Penrose R (1978) Pentaplexity. Eureka 39:16–22Google Scholar
  85. Pisanski T, Randić M (2000) Bridges between geometry and graph theory. In: Geometry at work. MAA Notes 53. Mathematical Association of America, Washington, DC, pp 174–194Google Scholar
  86. Ricardo-Chavez JL, Dorantes-Dávila J, Terrones M, Terrones H (1997) Electronic properties of fullerenes with nonpositive Gaussian curvature: finite zeolites. Phys Rev B 56:12143–12146CrossRefGoogle Scholar
  87. Romo-Herrera JM, Terrones M, Terrones H, Dag S, Meunier V (2007) Covalent 2D and 3D networks from 1D nanostructures: designing new materials. Nano Lett 7:570–576CrossRefGoogle Scholar
  88. Schläfli L (1901) Theorie der vielfachen Kontinuität Zürcher und Furrer, Zürich (Reprinted in: Ludwig Schläfli, 1814–1895, Gesammelte Mathematische Abhandlungen, Band 1, 167–387, Verlag Birkhäuser, Basel, 1950)Google Scholar
  89. Schmiedeberg M, Stark H (2012) Comparing light-induced colloidal quasicrystals with different rotational symmetries. J Phys Condens Matter 24:284101–284106CrossRefGoogle Scholar
  90. Schoen AH (1970) Infinite periodic minimal surfaces without self-intersections. NASA Technical Note D–5541Google Scholar
  91. Schwarz HA (1865) Über minimalflächen. Monatsber Berlin Akad, BerlinGoogle Scholar
  92. Schwarz HA (1890) Gesammelte Matematische Abhandlungen. Springer, BerlinCrossRefGoogle Scholar
  93. Shechtman D, Blech I, Gratias D, Cahn JW (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53:1951–1953CrossRefGoogle Scholar
  94. Shevchenko VY (2011) Search in chemistry, biology and physics of the nanostate. Lema, St PetersburgGoogle Scholar
  95. Shevchenko VY (2012) What is a chemical substance and how is it formed? Struct Chem 23:1089–1101CrossRefGoogle Scholar
  96. Shevchenko VY, Mackay AL (2008) Geometrical principles of the self-assembly of nanoparticles. Glass Phys Chem 34:1–8CrossRefGoogle Scholar
  97. Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB (2006a) Structural diversity in binary nanoparticle superlattices. Nature 439:55–59CrossRefGoogle Scholar
  98. Shevchenko EV, Talapin DV, Murray CB, O’Brien S (2006b) Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J Am Chem Soc 128:3620–3637CrossRefGoogle Scholar
  99. Socolar JES, Steinhardt PJ, Levine D (1986) Quasicrystals with arbitrary orientational symmetry. Phys Rev B 32:5547–5551CrossRefGoogle Scholar
  100. Stefu M, Diudea MV (2005) CageVersatile_CVNET. Babes-Bolyai University, ClujGoogle Scholar
  101. Steinhardt PJ (1987) Icosahedral solids: a new phase of matter? Science 238:1242–1247CrossRefGoogle Scholar
  102. Steinhardt PJ (1990) Quasi-crystals – a new form of matter. Endeavour 14:112–116CrossRefGoogle Scholar
  103. Talapin DV, Shevchenko EV, Bodnarchuk MI, Ye X, Chen J, Murray CB (2009) Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461:964–967CrossRefGoogle Scholar
  104. Terrones H, Mackay AL (1993) Triply periodic minimal surfaces decorated with curved graphite. Chem Phys Lett 207:45–50CrossRefGoogle Scholar
  105. Terrones H, Mackay AL (1997) From C60 to negatively curved graphite. Prog Cryst Growth Charact 34:25–36CrossRefGoogle Scholar
  106. Terrones H, Terrones M (1997) Quasiperiodic icosahedral graphite sheets and high-genus fullerenes with nonpositive Gaussian curvature. Phys Rev B 55:9969–9974CrossRefGoogle Scholar
  107. Terrones H, Terrones M (2003) Curved nanostructured materials. New J Phys 5:1261–12637, http://www.topos.ssu.samara.ru/index.html CrossRefGoogle Scholar
  108. Terrones M, Banhart F, Grobert N, Charlier J-C, Terrones H, Ajayan PM (2002) Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 89:075505(1–4)CrossRefGoogle Scholar
  109. Townsend SJ, Lenosky TJ, Muller DA, Nichols CS, Elser V (1992) Negatively curved graphite sheet model of amorphous carbon. Phys Rev Lett 69:921–924CrossRefGoogle Scholar
  110. Tsai AP, Inoue A, Masumoto T (1987) A stable quasicrystal in Al-Cu-Fe system. Jpn J Appl Phys 26:L1505–L1507CrossRefGoogle Scholar
  111. Tsai AP, Guo JQ, Abe E, Takakura H, Sato TJ (2000) A stable binary quasicrystal. Nature 408:537–538CrossRefGoogle Scholar
  112. Valencia F, Romero AH, Hernàndez E, Terrones M, Terrones H (2003) Theoretical characterization of several models of nanoporous carbon. New J Phys 5:1231–12316CrossRefGoogle Scholar
  113. Vanderbilt D, Tersoff J (1992) Negative-curvature fullerene analog of C60. Phys Rev Lett 68:511–513CrossRefGoogle Scholar
  114. Wells AF (1977) Three-dimensional nets and polyhedral. Wiley, New YorkGoogle Scholar
  115. Yamamoto A, Takakura H (2008) Recent development of quasicrystallography. In: Fujiwara T, Ishii Y (eds) Quasicrystals. Elsevier, Amsterdam, pp 11–47CrossRefGoogle Scholar
  116. Zeger L, Kaxiras E (1993) New model for icosahedral carbon clusters and the structure of collapsed fullerite. Phys Rev Lett 70:2920–2923CrossRefGoogle Scholar
  117. Zeng X, Ungar G, Liu Y, Percec V, Dulcey AE, Hobbs JK (2004) Supramolecular dendritic liquid quasicrystals. Nature 428:157–160CrossRefGoogle Scholar
  118. Ziegler GM (1995) Lectures on polytopes. Springer, New YorkCrossRefGoogle Scholar
  119. Zong C, Talbot J (1999) Sphere packings. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityClujRomania

Personalised recommendations