Relativistic Continuum Mechanics: A 20th Century Adventure

Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 196)

Abstract

Relativity theory as understood by Einstein is a true Twentieth century development. After the introduction of the four-dimensional version of special relativity by Minkowski and that of energy-moment tensor, to which must be added the fact that general relativity is per se a continuum theory, there was need for a true relativistic theory of the continuum. The present chapter reports in a critical manner the progress made in this theory in two distinct periods, one extending before World War II, and the second in the rough time interval 1950–1980, when solutions were finally proposed in an inclusive way. The first period dealt with attempts at discussing the ad hoc introduction of classical concepts in this new landscape. This included the notion of perfect fluids and a debated discussion of the possible generalization of the notion of rigid-body motion—without which the notion of elasticity could not be introduced. A breakthrough is represented by Eckart’s introduction of a systematic covariant space-and-time resolution of four-dimensional objects and of early elements of continuum thermodynamics. This, combined with the natural influence of the then new trends in classical continuum mechanics (rationalization à la Truesdell), then led to a modern, more axiomatic, formulation that allowed a rational construct of relativistic elasticity, and its generalization to more complex thermomechanical schemes (including generalized continua) and electromagnetic deformable bodies, a development in which the author has been more than a passive witness.

Keywords

Momentum Tensor Perfect Fluid Generalize Continuum Discontinuity Wave Relativistic Elasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abraham M (1909) Zur elektrodynamik bewegter Körper. Rend Circ Mat Palermo 28:1–28MATHCrossRefGoogle Scholar
  2. Abraham M (1910) Sull’eletrodinamica di Minkowski. Rend Circ Mat Palermo 30:33–46MATHCrossRefGoogle Scholar
  3. Bennoun JF (1964) Sur les représentations hydrodynamique et thermodynamique des milieux élastiques en relativité générale. C R Acad Sci Paris 259A:3705–3708Google Scholar
  4. Born M (1911) Elastizitätstheorie und relativitätstheorie. Phys Zeot 12:569–575MATHGoogle Scholar
  5. Bressan A (1963) Onde ordinarie di discontinuità nei mezzi elastici con deformazioni finite in relatività generale. Riv Mat Univ Parma(2), 4:23–40Google Scholar
  6. Bressan A (1978) Relativistic theories of materials, of springer tracts in natural philosophy, vol 29. Springer, New York-BerlinCrossRefGoogle Scholar
  7. Carter B (1973) Speed of sound in a high-pressure general relativistic solid. Phys Rev D7:1590–1593Google Scholar
  8. Carter B, Quintana H (1972) Foundations of general relativistic high- pressure elasticity theory. Proc Roy Soc Lond A331:57–83MathSciNetGoogle Scholar
  9. Cattaneo C (1962) Formulation relative des lois physiques en relativité générale, Multigraphed Notes of Lectures at Collège de France, Paris, Year 1961–1962Google Scholar
  10. Cattaneo C (1980) Teori macroscopia dei continui relativistici. Pittagora Editrice, RomeGoogle Scholar
  11. Cattaneo C, Gerardi A (1975) Un problema di equilibrio elastico in relatività generale. Rendiconti Mat (6), 8:187–200Google Scholar
  12. De Donder T Dupont Y (1932–1933), Théorie relativiste de l’élasticité et de l’électromagnétostriction. Bull Sci, Acad Belg (5), 18, 680–691, 762–790, 899–010; 19, 370–378Google Scholar
  13. De Groot SR, Support LG (1972) Foundations of electrodynamics. North- Holland, AmsterdamGoogle Scholar
  14. Eckart CH (1940) The thermodynamics of irreversible processes III: Relativistic theory of the simple fluid. Phys Rev 58:919–924CrossRefGoogle Scholar
  15. Ehlers J (1961) Contributions to the relativistic mechanics of continuous media. Abh Math Akad W Mainz 11:793–837Google Scholar
  16. Einstein A (1905) Zür elektrodynamik bewegter Körper. Ann der Phys. 17:891–921 [English translation in: Lorentz H.A., Einstein A., Minkowski H. and Weyl H. (1923). The principle of relativity: A collection of original memoirs, Methuen, London; reprinted by Dover, New York, 1952]Google Scholar
  17. Einstein A (1916) Die Grundlage der allgemeine Relativitätstheorie. Ann der Phys 49:769–822 [English translation in: Lorentz H.A., Einstein A., Minkowski H. and Weyl H. (1923). The principle of relativity: A collection of original memoirs, Methuen, London; reprinted by Dover, New York, 1952]Google Scholar
  18. Einstein A, Laub J (1908) Ueber die elektromagnetischen Felde auf ruhende Körper ausgeübten ponderomotorischen Kräfte. Ann der Phys 26(541–550):3Google Scholar
  19. Eringen AC, Maugin GA (1990) Electrodynamics of continua, vol 2. Springer, New YorkCrossRefGoogle Scholar
  20. Glass EN, Winicour J (1972) Elastic general relativistic systems. J Math Phys 13:1934–1940Google Scholar
  21. Glass EN, Winicour J (1973) A geometrical generalization of Hooke’s law. J Math Phys 14:1285–1290 Google Scholar
  22. Grot RA (1968) Relativistic theory of the propagation of wave fronts in nonlinear elastic materials. Int. J. Engng. Sci 6:295–307CrossRefGoogle Scholar
  23. Grot RA, Eringen AC (1966a) Relativistic continuum mechanics -I- mechanics and thermodynamics. Int J Eng Sci 4:611–638CrossRefGoogle Scholar
  24. Grot RA, Eringen AC (1966b) Relativistic continuum mechanics -II- Electromagnetic interactions with matter. Int J Eng Sci 4:639–670CrossRefGoogle Scholar
  25. Halbwachs F (1960) Théorie relativiste des fluides à spin. Gauthier-Villars, ParisGoogle Scholar
  26. Hehl FW (1969) Spin und Torsion. Universität Clausthal, Germany, HabilitationschriftGoogle Scholar
  27. Hehl FW, Von der Heyde P, Kerlick GD, Nester JL (1976) General relativity with spin and torsion: Foundations and prospects. Rev Mod Phys 48(3):393–416CrossRefGoogle Scholar
  28. Herglotz G (1911) Ueber die mechanik des deformerbaren Korpers vom Standpunkte der relativitätstheorie. Ann. der Phys 36:493–533MATHCrossRefGoogle Scholar
  29. Hernandez WC (1970) Elasticity in general relativity. Phys Rev D1:1013–1018Google Scholar
  30. Herrmann H, Muschik W, Ruckner G, von Borzeszkowski HH (2004) Spin axioms in different geometries of relativistic continuum mechanics. Found Phys 34(6):1005–1021MathSciNetMATHCrossRefGoogle Scholar
  31. Ignatowsky WV (1911) Sur Elastizitätstheorie vom Standpunke der relativitätstheorie. Phys Zeit 12:1013–1018Google Scholar
  32. Kafadar CB, Eringen AC (1972) Polar media – The relativistic theory. Int J Eng Sci 27:307–329Google Scholar
  33. Lamla E (1912) Ueber die Hydrodynamik des Relativitätsprinzip. Ann der Phys 37:772–796CrossRefGoogle Scholar
  34. Lianis G (1973a) General form of constitutive equations in relativistic physics. Nuovo Cimento 14B(1):57–103MathSciNetGoogle Scholar
  35. Lianis G (1973b) Formulation and application of relativistic constitutive equations for deformable electromagnetic materials. Nuovo Cimento 16B(1):1–43MathSciNetGoogle Scholar
  36. Lianis G (2000) Relativistic approach to continuum physics. J Mech Behav Materials 11(1–3):105–119Google Scholar
  37. Lichnerowicz A (1955) Théories relativistes de la gravitation et de l’électromagnétisme. Masson, ParisMATHGoogle Scholar
  38. Lichnerowicz A (1967) Relativistic hydrodynamics and magneto- hydrodynamics. Benjamin, New YorkGoogle Scholar
  39. Lichnerowicz A (1971) Onde de choc, ondes infinitésimales et rayons en hydrodynamique et magnétohydrodynamique, in: Relativistic fluid dynamics, Ed. C. Cattaneo, pp 87–203, Cremonese, RomeGoogle Scholar
  40. Lichnerowicz A (1976) Shock waves in relativistic magnetohydrodynamics under general assumptions. J Math Phys 17:2135–2142MathSciNetMATHCrossRefGoogle Scholar
  41. Maugin GA (1971) Magnetized deformable media in general relativity. Ann Inst Henri Poincaré A15:275–302MathSciNetGoogle Scholar
  42. Maugin GA (1972a) Relativistic theory of magnetoelastic interactions. J Phys A: Gen Phys A5:786–802CrossRefGoogle Scholar
  43. Maugin GA (1972b) An action principle in general relativistic magneto- hydrodynamics. Ann Inst Henri Poincaré A16:133–169MathSciNetGoogle Scholar
  44. Maugin GA (1973) Harmonic oscillations of elastic continua and detection of gravitational waves. Gen Relativ Gravit Jl 4:241–272MathSciNetMATHCrossRefGoogle Scholar
  45. Maugin GA (1974) Sur les fluides relativistes à spin. Ann Inst Henri Poincaré A20:41–68MathSciNetGoogle Scholar
  46. Maugin GA (1975) Sur la formulation des lois de comportement en mécanique relativiste des milieux continus, Multigraphed main document of Doct. d’Etat ès Sciences Mathématiques, Université de Paris-6, ParisGoogle Scholar
  47. Maugin GA (1976a) Conditions de compatibilité pour une hypersurface singulière en mécanique relativiste des milieux continus. Ann Int Henri Poincaré A24:213–241MathSciNetGoogle Scholar
  48. Maugin GA (1976b) Un principe variationnel pour le schéma fluide relativiste à spin, Ann. di Mat. Pura ed Applicata (Italia) (4)110:247–277Google Scholar
  49. Maugin GA (1977) Infinitesimal discontinuities in initially stressed relativistic elastic solids. Commun Math Phys 53:233–256MathSciNetMATHCrossRefGoogle Scholar
  50. Maugin GA (1978a) On the Covariant Equations of the Relativistic Electrodynamics of Continua-I- General equations. J Math Phys 19:1198–1205MATHCrossRefGoogle Scholar
  51. Maugin GA (1978b) On the covariant equations of the relativistic electrodynamics of continua-III- elastic solids. J Math Phys 19:1212–1219MATHCrossRefGoogle Scholar
  52. Maugin GA (1978c) On the covariant equations of the relativistic electrodynamics of continua-IV-media with spin. J Math Phys (USA) 19:1220–1226MATHCrossRefGoogle Scholar
  53. Maugin GA (1978d) Exact relativistic theory of wave propagation in prestressed nonlinear elastic solids. Ann. Inst. Henri Poincaré A28:155–185MathSciNetGoogle Scholar
  54. Maugin GA (1978e) Relation between wave speeds in the crust of dense magnetic stars. Proc. Roy. Soc. Lond. A354:537–552MathSciNetGoogle Scholar
  55. Maugin GA (1979) Nonlinear waves in relativistic continuum mechanics [on the occasion of Einstein’s Centenary]. Helv Phys Acta 52:149–170MathSciNetGoogle Scholar
  56. Maugin GA (1981) Ray theory and shock formation in relativistic elastic solids. Phil. Trans. Roy. Soc. Lond 302:189–215MathSciNetMATHCrossRefGoogle Scholar
  57. Maugin GA, Eringen AC (1972) Relativistic Continua with Directors. J Math Phys. 13:1788–1798CrossRefGoogle Scholar
  58. Maugin GA, Trimarco C (1992) Pseudo-momentum and Material Forces in Nonlinear Elasticity: Variational Formulations and Application to Brittle Fracture. Acta Mech 94:1–28MathSciNetMATHCrossRefGoogle Scholar
  59. Minkowski H (1908) Die grundgleichungen für die elektromagnetischen vorgänge in bevegten körpern. Gottinger Nachrichen 53–111 [Also: “Raum und Zeit”. Address delivered at the 80th Assembly of German Natural scientists and Physicians, Köln, September 21, 1908] Google Scholar
  60. Misner CW, Thorne KS, Wheeler JA (1970) Gravitation. Freeman, San FranciscoGoogle Scholar
  61. Murnaghan FD (1937) Finite deformation of an elastic solid. Amer J Math 59:235–260MathSciNetMATHCrossRefGoogle Scholar
  62. Noether E (1911) Zur Kinematik des Starren Körpers in der Relativitätstheorie. Ann der Phys. 31:919–944Google Scholar
  63. O’Brien S , Synge J.L. (1953) Jump conditions at discontinuities in general relativity. Commun Dublin Inst Adv Studies, Series A, No.9Google Scholar
  64. Oldroyd JG (1970) Equations of state of continuous matter in general relativity. Proc Roy Soc London A316:1–28MathSciNetGoogle Scholar
  65. Papapetrou A (1972) Vibrations élastiques excitées par une onde gravitationnelle. Ann H Poincaré A16:63–78MathSciNetGoogle Scholar
  66. Rayner CB (1963) Elasticity and general relativity. Proc Roy Soc. London A272:44–53MathSciNetGoogle Scholar
  67. Schöpf HG (1964) Allgemeinrelativistische prinzipien der kontinuumsmechanik. Ann Phys (Leipzig) 12:377–395 Google Scholar
  68. Souriau J.-M. (1958), in: Alger Mathématiques, no.2, 1958 [and in: Géométrie et relativité, Hermann, Paris 1964, Section 36]Google Scholar
  69. Synge JL (1959) A theory of elasticity in general relativity. Math Zeit 72:82–87MathSciNetMATHCrossRefGoogle Scholar
  70. Taub AH (1948) Relativistic Rankine-Hugoniot equations. Phys Rev 74:328–334MathSciNetMATHCrossRefGoogle Scholar
  71. Taub AH (1957) Singular hypersurfaces in general relativity, Illinois J. Math 1:370–388MathSciNetMATHGoogle Scholar
  72. Weyssenhhoff J, Raabe A (1947) Relativistic theory of spin-fluids and spin-particles. Acta Phys Pol 9:7–53Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut Jean Le Rond D’Alembert UniversitéParis CedexFrance

Personalised recommendations