Generalized Continuum Mechanics: Various Paths

  • Gérard A. Maugin
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 196)


This chapter focuses on a field of continuum mechanics that belongs almost entirely to the twentieth century, so called generalized continuum mechanics. First, a special effort is produced to define this term which essentially means going beyond the traditional view of Cauchy—with the notion of stress introduced by this early nineteenth-century scientist. Three possible paths to such a generalization are discussed with the related mention of main scientific contributors: involving an additional microstructure at each material point in addition to the traditional translational degree of freedom (e.g., micromorphic media, Cosserat continua, in modern times works by Eringen and others), or a better analytic description of the displacement field at each material point by introducing higher order gradients of this displacement in the energy density (e.g., in a theory mostly expanded by Mindlin), or else calling for a truly nonlocal theory that leads to considering spatial functionals for the constitutive equations—this follows contributors such as Kröner, Rogula, Kunin, and Eringen. A more drastic “generalization” started in the mid 1950s involves a loss of the Euclidean nature of the material manifold, as may apply in a densely defective crystal. In each case, the pioneers are mentioned and the most recent formulations are briefly sketched out.


Material Point Couple Stress Internal Degree Gradient Theory Nonlocal Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aero EL, Kuvshinskii EV (1960) Fundamental equations of the theory of elastic media with rotationally interacting particles. Soviet Physics Solid State 2, 1272–1281 (1961, English translation from the 1960 Russian edition)Google Scholar
  2. Aifantis EC (1992) On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 30:1279–1299Google Scholar
  3. Askes H, Metrikine AV, Pichugin AV, Bennett T (2008) Four simplified gradient elasticity models for the simulation of dispersive wave propagation. Phil Mag 88(28-29):3415–3443CrossRefGoogle Scholar
  4. Atanakovic TM, Stankovic B (2009) Generalized wave equation in nonlocal elasticity. Acta Mech 208:1–10CrossRefGoogle Scholar
  5. Burton CV (1891) Theory concerning the constitution of matter. Phil Mag 33(201):191–204Google Scholar
  6. Capriz G (1989) Continua with microstructure. Springer, New YorkzbMATHCrossRefGoogle Scholar
  7. Carpinteri A, Cornetti P, Sapora A (2011) A fractional calculus to nonlocal elasticity. Eur Phys J Spec Top 193:193–204CrossRefGoogle Scholar
  8. Casal P (1963) Capillarité interne en mécanique. C R Acad Sci Paris 256:3820–3822Google Scholar
  9. Christov CI, Maugin GA (1995) An implicit difference scheme for the long-time evolution of localized solutions of a generalized Boussinesq System. J Computational Phys 116:39–51Google Scholar
  10. Christov CI, Maugin GA, Porubov AS (2007) On Boussinesq’s paradigm on non linear wave propagation, CR Mécanique (Acad Sci Paris, Special Issue on Boussinesq) 335(9/10):521–535Google Scholar
  11. Cosserat E, Cosserat F (1909) Théorie des corps déformables. Hermann, Paris [Reprint, Gabay, Paris, 2008]Google Scholar
  12. Cowin SC, Nunziato JW (1983) Linear elastic materials with voids. J Elasticity 13:125–147zbMATHCrossRefGoogle Scholar
  13. Dell’Isola F, Seppecher P (1995) The relationship between edge contact forces, double forces and intersticial working allowed by the principle of virtual power. C R Acad Sci Paris IIb 321:303–308zbMATHGoogle Scholar
  14. Drouot R, Maugin GA (1983) Phenomenological theory for polymer diffusion in non-homogeneous velocity gradient flows. Rheol Acta 22:336–347MathSciNetzbMATHCrossRefGoogle Scholar
  15. Duhem P (1893) Le potentiel thermodynamique et la pression hydrostatique. Ann Ecol Norm Sup 10:187–230MathSciNetGoogle Scholar
  16. Einstein A (1916) Die Grundlage der allgemeinen relativitätstheorie. Ann der Phy 49:769–822zbMATHCrossRefGoogle Scholar
  17. Einstein A (1956) The meaning of relativity. Princeton University Press, PrincetonGoogle Scholar
  18. Epstein M, Maugin GA (1990) The energy-momentum tensor and material uniformity in finite elasticity. Acta Mechanica 83:127–133MathSciNetzbMATHCrossRefGoogle Scholar
  19. Epstein M, Maugin GA (1997) Notions of material uniformity and homogeneity (Opening Lecture of MS1, ICTAM, Kyoto, 1996), In: Tatsumi T, Watanabe E, Kambe T (eds) Theoretical and applied mechanics. Elsevier, Amsterdam, pp 201–215Google Scholar
  20. Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Intern J Plasticity 16:951–978zbMATHCrossRefGoogle Scholar
  21. Eremeyev VA, Pietraszkiewicz W (2012), Material symmetry group of the non-linear polar-elastic continuum. Int J Solids Structures 49:1993–2005Google Scholar
  22. Ericksen JL (1959/60) Anisotropic fluids. Arch Rat Mech Anal 4:231–237Google Scholar
  23. Eringen AC (1966) Theory of micro polar fluids. J Math Mech 16:1–18MathSciNetGoogle Scholar
  24. Eringen AC (1968) Theory of micropolar elasticity. In: Liebowitz H (ed) Fracture: a Treatise, vol. 2. Academic, New York, pp 621–729Google Scholar
  25. Eringen AC (1969) Micropolar fluids with stretch. Int J Engng Sci 7:115–127zbMATHCrossRefGoogle Scholar
  26. Eringen AC (1999) Microcontinuum field theories, I-foundations and solids. Springer, New YorkzbMATHCrossRefGoogle Scholar
  27. Eringen AC (2001) Microcontinuum Field Theories II-fluent media. Springer, New YorkzbMATHGoogle Scholar
  28. Eringen AC (2002) Nonlocal continuum field theories. Springer, New YorkzbMATHGoogle Scholar
  29. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Egng Sci 10(3):233–248MathSciNetzbMATHCrossRefGoogle Scholar
  30. Eringen AC, Maugin GA (1990) Electrodynamics of continua, vol 2. Springer, New YorkGoogle Scholar
  31. Eringen AC, Suhubi ES (1964) Nonlinear theory of simple micro elastic solids I. Int J Engng Sci 2:189–203MathSciNetzbMATHCrossRefGoogle Scholar
  32. Forest S (2006) Milieux continus généralisés et matériaux hétérogènes, Presses de l’Ecole des Mines, ParisGoogle Scholar
  33. Gauthier RD, Jashman WE (1975) A quest for micro polar elastic constants. J Appl Mech Trans ASME Ser E42(2):369–374Google Scholar
  34. Germain P (1973a) La méthode des puissances virtuelles en mécanique des milieux continus, Première partie: théorie du second gradient. J de Mécanique (Paris) 12:235–274Google Scholar
  35. Germain P (1973b) The method of virtual power in continuum mechanics-II: microstructure. S. I. A. M. J Appl Math 25(3):556–575MathSciNetzbMATHGoogle Scholar
  36. Gibbs JW (1901) Vector analysis. Yale University Press, New HavenzbMATHGoogle Scholar
  37. Green AE, Naghdi PM (1967) Micropolar and director theories of plates. Quart J Mech Appl Math 20:183–199zbMATHCrossRefGoogle Scholar
  38. Green AE, Rivlin RS (1964) Multipolar continuum mechanics. Arch Rat Mech Anal 17:113–147MathSciNetzbMATHCrossRefGoogle Scholar
  39. Grioli G (1960) Elasticità asimmetrica. Ann Mat Pura ed Applicata Ser IV 50:389–417Google Scholar
  40. Grioli G (1962) Mathematical theory of elastic equilibrium (Recent results). In: Lauer FL, Collatz L, Lösch F, Truesdell C (eds) Ergebnisse der angewandten Mathematik, Vol 7. Springer-Verlag, Berlin, pp 1–168Google Scholar
  41. Günther W (1958) Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh Braunschweig Wiss Ges, vol 10, pp 195Google Scholar
  42. Hellinger E (1914) Die allgemeinen Ansätze der Mechanik der Kontinua. In: Klein F, Wagner K (eds) Encyclopädia mathemischen Wissenschaften, Part 4, vol 4. Springer, Berlinpp. pp 602–694Google Scholar
  43. Kafadar CB, Eringen AC (1971) Micropolar media-I-the classical theory. Int J Engng Sci 9:271–308zbMATHCrossRefGoogle Scholar
  44. Kondo K (1955) Non-riemannian geometry of imperfect crystals from a macroscopic viewpoint. In: Kondo K (ed) RAAG memoirs of the unifying study of basic problems in engineering and physical sciences by means of geometry, vol 1. Gakujutsu Bunken Fukyukai, Tokyo, pp 459–480Google Scholar
  45. Korteweg DJ (1901) Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation de la densité. Arch Néer Sci Exactes et Nat Sér II, 6, pp 1–24Google Scholar
  46. Kröner E (ed) (1958) Generalized continua. In: Proceedings of the IUTAM Symposium Freundenstadt, 1967. Springer, BerlinGoogle Scholar
  47. Kröner E (1968) Generalizedc. In: Proceedings of the IUTAM Symposium Freudenstadt, 1967. Springer, BerlinGoogle Scholar
  48. Kröner E, Datta BK (1966) Nichtlokal Elastostatik: Ableitung aus der Gittertheorie. Z Phys 196:203–211CrossRefGoogle Scholar
  49. Kunin IA (1966) Model of elastic medium with simple structure and space dispersion. Prikl Mat Mekh 30:542–550Google Scholar
  50. Kunin IA (1982) Elastic media with microstructure I and II. Springer, Berlin (translation from the 1975 Russian edition, edited by E. Kröner)Google Scholar
  51. Laval J (1957a) L’élasticité du milieu cristallin-I. J Phys Radium 18(4):247–259MathSciNetzbMATHCrossRefGoogle Scholar
  52. Laval J (1957b) L’élasticité du milieu cristallin-II. J Phys Radium 18(5):289–296MathSciNetCrossRefGoogle Scholar
  53. Laval J (1957c) L’élasticité du milieu cristallin-III. J Phys Radium 18(6):369–379MathSciNetCrossRefGoogle Scholar
  54. Lazar M, Maugin GA (2004a) Defects in gradient micro polar elasticity i-screw dislocation. J Mech Phys Solids 52:2263–2284MathSciNetzbMATHCrossRefGoogle Scholar
  55. Lazar M, Maugin GA (2004b) Defects in Gradient Micropolar Elasticity. II-Edge dislocation and disclinations. J Mech Phys Solids 52:2285–2307MathSciNetzbMATHCrossRefGoogle Scholar
  56. Lazar M, Maugin GA (2007) On microcontinuum field theories: the Eshelby stress tensor and incompatibility conditions. Phil Mag 87:3853–3870CrossRefGoogle Scholar
  57. Le Corre Y (1956) La dissymétrie du tenseur des efforts et ses conséquences. J Phys Radium 17:934–939MathSciNetzbMATHCrossRefGoogle Scholar
  58. Le Roux J (1911) Etude géométrique de la torsion et de la flexion, dans les déformations infinitésimales d’un milieu continu. Ann Ecole Norm Sup 28:523–579MathSciNetzbMATHGoogle Scholar
  59. Le Roux J (1913) Recherches sur la géométrie des déformations finies. Ann Ecole Norm Sup 30:193–245MathSciNetzbMATHGoogle Scholar
  60. Lee JD, Eringen AC (1971) Wave propagation in nematic liquid crystals. J Chem Phys 54:5027–5034Google Scholar
  61. Lee JD, Eringen AC (1973) Continuum theory of smectic liquid crystals. J Chem Phys 58:4203–4211Google Scholar
  62. Leslie FM (1968) Constitutive equations for liquid crystals. Arch RatMech Anal 28:265–283MathSciNetzbMATHGoogle Scholar
  63. Li J, Ostoja-Starjeswki M (2010) Fractals, product measures and continuum mechanics. In: Maugin GA, Metrikine AV (eds) Mechanics of generalized continua. Springer, New York, pp 315–323Google Scholar
  64. Maugin GA (1971) Micro magnetism and polar media. Ph.D. thesis, Princeton UniversityGoogle Scholar
  65. Maugin GA (1979) Nonlocal theories or gradient-type theories: a matter of convenience? Arch Mechanics (PL, Proc. Euromech Coll. on Nonlocal Theories, Warsaw, 1977) 31, pp 1–26Google Scholar
  66. Maugin GA (1980) The method of virtual power in continuum mechanics: application to coupled fields. Acta Mech 35:1–70MathSciNetzbMATHCrossRefGoogle Scholar
  67. Maugin GA (1988) Continuum mechanics of electromagnetic solids. North-Holland, AmsterdamzbMATHGoogle Scholar
  68. Maugin GA (1990) Internal variables and dissipative structures. J Non Equilibr Thermodyn 15:173–192Google Scholar
  69. Maugin GA (1993) Material inhomogeneities in elasticity. Chapman & Hall, LondonzbMATHGoogle Scholar
  70. Maugin GA (1999) Nonlinear waves in elastic crystals. Oxford University Press, OxfordzbMATHGoogle Scholar
  71. Maugin GA (2003a) Pseudo-plasticity and pseudo-inhomogeneity effects in materials mechanics. J Elasticity 71:81–103MathSciNetzbMATHCrossRefGoogle Scholar
  72. Maugin GA (2003b) Geometry and thermo mechanics of structural rearrangements: Ekkehart Kroener’s Legacy (GAMM’2002, Kroener’s Lecture, Augsburg, 2002), Zeit. angew. Math Mech 83:75–83Google Scholar
  73. Maugin GA (2010) Generalized continuum mechanics: what do we understand by that? In: Maugin GA, Metrikine AV (eds) Mechanics of generalized continua: one hundred years after the Cosserats. Springer, New York, pp 3–13Google Scholar
  74. Maugin GA (2011) Configurational forces: Thermo mechanics, mathematics, physics, numerics. CRC/Chapman & Hall/Taylor and Francis, Boca RatonGoogle Scholar
  75. Maugin GA, Christov CI (2002) Nonlinear waves and conservation laws (Nonlinear duality between elastic waves and quasi-particles), In: Christov CI, Guran A (eds) Topics in nonlinear wave mechanics. Birkhäuser, Boston, pp 117–160Google Scholar
  76. Maugin GA, Metrikine AV (eds) (2010) Mechanics of generalized continua: one hundred years after the Cosserats. Springer, New YorkzbMATHGoogle Scholar
  77. McCullagh J (1839) An essay towards a dynamical theory of crystalline reflection and refraction. Trans Roy Irish Acad Sci 21:17–50Google Scholar
  78. Michelitsch T, Maugin GA et al (2009) Dispersion relations and wave operators in self-similar quasi-continuous linear chains, Phys Rev E80(011135):1–8Google Scholar
  79. Michelitsch T, Maugin GA et al (2012) One-dimensional self-similar elasticity and diffusion and their relations to no locality and Lévi distributions (in press)Google Scholar
  80. Mindlin RD (1964) Microstructure in linear elasticity. Arch Rat Mech Anal 16:51–78MathSciNetzbMATHCrossRefGoogle Scholar
  81. Mindlin RD, Eshel NN (1968) On the first strain gradient theories in linear elasticity. Int J Solids Structures 4:109–124zbMATHCrossRefGoogle Scholar
  82. Mindlin RD, Tiersten HF (1962) Effects of couple stresses in linear elasticity. Arch Rat Mech Anal 11:415–448MathSciNetzbMATHCrossRefGoogle Scholar
  83. Mülhaus H-B, Oka F (1996) Dispersion and wave propagation in discrete and continuous models for granular materials. Int J Solids Struct 33:2841–2858CrossRefGoogle Scholar
  84. Neuber H (1964) On the general solution of linear elastic problems in isotropic and anisotropic Cosserat Continua. In: Görtler H (ed) Proceedings of the 11th international conference of applied mechanics (München, 1964), Springer, Berlin, pp 153–158Google Scholar
  85. Noll W (1967) Materially uniform simple bodies with inhomogeneities. Arch Rat Mech Anal 27:1–32MathSciNetCrossRefGoogle Scholar
  86. Noll W, Virga EG (1990) On edge interactions and surface tension. Arch Rat Mech Anal 111:1–31MathSciNetzbMATHCrossRefGoogle Scholar
  87. Nowacki W (1986) Theory of asymmetric elasticity. Pergamon Press, OxfordzbMATHGoogle Scholar
  88. Palmov A (1964) Fundamental equations of the theory of asymmetric elasticity. Prikl Mat Mekh 28:401–408MathSciNetGoogle Scholar
  89. Pijaudier-Cabot G, Bazant ZP (1987) Nonlocal damage theory. J Eng Mech ASCE 113(10):1512–1533CrossRefGoogle Scholar
  90. Pouget J, Maugin GA (1983) Nonlinear electroacoustic equations in piezoelectric powders. J Acoust Soc Amer 74:925–940zbMATHCrossRefGoogle Scholar
  91. Pouget J, Maugin GA (1989) Nonlinear dynamics of oriented elastic solids-I-Basic equations. J Elast 22:135–155MathSciNetzbMATHCrossRefGoogle Scholar
  92. Rakotomanana LR (2003) A geometric approach to thermo mechanics of dissipating continua. Birkhäuser, BostonGoogle Scholar
  93. Rogula D (1965) Influence of spatial acoustic dispersion on dynamical properties of dislocations. Bull Acad Pol Sci Sér Sci Techn 13:337–385Google Scholar
  94. Schaeffer H (1967) Das Cosserat-Kontinuum. Z. angew Math Mech 47, p 34Google Scholar
  95. Stojanovic R (1969) Mechanics of polar continua. CISM Lectures, UdineGoogle Scholar
  96. Stokes VK (1984) Theories of fluids with microstructure. Springer, BerlinCrossRefGoogle Scholar
  97. Suhubi ES, Eringen AC (1964) Nonlinear theory of simple micro elastic solids II. Int J Engng Sci 2:389–404MathSciNetCrossRefGoogle Scholar
  98. Toupin RA (1962) Elastic materials with couple stress. Arch Rat Mech Anal 11:395–414MathSciNetCrossRefGoogle Scholar
  99. Toupin RA (1964) Theories of elasticity with couple-stress. Arch Rat Mech Anal 17:85–112MathSciNetzbMATHCrossRefGoogle Scholar
  100. Truesdell CA, Noll W (1965) Non linear field theories of mechanics. In: Flügge S (ed) Handbuch der Physik, Bd.III/3, Springer, BerlinGoogle Scholar
  101. Truesdell CA, Toupin RA (1960) The classical theory of fields. In: Flügge S (ed) Handbuch der Physik, Bd.III/1, Springer, BerlinGoogle Scholar
  102. Wang CC (1967) On the geometric structure of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations. Arch Rat Mech Anal 27:33–94zbMATHCrossRefGoogle Scholar
  103. Whittaker ET (1951) A history of the theories of Aether and elasticity, Two volumes. Thomas Nelson, New York [Reprint in one volume. Dover, New York, 1953]Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut Jean Le Rond d’Alembert UniversitéParis Cedex 05France

Personalised recommendations