Impact Ejecta and Fallout Units

  • Andrew Y. Glikson
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)


The discovery of altered glass spherules (microkrystites) formed by atmospheric condensation of impact-released vapor at the Cretaceous-Tertiary (K-T) impact boundary by Alvarez et al. (Science 208:1095–1108, 1980) opened the way to the identification of impact ejecta units in Archaean and Proterozoic terrains and thereby investigation of the impact history of the early Earth.


Debris Flow Tsunami Wave Platinum Group Element Tsunami Deposit Fault Scarp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alvarez L, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108CrossRefGoogle Scholar
  2. Alvarez L, Alvarez W, Asaro F, Michel HV (1982) Iridium anomaly approximately synchronous with terminal Eocene extinctions. Science 216:886–888CrossRefGoogle Scholar
  3. Becker L, Poreda R, Bunch T (2000) Fullerenes: an extraterrestrial carbon carrier phase for noble gases. Proc Natl Acad Sci 97:2979–2983CrossRefGoogle Scholar
  4. Bekov GI, Letokhov VS, Radaev VN, Badyukov DD, Nazarov MA (1988) Rhodium distribution at the Cretaceous/Tertiary boundary analyzed by ultrasensitive laser photoionization. Nature 332:146–148CrossRefGoogle Scholar
  5. Bohor BF, Foord EE, Modreski PJ, Triplehorn DM (1984) Mineralogic evidence for an impact event at the Cretaceous-Tertiary boundary. Science 224:867–869CrossRefGoogle Scholar
  6. Byerly GR, Lowe DR (1994) Spinels from Archaean impact spherules. Geochim et Cosmochim Acta 58:3469–3486CrossRefGoogle Scholar
  7. Byerly GR, Lowe DR, Wooden JL, Xie X (2002) A meteorite impact layer 3470 Ma from the Pilbara and Kaapvaal cratons. Science 297:1325–1327CrossRefGoogle Scholar
  8. Carlisle DB, Braman DR (1991) Nanometre-size diamonds in the Cretaceous-Tertiary boundary clay of Alberta. Nature 352:708–709CrossRefGoogle Scholar
  9. Claeys P, Casier JG, Margolis SV (1992) Microtektites and mass extinctions evidence for a late Devonian asteroid impact. Science 257:1102–1104CrossRefGoogle Scholar
  10. Farley KA, Montanari A, Hoemaker EM, Shoemaker C (1998) Geochemical evidence for a comet shower in the Late Eocene. Science 280:1250–1253CrossRefGoogle Scholar
  11. French BM (1998) Traces of catastrophe—a handbook of shock metamorphic effects in terrestrial meteorite impact structures. Lunar Planet Sci Inst Contrib 954:120Google Scholar
  12. Glass BP, Burns CA (1988) Microkrystites: a new term for impact-produced glassy spherules containing primary crystallites. In: Proceedings of lunar planet science conference, vol 18. pp 455–458Google Scholar
  13. Glass BP, Wu J (1993) Coesite and shocked quartz discovered in the Australasian and North American microtektite layers. Geology 21:435–438CrossRefGoogle Scholar
  14. Glikson AY (2004) Bedout: a possible end-permian impact crater offshore of northwestern Australia. Science 306:613CrossRefGoogle Scholar
  15. Glikson AY (2005a) Geochemical and isotopic signatures of Archaean to early Proterozoic extraterrestrial impact ejecta/fallout units. Aust J Earth Sci 52:785–799CrossRefGoogle Scholar
  16. Glikson AY (2005b) Geochemical signatures of Archaean to early Proterozoic Mare-scale oceanic impact basins. Geology 133:125–128CrossRefGoogle Scholar
  17. Glikson AY, Allen C (2004) Iridium anomalies and fractionated siderophile element patterns in impact ejecta, Brockman Iron Formation, Hamersley Basin, Western Australia: evidence for a major asteroid impact in simatic crustal regions of the early Proterozoic earth. Earth Planet Sci Lett 20:247–264CrossRefGoogle Scholar
  18. Gostin VA, Keays RR, Wallace MW (1989) Iridium anomaly from the Acraman ejecta horizon: impacts can produce sedimentary iridium peaks. Nature 340:542–544CrossRefGoogle Scholar
  19. Gostin VA, McKirdy DM, Webster LJ, Williams GE (2010) Ediacaran ice-rafting and coeval asteroid impact, South Australia: insights into the terminal Proterozoic environment. Aust J Earth Sci 57(7):859–869CrossRefGoogle Scholar
  20. Grieve RAF, Dence MR (1979) The terrestrial cratering record: II the crater production rate. Icarus 38:230–242CrossRefGoogle Scholar
  21. Grieve RAF, Pesonen LJ (1996) Terrestrial impact craters: their spatial and temporal distribution and impacting bodies. Earth Moon Planets 72:357–376CrossRefGoogle Scholar
  22. Grieve RAF, Pilkington M (1996) The signature of terrestrial impacts. Aust Geol Surv J Aust Geol Geophys 16:399–420Google Scholar
  23. Grieve RAF, Shoemaker EM (1994) The record of past impacts on Earth. University of Arizona Press, Tucson, pp 417–462Google Scholar
  24. Hassler SW, Robey HF, Simonson BM (2000) Bedforms produced by impact-generated tsunami, ~2.6 Ga Hamersley Basin, Western Australia. Geology 135:283–294Google Scholar
  25. Heymann D, Chibante LPF, Brooks RR, Wolbach WS, Smalley RE (1994) Fullerenes in the Cretaceous-Tertiary boundary layer. Science 265:645–647CrossRefGoogle Scholar
  26. Hildebrand A, Boynton WV (1990) Proximal Cretaceous-Tertiary boundary impact deposits in the Caribbean. Science 248:843–847CrossRefGoogle Scholar
  27. Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo ZA, Jacobsen SB, Boynton WV (1991) A possible Cretaceous-Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19:867–871CrossRefGoogle Scholar
  28. Izett GA, Maurrasse FJ-MR, Lichte FE, Meeker GP, Bates R (1990) Tektites in Cretaceous-Tertiary boundary rocks on Haiti. US Geological Survey Open-File Report 90–635Google Scholar
  29. Kelley SP, Gurov E (2002) The Boltysh another end-Cretaceous impact. Meteor Planet Sci 37:1031–1044CrossRefGoogle Scholar
  30. Kyte FT, Smit J (1986) Regional variations in spinel compositions: an important key to the Cretaceous/Tertiary event. Geology 14:485–487CrossRefGoogle Scholar
  31. Kyte FT, Zhou Z, Wasson JT (1980) Siderophile enriched sediments from the Cretaceous-Tertiary boundary. Nature 288:651–656CrossRefGoogle Scholar
  32. Kyte FT, Shukolyukov A, Lugmair GW, Lowe DR, Byerly GR (2003) Early Archaean spherule beds: chromium isotopes confirm origin through multiple impacts of projectiles of carbonaceous chondrite type. Geology 31:283–286CrossRefGoogle Scholar
  33. Lowe DR, Byerly GR (1986) Early Archean silicate spherules of probable impact origin South Africa and Western Australia. Geology 14:83–86CrossRefGoogle Scholar
  34. Luck JM, Turekian KK (1983) 187-osmium-186/osmium in manganese nodules and the Cretaceous-Tertiary boundary. Science 222:613–615CrossRefGoogle Scholar
  35. McHone JF, Nieman RA, Lewis CF, Yates AM (1989) Stishovite at the Cretaceous-Tertiary boundary, Raton, New Mexico. Science 243:1182–1184CrossRefGoogle Scholar
  36. Melosh HJ, Vickery AM (1991) Melt droplet formation in energetic impact events. Nature 350:494–497CrossRefGoogle Scholar
  37. Robin E, Boclet D, Bonte P, Froget L, Jehanno C, Rocchia R (1991) The stratigraphic distribution of Ni-rich spinels in Cretaceous-Tertiary boundary rocks at El-Kef (Tunisia) Caravaca, Spain, and Hole-761C (Leg-122). Earth Planet Sci Lett 107:715–721CrossRefGoogle Scholar
  38. Scheffers A, Kelleat D (2002) Sedimentologic and geomorphologic tsunami imprints worldwide—a review. Earth Sci Rev 63:83–92CrossRefGoogle Scholar
  39. Shoemaker EM, Shoemaker CS (1996) The Proterozoic impact record of Australia. Aust Geol Surv Org J Aust Geol Geophys 16:379–398Google Scholar
  40. Shukolyukov A, Kyte FT, Lugmair GW, Lowe DR, Byerly GR (2000) The oldest impact deposits on Earth. In: Koeberl C, Gilmour I (eds) Lecture notes in Earth science 92: impacts and the early Earth. Springer, Berlin, pp 99–116Google Scholar
  41. Simonson BM (1992) Geological evidence for an early Precambrian microtektite strewn field in the Hamersley Basin of Western Australia. Geol Soc Am Bull 104:829–839CrossRefGoogle Scholar
  42. Simonson BM, Glass BP (2004) Spherule layers—records of ancient impacts. Ann Rev Earth Planet Sci 32:329–361CrossRefGoogle Scholar
  43. Simonson BM, Harnik P (2000) Have distal impact ejecta changed through geologic time? Geology 28:975–978CrossRefGoogle Scholar
  44. Simonson BM, Hassler SW (1997) Revised correlations in the early Precambrian Hamersley Basin based on a horizon of resedimented impact spherules. Aust J Earth Sci 44:37–48CrossRefGoogle Scholar
  45. Simonson BM, Davies D, Hassler SW (2000a) Discovery of a layer of probable impact melt spherules in the late Archaean Jeerinah Formation, Fortescue Group, Western Australia. Aust J Earth Sci 47:315–325CrossRefGoogle Scholar
  46. Simonson BM, Hornstein M, Hassler SW (2000b) Particles in late Archean Carawine Dolomite, Western Australia, resemble Muong Nong-type tektites. In: Gilmour I, Koeberl C (eds) Impacts and the early earth. Springer, Berlin, pp 181–214CrossRefGoogle Scholar
  47. Simonson BM, Koeberl C, McDonald I, Reimold WU (2000c) Geochemical evidence for an impact origin for a late Archean spherule layer Transvaal supergroup South Africa. Geology 28:1103–1106CrossRefGoogle Scholar
  48. Simonson BM, Cardiff M, Schubel KA (2001) New evidence that a spherule layer in the late Archaean Jeerinah Formation of Western Australia was produced by a major impact. In: 32nd lunar planetary science conference abstracts, lunar and planetary institute contribution 1080, HoustonGoogle Scholar
  49. Smit J, Klaver G (1981) Sanidine spherules at the Cretaceous-Tertiary boundary indicate a large impact event. Nature 292:47–49CrossRefGoogle Scholar
  50. Smit J, Montanari A, Swinburne NHM, Alvarez W, Hildebrand AR, Margolis SV, Claeys P, Lowrie W, Asaro F (1992) Tektite-bearing deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico. Geology 20:99–103CrossRefGoogle Scholar
  51. Smit J, Roep TB, Alvarez W, Claeys P, Montanari A (1994a) Deposition of channel deposits near the Cretaceous-Tertiary boundary in northeastern Mexico catastrophic or normal sedimentary deposits and is there evidence for Cretaceous-Tertiary boundary-age deep-water deposits in the Caribbean and Gulf of Mexico?: comment. Geology 22:953–954CrossRefGoogle Scholar
  52. Smit J, Roep TB, Alvarez W, Claeys P, Montanari S, Grajales M (1994b) Impact tsunami-generated clastic beds at the KT boundary of the Gulf coastal plain A synthesis of old and new outcrops. In: New developments regarding the KT event and other catastrophes in Earth history. Lunar Planet Inst Houston Contrib 825:117–119Google Scholar
  53. Trendall AF, Nelson DR, deLaeter JR, Hassler SW (1998) Precise zircon U-Pb ages from the Marra Mamba Iron Formation and Wittenoom Formation, Hamersley Group, Western Australia. Aust J Earth Sci 45:137–142CrossRefGoogle Scholar
  54. Wallace MW, Gostin VA, Keays RR (1990) Spherules and shard-like clasts from the late Proterozoic Acraman impact ejecta horizon South Australia. Meteoritics 25:161–165CrossRefGoogle Scholar
  55. Wallace MW, Gostin VA, Keays RR (1996) Sedimentology of the Neoproterozoic Acraman impact-ejecta horizon South Australia. Aust Geol Surv Org J Aust Geol Geophys 16:443–451Google Scholar
  56. Wang K (1992) Glassy microspherules (microtektites) from an upper Devonian limestone. Science 256:1547–1550CrossRefGoogle Scholar
  57. Wdowiak TJ, Armendarez LP, Agresti DG, Wade ML, Wdowiak SY, Claeys P, Izett G (2001) Presence of an iron-rich nanophase material in the upper layer of the Cretaceous-Tertiary boundary clay. Meteor Planet Sci 36:123–133CrossRefGoogle Scholar
  58. Zhao M, Bada JL (1989) Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Stevns Klint, Denmark. Nature 339:463–465CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Planetary Science Institute and School of Archaeology and AnthropologyAustralian National UniversityCanberraAustralia

Personalised recommendations