Skip to main content

Identification of Impact Structures

  • Chapter
  • First Online:
The Asteroid Impact Connection of Planetary Evolution

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

  • 953 Accesses

Abstract

Confident criteria have been defined which allow the identification of high-velocity extraterrestrial impacts based structural morphometric parameters by surface mapping and geophysical exploration, microstructural shock metamorphic features corresponding to shock pressures >10 GPa, solid-state melting of target materials, mineralogical, geochemical and isotopic criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexopoulos JS, Grieve RAF, Robertson PB (1988) Microscopic lamellar deformation features in quartz: discriminative characteristics of shock-generated varieties. Geology 16:796–799

    Article  Google Scholar 

  • Buchanan PC, Reimold WU (2002) Planar deformation features and impact glass in inclusions from the Vredefort granophyre South Africa. Meteor Planet Sci 37:807–822

    Article  Google Scholar 

  • Carter NJ (1965) Basal quartz deformation lamellae—a criterion for recognition of impactites. Am J Sci 263:786–806

    Article  Google Scholar 

  • Carter NJ (1968) Meteoritic impact and deformation of quartz. Science 160:526–528

    Article  Google Scholar 

  • Carter NJ, Friedman M (1965) Dynamic analysis of deformed quartz and calcite from the Dry Creek Ridge Anticline Montana. Am J Sci 263:747–785

    Article  Google Scholar 

  • Carter NL, Officer CB, Chesnerc A, Rose WI (1986) Dynamic deformation of volcanic ejecta from the Toba caldera: possible relevance to Cretaceous/Tertiary boundary phenomena. Geology 14:380–383

    Article  Google Scholar 

  • Dietz RS (1961) Vredefort ring structure: meteorite impact scar? J Geol 69:496–505

    Article  Google Scholar 

  • Dietz RS (1964) Sudbury structure as an astroblemes. J Geol 72:412–434

    Article  Google Scholar 

  • Dietz RS (1967) Shatter cone orientation at Gosses Bluff astrobleme. Nature 216:1082–1084

    Article  Google Scholar 

  • Dressler BO (1990) Geochemistry of the impact-generated melt sheet at Manicouagan: evidence for fractional crystallization. J Geophys Res 116:22

    Google Scholar 

  • EID—Earth Impact Database (2011) http://wwwpasscnet/EarthImpactDatabase/indexhtml

  • Elston WE, Twist D (1986) Bushveld complex South Africa: is Rooiberg felsite an impact melt? Lunar Planet Sci 17:204–205

    Google Scholar 

  • Engelhardt WB, Bertsch I (1969) Shock induced planar deformation structures in quartz from the Ries Crater, Germany. Contr Mineral Petrol 20:203–234

    Article  Google Scholar 

  • Ferriere L, Morrow JR, Amgaa T, Koeberl C (2009) Systematic study of universal-stage measurements of planar deformation features in shocked quartz: implications for statistical significance and representation of results. Meteor Planet Sci 44:925–940

    Article  Google Scholar 

  • French BM (1990) Absence of shock metamorphic effects in the bushveld complex South Africa: results of an intensive search. Tectonophysics 171:287–301

    Article  Google Scholar 

  • French BM (1998) Traces of catastrophe—a handbook of shock metamorphic effects in terrestrial meteorite impact structures. Lunar Planet Sci Inst Contrib 954:120

    Google Scholar 

  • French BM, Koeberl C (2010) The convincing identification of terrestrial meteorite impact structures: what works what doesn’t and why. Earth Sci Rev 98:123–170

    Article  Google Scholar 

  • Fricke A, Frick M, Medenbach O, Schreyer W (1990) Fluid inclusions planar elements and pseudotachylites in the basement rocks of the Vredefort structure South Africa. Tectonophysics 171:169–183

    Article  Google Scholar 

  • Glikson AY, Uysal IT (2010) Evidence of impact shock metamorphism in basement granitoids, Cooper Basin. In: Australian geothermal conference. Adelaide

    Google Scholar 

  • Glikson AY, Uysal IT (2011) Geophysical anomalies and quartz microstructures of the East Warburton Basin under the Cooper Basin South Australia: tectonic or asteroid impact origin? http://wwwuqeduau/geothermal/growing-evidence-for-a-large-asteroid-hitting-cooper-basin-300-million-years-ago-110557

  • Glikson AY, Eggins S, Golding S, Haines P, Iasky RP, Mernagh TP, Mory AJ, Pirajno F, Uysal IT (2005a) Microchemistry and microstructures of hydrothermally altered shock-metamorphosed basement gneiss, Woodleigh impact structure, Southern Carnarvon Basin, Western Australia. Aust J Earth Sci 52:555–573

    Article  Google Scholar 

  • Glikson A, Mory AJ, Iasky R, Pirajno F, Golding S, Uysal IT (2005b) Woodleigh, Southern Carnarvon Basin, Western Australia: history of discovery late Devonian age and geophysical and morphometric evidence for a 120 km-diameter impact structure. Aust J Earth Sci 52:545–553

    Article  Google Scholar 

  • Glikson AY, Jablonski D, Westlake S (2010) Origin of the mount Ashmore structural dome West Bonaparte Basin Timor Sea. Aust J Earth Sci 57:411–430

    Article  Google Scholar 

  • Glikson AY, Uysal IT, Fitz Gerald JD, Saygin E (2013) Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, North-east South Australia: Tectonic or impact shock metamorphic origin? Tectonophysics 589:57–76

    Google Scholar 

  • Goltrant O, Cordier P, Doukhan JC (1991) Planar deformation features in shocked quartz: a transmission electron microscopy investigation. Earth Planet Sci Lett 106:103–115

    Article  Google Scholar 

  • Gorter JD, Glikson AY (2012) Talundilly Western Queensland Australia: geophysical and petrological evidence for an 84 km-large impact structure and an early Cretaceous impact cluster. Aust J Earth Sci 59:51–73

    Article  Google Scholar 

  • Gostin VA, Therriault AM (1997) Tookoonooka: a large buried early Cretaceous impact structure in the Eromanga Basin of Southwestern Queensland Australia. Meteor Planet Sci 32:593–599

    Article  Google Scholar 

  • Grieve RAF, Corderre JM, Robertson PB, Alexopuolos J (1990) Microscopic planar deformation features in quartz of the Vredefort structure: anomalous but still suggestive of an impact origin. Tectonophysics 171:185–200

    Article  Google Scholar 

  • Grieve RAF, Langenhorst F, Stoffler D (1996) Shock metamorphism of quartz in nature and experiment: II significance in geoscience. Metor Planet Sci 31:6–35

    Article  Google Scholar 

  • Grieve RAF, Ames DE, Morgan JV, Artmieva N (2010) The evolution of the Onaping formation at the Sudbury impact structure. Meteor Planet Sci 45:159–782

    Google Scholar 

  • Hamers MF, Drury MR (2011) Scanning electron microscope cathod-luminescence (SEM-CL) imaging of planar deformation features and tectonic deformation lamellae in quartz. Meteor Planet Sci 46:1814

    Article  Google Scholar 

  • Hamilton WB (1970) Bushveld complex-product of impacts? Geol Soc S Afr Sp Publ 1:367–379

    Google Scholar 

  • Hart RJ, Cloete M, McDonald I, Carlson RW, Andreoli MAG (2002) Siderophile-rich inclusions from the Morokweng impact melt sheet, South Africa: possible fragments of a chondritic meteorite. Earth Planet Sci Lett 198:49–62

    Article  Google Scholar 

  • Iasky RP, Glikson AY (2005) Gnargoo: a possible 75 km-diameter post-early Permian—pre-Cretaceous buried impact structure Carnarvon Basin Western Australia. Aust J Earth Sci 52:577–586

    Article  Google Scholar 

  • Iasky RP, Mory AJ, Blundell KA (2001) The geophysical interpretation of the Woodleigh impact structure Southern Carnarvon Basin. Western Australia, Geol Surv of West Aust Rep 79

    Google Scholar 

  • Koeberl C, Anderson RR (1996) The manson impact structure Iowa: anatomy of an impact crater. Geol Soc of Am Pap 302:468

    Google Scholar 

  • Lyons JB, Officer CB, Borella PE, Lahodynsky R (1993) Planar lamellar substructures in quartz. Earth Planet Sci Lett 119:431–440

    Article  Google Scholar 

  • Macdonald FA, Bunting JA, Cina SE (2003) Yarrabubba—a large deeply eroded impact structure in the Yilgarn Craton Western Australia. Earth Planet Sci Lett 213:235–247

    Article  Google Scholar 

  • Masaitis VL (1998) Popigai crater: origin and distribution of diamond-bearing impactites. Meteor Planet Sci 33:349–359

    Article  Google Scholar 

  • Masaitis VL (2005) Morphological, structural and lithological records of terrestrial impacts: an overview. Aust J Earth Sci 52:509–528

    Article  Google Scholar 

  • Milton DJ, Barlow BC, Brown AR, Moss FJ, Manwaring EA, Sedmik ECE, Young GA, Van Son J (1996) Gosses Bluff—a latest Jurassic impact structure central Australia: part 2- seismic magmatic and gravity studies. Aust Geol Surv Org J Aust Geol Geophys 16:487–527

    Google Scholar 

  • Poag CW (1996) Structural outer rim of Chesapeake Bay impact crater: seismic and bore hole evidence. Meteor Planet Sci 31:218–226

    Article  Google Scholar 

  • Poag CW, Koeberl C, Reimold WU (2004) The Chesapeake Bay crater: geology and geophysics of a late Eocene submarine impact structure. Springer, Berlin, p 522

    Google Scholar 

  • Robertson PB (1975) Zones of shock metamorphism at the Charlevoix impact structure, Quebec. Bull Geol Soc Am 86:1630–1638

    Article  Google Scholar 

  • Robertson PB, Dence MR, Vos MA (1968) Deformation in rock-forming minerals from Canadian craters. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corp Baltimore MD433–452

    Google Scholar 

  • Spray JG, Trepmann CA (2006) Shock-induced crystal-plastic deformation and post-shock annealing of quartz. European J Mineral 18:161–173

    Article  Google Scholar 

  • Stoffler D, Langenhorst F (1994) Shock metamorphism of quartz in nature and experiment: I basic observation and theory. Meteoritics 29:155–181

    Article  Google Scholar 

  • Therriault AM, Anthony D, Flower R, Grieve RAF (2002) The Sudbury igneous complex: a differentiated impact melt sheet. Econ Geol 97:1521–1540

    Article  Google Scholar 

  • Trepmann C, Spray JG (2004) Post-shock crystal plastic processes in quartz from crystalline target rocks of the Charlevoix impact structure. Lunar Planet Sci 35:1370

    Google Scholar 

  • Vernooij MJC, Langenhorst F (2005) Experimental reproduction of tectonic deformation lamella in quartz and comparison to shock-induced planar deformation features. Meteor Planet Sci 40:1353–1361

    Article  Google Scholar 

  • Wood CR, Spray JG (1998) Origin and emplacement of offset dykes in the Sudbury impact structure: constraints from Hess. Meteor Planet Sci 33:337–347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Y. Glikson .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Glikson, A.Y. (2013). Identification of Impact Structures. In: The Asteroid Impact Connection of Planetary Evolution. SpringerBriefs in Earth Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6328-9_5

Download citation

Publish with us

Policies and ethics