Australian Large Impact Structures (>20 km Diameter)

  • Andrew Y. Glikson
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)


The stable nature of Australian cratons allowed preservation of a comprehensive record of exposed and buried impact structures, including the classic 580 Ma Acraman-Bunyeoo impact and attended Acritarchs radiation and a number of large buried impact structures and probable impact structures, including Woodleigh, Gnargoo, Tookoonooka, Talundilly, Mount Ashmore and Warburton, identified by geophysical methods and drilling.


Magnetic Anomaly Bouguer Anomaly Impact Crater Impact Structure Salt Diapirism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barlow NG (1990) Estimating the terrestrial crater production rate during the late heavy bombardment period. Lunar Planet Instit Contrib 746:4–7Google Scholar
  2. Brett R, Guppy DJ, Milton DJ (1970) Two circular structures of impact origin in Northern territory Australia. Meteorit 5:184Google Scholar
  3. Bron KA, Gostin V (2012) The Tookoonooka marine impact horizon Australia: Sedimentary and petrologic evidence. Meteor Planet Sci 47:296−318Google Scholar
  4. Bunting JA, de Laeter JR, Libby WG (1980) Evidence for the age and cryptoexplosive origin of the Teague ring structure Western Australia. Geol Surv W Aust Ann Rev 1980:81–85Google Scholar
  5. Butler H (1974) The Lake Teague ring structure Western Australia: an astrobleme? Search 5:536–537Google Scholar
  6. Crook KA, Cook PJ (1966) Gosses Bluff diaper, cryptovolcanic structure, or astroblemes. J Geol Soc Aust 13:495–516CrossRefGoogle Scholar
  7. Dietz RS (1967) Shatter cone orientation at Gosses Bluff astrobleme. Nat 216:1082–1084CrossRefGoogle Scholar
  8. French BM (1998) Traces of catastrophe—a handbook of shock metamorphic effects in terrestrial meteorite impact structures, 120 pp. Lunar Planet Sci Instit Contrib 954Google Scholar
  9. Glikson AY (1969) Geology of the outer zone of the Gosses Bluff crypto-explosion structure, Northern Territory. Bur Min Resour Record 1969/42Google Scholar
  10. Glikson AY, Eggins S, Golding S, Haines P, Iasky RP, Mernagh TP, Mory AJ, Pirajno F, Uysal IT (2005a) Microchemistry and microstructures of hydrothermally altered shock-metamorphosed basement gneiss, Woodleigh impact structure, southern Carnarvon basin, Western Australia. Aust J Earth Sci 52:555–573CrossRefGoogle Scholar
  11. Glikson A, Mory AJ, Iasky R, Pirajno F, Golding S, Uysal IT (2005b) Woodleigh, Southern Carnarvon basin, Western Australia: history of discovery late Devonian age and geophysical and morphometric evidence for a 120 km-diameter impact structure. Aust J Earth Sci 52:545–553CrossRefGoogle Scholar
  12. Glikson AY, Jablonski D, Westlake S (2010) Origin of the Mount Ashmore structural dome west Bonaparte basin Timor Sea. Aust J Earth Sci 57:411–430CrossRefGoogle Scholar
  13. Glikson AY, Uysal IT, Fitz Gerald JD, Saygin E (2013) Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, North-east South Australia: tectonic or impact shock metamorphic origin? Tectonophysics 589:57–76Google Scholar
  14. Gorter JD (1998) The petroleum potential of Australian Phanerozoic impact structures. Aust Petrol Explor J 37:159–186Google Scholar
  15. Gorter JD, Glikson AY (2012) Talundilly Western Queensland Australia: geophysical and petrological evidence for an 84 km-large impact structure and an early cretaceous impact cluster. Aust J Earth Sci 59:51–73CrossRefGoogle Scholar
  16. Gorter JD, Gostin VA, Plummer P (1989) The Tookoonooka Structure: an enigmatic sub-surface feature in the Eromanga basin its impact origin and implications for petroleum exploration In: O’Neil BJ (ed) The Cooper and Eromanga basins Australia: Proceedings of the Cooper and Eromanga Basins conference Adelaide, pp 441–456Google Scholar
  17. Gostin VA, Therriault AM (1997) Tookoonooka: a large buried early Cretaceous impact structure in the Eromanga basin of southwestern Queensland Australia. Meteor Planet Sci 32:593–599CrossRefGoogle Scholar
  18. Gostin VA, Keays RR, Wallace MW (1989) Iridium anomaly from the Acraman ejecta horizon: impacts can produce sedimentary iridium peaks. Nat 340:542–544CrossRefGoogle Scholar
  19. Gostin VA, McKirdy DM, Webster LJ, Williams GE (2010) Ediacaran ice-rafting and coeval asteroid impact, South Australia: Insights into the terminal Proterozoic environment. Aust J Earth Sci 57(7):859–869CrossRefGoogle Scholar
  20. Gradstein FM, Ogg JG, Smith AG, Bleeker W, Laurens LJ (2004) A new geologic timescale with special reference to Precambrian and Neogene. Episodes 72:83–100Google Scholar
  21. Grey K, Walter MR, Calver CR (2003) Neoproterozoic biotic diversification: snowball earth or aftermath of the Acraman impact? Geol 5:459–462CrossRefGoogle Scholar
  22. Hawke PJ (2003) Interpretation of geophysical data over the Shoemaker impact structure Earaheedy basin Western Australia. Geol Surv West Austr Record 2003/6Google Scholar
  23. Hill AC, Grey K, Gostin VA, Webster LJ (2004) New records of late Neoproterozoic Acraman ejecta in the officer basin. Aust J Earth Scis 38:291–298Google Scholar
  24. Hough R, Lee MR, Bevan AWR (2003) Characterization and significance of shocked quartz from the Woodleigh impact structure, Western Australia. Meteor Planet Sci 38:1341–1350CrossRefGoogle Scholar
  25. Iasky RP, Glikson AY (2005) Gnargoo: a possible 75 km-diameter post-early Permian—pre-Cretaceous buried impact structure Carnarvon basin Western Australia. Aust J Earth Sci 52:577–586CrossRefGoogle Scholar
  26. Iasky RP, Mory AJ (1999) Geology and petroleum potential of the Gascoyne platform Southern Carnarvon basin. Western Australia Geol Surv West Aust, Report 69Google Scholar
  27. Iasky RP, Mory AJ, Shevchenko SI (1998) A structural interpretation of the Gascoyne platform Southern Carnarvon basin West Australia In: Purcell PG, Purcell RR (eds) The sedimentary basins of West Australia, Proc Petrol Explor Soc Aust Symp Perth WA pp 589–598Google Scholar
  28. Iasky RP, Mory AJ, Blundell KA (2001) The geophysical signature of the Woodleigh impact structure Southern Carnarvon basin, Western Australia. Geol Surv West Aust Report 79Google Scholar
  29. Langenhorst F (2002) Shock metamorphism of some minerals: basic introduction and microstructural observations. Bull Czech Geol Surv 77(4):265–282Google Scholar
  30. Longley IM (1989) The Talundilly anomaly and its implications for hydrocarbon exploration of Eromanga astroblemes In: O’Neil BJ (ed) The Cooper and Eromanga basins Australia, Proceedings of the Cooper and Eromanga basins conference, Adelaide. 473–490Google Scholar
  31. Macdonald FA, Bunting JA, Cina SE (2003) Yarrabubba—a large deeply eroded impact structure in the Yilgarn Craton Western Australia. Earth Planet Sci Lett 213:235–247CrossRefGoogle Scholar
  32. McLaren S, Dunlap WJ (2006) Use of 40Ar/39Ar K-feldspar thermo-chronology in basin thermal history reconstruction: an example from the big lake Suite granites Warburton basin. South Aust Basin Res 18:189–203CrossRefGoogle Scholar
  33. Meixner TJ, Gunn PJ, Boucher RK, Yeats AN, Murra, L, Yeats TN, Richardson LM, Freares RA (2000) The nature of the basement to the cooper basin region. South Aus Expl Geophys 31:024–032Google Scholar
  34. Milton DJ (1972) Structural geology of the Henbury meteorite craters Northern Territory Australia. US Geol Surv Profess Pap 599:C1–C17Google Scholar
  35. Milton DJ, Barlow BC, Brett R, Brown AR, Manwaring EA, Moss FJ, Sedmik ECE, Van Son J, Young GA (1972) Gosses bluff impact structure australia. Science 175:1199–1207Google Scholar
  36. Milton DJ, Sutter JF (1987) Revised age for the Gosses Bluff impact structure Northern territory Australia based on 40Ar/39Ar dating. Meteorit 22:281–289Google Scholar
  37. Milton DJ, Glikson AY, Brett R (1996a) Gosses Bluff—a latest Jurassic impact structure central Australia: Part 1: geological structure stratigraphy and origin. Aust Geol Surv Org J Aust Geol Geophys 16:453–486Google Scholar
  38. Milton DJ, Barlow BC, Brown AR, Moss FJ, Manwaring EA, Sedmik ECE, Young GA, Van Son J (1996b) Gosses Bluff—a latest Jurassic impact structure central Australia: Part 2- seismic magmatic and gravity studies. Aust Geol Surv Org J Aust Geol Geophys 16:487–527Google Scholar
  39. Mory AJ, Iasky RP, Glikson AY, Pirajno F (2000a) Woodleigh Carnarvon basin, Western Australia: a new 120 km-diameter impact structure. Earth Planet Sci Lett 177:119–128CrossRefGoogle Scholar
  40. Mory AJ, Iasky RP, Glikson AY, Pirajno F (2000b) Response to ‘Critical comment on AJ Mory et al. (2000) Woodleigh Carnarvon basin Western Australia: a new 120 km diameter impact structure. Earth Planet Sci Lett 184:359–365CrossRefGoogle Scholar
  41. Mory AJ, Pirajno F, Glikson AY, Crocker A (2001) Geol Surv West Aust Woodleigh 1, 2, 2A well completion reports, Gascoyne platform, Southern Carnarvon Basin. Western Australia Geol Surv of West Aust Record (2001/6)Google Scholar
  42. Naumov MV (2002) Impact generated hydrothermal systems. In: Plado J, Pesonen LJ (eds) Impacts in Precambrian Shields, Springer, Berlin, pp 117–173Google Scholar
  43. Pirajno F (2005) Hydrothermal processes associated with meteorite impact structures: evidence from three Australian examples and implications for economic resources. Aust J Earth Sci 52:587–606CrossRefGoogle Scholar
  44. Pirajno F, Hawke P, Glikson AY, Haines PW, Uysal T (2003) Shoemaker impact structure Western Australia. Aust J Earth Sci 50:775CrossRefGoogle Scholar
  45. Plescia JB (1999) Gravity signature of Teague ring impact structure Western Australia. Geol Soc Am Sp Pap 339:165–175Google Scholar
  46. Reimold WU, Koeberl C (2000) Critical comment on: AJ Mory et al ‘Woodleigh Carnarvon basin Western Australia: a new 120 km diameter impact structure. Earth Planet Sci Lett 184:353–357CrossRefGoogle Scholar
  47. Reimold WU, Koeberl C, Hough RM, Mcdonald I, Bevan A, Amare K, French BM (2003) Woodleigh impact structure Australia: shock petrography and geochemical studies. Meteor Planet Sci 38:1109–1130CrossRefGoogle Scholar
  48. Renne PR, Reimold WU, Koeberl C, Hough R, Clayes P (2002) Comment on ‘K–Ar evidence from illitic clays of a late Devonian age for the 120 km diameter Woodleigh impact structure Southern Carnarvon basin Western Australia. Earth Planet Sci Lett 201:247–252CrossRefGoogle Scholar
  49. Saygin E, Kennett BLN (2010) Ancient seismic tomography of Australian continent. Tectonophysics 481:116–125CrossRefGoogle Scholar
  50. Saygin E, Kennett BLN (2012) Crustal structure of Australia from ambient seismic noise tomography. J Geophys Res 117:B01304Google Scholar
  51. Shoemaker EM, Shoemaker CS (1996) The Proterozoic impact record of Australia. Aust Geol Surv Org J Aust Geol Geophys 16:379–398Google Scholar
  52. Uysal IT, Golding SD, Glikson AY, Mory AJ, Glikson M (2001) K–Ar evidence from illitic clays of a late Devonian age for the 120 km diameter Woodleigh impact structure Southern Carnarvon basin Western Australia. Earth Planet Sci Lett 192:281–289CrossRefGoogle Scholar
  53. Wallace MW, Gostin VA, Keays RR (1990a) Acraman impact ejecta and host shales—evidence for low-temperature mobilization of iridium and other platinoids. Geol 18:132–135CrossRefGoogle Scholar
  54. Wallace MW, Gostin VA, Keays RR (1990b) Spherules and shard-like clasts from the late Proterozoic Acraman impact ejecta horizon South Australia. Meteorit 25:161–165CrossRefGoogle Scholar
  55. Wallace MW, Gostin VA, Keays RR (1996) Sedimentology of the Neoproterozoic Acraman impact-ejecta horizon South Australia. Aust Geol Surv Org J Aust Geol Geophys 16:443–451Google Scholar
  56. Whitehead AD, Grieve RAF, Spray J (2003) Planar deformation features in the Woodleigh impact structure Western Australia and their bearing on the degree of structural uplift in the structure. Geol Soc Am, NE Section, 38th Ann Meet Pap. pp 7–18Google Scholar
  57. Williams GE (1986) The Acraman impact structure; source of ejecta in late Precambrian shales, South Australia. Science 233:200–203CrossRefGoogle Scholar
  58. Williams GE, Gostin VA (2005) The Acraman—Bunyeroo impact event (Ediacaran) South Australia and environmental consequences: 25 years on. Aust J Earth Sci 52:607–620CrossRefGoogle Scholar
  59. Williams GE, Gostin VA (2010) Geomorphology of the Acraman impact structure, Gawler Ranges, South Australia. Cadernos Laboratorio Xeoloxico de Laxe 35:209–220Google Scholar
  60. Williams GE, Wallace MW (2003) The Acraman asteroid impact South Australia: magnitude and implications for the late Vendian environment. J Geol Soc London 160:545–554CrossRefGoogle Scholar
  61. Williams GE, Schmidt PW, Boyd DM (1996) Magnetic signature and morphology of the Acraman impact structure South Australia. Aust Geol Surv Org J Aust Geol Geophys 16:431–442Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Planetary Science Institute and School of Archaeology and AnthropologyAustralian National UniversityCanberraAustralia

Personalised recommendations