Skip to main content

The Cancer-Suppressing and -Promoting Actions of Capsaicin

  • Chapter
  • First Online:
Role of Capsaicin in Oxidative Stress and Cancer

Part of the book series: Diet and Cancer ((DICA,volume 3))

  • 915 Accesses

Abstract

Cancer chemoprevention is employed to block or reverse the progression of malignancies. To date, several thousand agents have been found to possess chemopreventive activity. One such compound is capsaicin, a component of chili peppers that exhibits anti-growth activity against various cancer cell lines. Capsaicin exerts its cytotoxic action by activating an array of signaling mechanisms, including generation of reactive oxygen species (ROS) as messengers to initiate apoptosis, a type I programmed cell death. However, numerous in vitro and in vivo studies have suggested that capsaicin also possesses tumor-promoting activity; possibly in part, reflecting activation of autophagy, an alternative (type II) programmed death process. This article reviews the recent literature on the paradoxical effects of capsaicin on cancer growth and the diverse capsaicin-induced signaling pathways that lead to cell death or tumorigenesis. Some of the most common cellular targets of capsaicin are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATM:

Ataxia telangiectasia mutated

C/EBP:

CCAAT/enhancer-binding protein

DHC:

Dihydrocapsaicin

DISC:

Death-inducing signaling complex

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-mesenchymal transition

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulation kinase

G153ADD153/CHOP:

Growth arrest and DNA damage inducible gene

GFP:

Green fluorescent protein

IL:

Interleukin

JNK1:

c-Jun N-terminal kinase 1

MAPKs:

Mitogen-activated protein kinases

MEFs:

Mouse embryo fibroblasts

NF-κB:

Nuclear transcription factor κB

NO:

Nitric oxide

PI3K:

Phosphoinositide 3-kinase

PKCα:

Protein kinase Cα

ROS:

Reactive oxygen species

shRNA:

Small interfering (hairpin) RNA

STAT:

Signal transducer and activator of transcription

TNFα:

Tumor necrosis factor-α

tNOX; ENOX2:

Tumor-associated NADH oxidase

TPA:

Tetradecanoylphorbol-13-acetate

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

TRPV1:

Transient receptor potential vanilloid type 1

VEGF:

Vascular endothelial growth factor

References

  • Agakichiev G, Appelshauser H, Baur R, Bielcikova J, Braun-Munzinger P, Cherlin A, Drees A, Esumi SI, Filimonov K, Fraenkel Z et al (2004) Semihard scattering unraveled from collective dynamics by two-pion azimuthal correlations in 158A GeV/c Pb+Au collisions. Phys Rev Lett 92:032301

    Article  PubMed  CAS  Google Scholar 

  • Agrawal RC, Wiessler M, Hecker E, Bhide SV (1986) Tumour-promoting effect of chilli extract in BALB/c mice. Int J Cancer 38:689–695

    Article  PubMed  CAS  Google Scholar 

  • Amantini C, Mosca M, Nabissi M, Lucciarini R, Caprodossi S, Arcella A, Giangaspero F, Santoni G (2007) Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J Neurochem 102:977–990

    Article  PubMed  CAS  Google Scholar 

  • Amantini C, Ballarini P, Caprodossi S, Nabissi M, Morelli MB, Lucciarini R, Cardarelli MA, Mammana G, Santoni G (2009) Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner. Carcinogenesis 30:1320–1329

    Article  PubMed  CAS  Google Scholar 

  • Anandakumar P, Kamaraj S, Jagan S, Ramakrishnan G, Naveenkumar C, Asokkumar S, Devaki T (2009) Capsaicin alleviates the imbalance in xenobiotic metabolizing enzymes and tumor markers during experimental lung tumorigenesis. Mol Cell Biochem 331:135–143

    Article  PubMed  CAS  Google Scholar 

  • Archer VE, Jones DW (2002) Capsaicin pepper, cancer and ethnicity. Med Hypotheses 59:450–457

    Article  PubMed  CAS  Google Scholar 

  • Baek YM, Hwang HJ, Kim SW, Hwang HS, Lee SH, Kim JA, Yun JW (2008) A comparative proteomic analysis for capsaicin-induced apoptosis between human hepatocarcinoma (HepG2) and human neuroblastoma (SK-N-SH) cells. Proteomics 8:4748–4767

    Article  PubMed  CAS  Google Scholar 

  • Bai H, Li H, Zhang W, Matkowskyj KA, Liao J, Srivastava SK, Yang GY (2011) Inhibition of chronic pancreatitis and pancreatic intraepithelial neoplasia (PanIN) by capsaicin in LSL-KrasG12D/Pdx1-Cre mice. Carcinogenesis 32:1689–1696

    Article  PubMed  CAS  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  PubMed  CAS  Google Scholar 

  • Bhutani M, Pathak AK, Nair AS, Kunnumakkara AB, Guha S, Sethi G, Aggarwal BB (2007) Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation. Clin Cancer Res 13:3024–3032

    Article  PubMed  CAS  Google Scholar 

  • Bode AM, Dong Z (2011) The two faces of capsaicin. Cancer Res 71:2809–2814

    Article  PubMed  CAS  Google Scholar 

  • Bode AM, Cho YY, Zheng D, Zhu F, Ericson ME, Ma WY, Yao K, Dong Z (2009) Transient receptor potential type vanilloid 1 suppresses skin carcinogenesis. Cancer Res 69:905–913

    Article  PubMed  CAS  Google Scholar 

  • Bruno M, Brightman AO, Lawrence J, Werderitsh D, Morré DM, Morré DJ (1992) Stimulation of NADH oxidase activity from rat liver plasma membranes by growth factors and hormones is decreased or absent with hepatoma plasma membranes. Biochem J 284(Pt 3):625–628

    PubMed  CAS  Google Scholar 

  • Cannito S, Novo E, di Bonzo LV, Busletta C, Colombatto S, Parola M (2010) Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal 12:1383–1430

    Article  PubMed  CAS  Google Scholar 

  • Caprodossi S, Amantini C, Nabissi M, Morelli MB, Farfariello V, Santoni M, Gismondi A, Santoni G (2011) Capsaicin promotes a more aggressive gene expression phenotype and invasiveness in null-TRPV1 urothelial cancer cells. Carcinogenesis 32:686–694

    Article  PubMed  CAS  Google Scholar 

  • Chen CF, Huang S, Liu SC, Chueh PJ (2006) Effect of polyclonal antisera to recombinant tNOX protein on the growth of transformed cells. Biofactors 28:119–133

    Article  PubMed  Google Scholar 

  • Choi CH, Jung YK, Oh SH (2010a) Autophagy induction by capsaicin in malignant human breast cells is modulated by p38 and extracellular signal-regulated mitogen-activated protein kinases and retards cell death by suppressing endoplasmic reticulum stress-mediated apoptosis. Mol Pharmacol 78:114–125

    Article  PubMed  CAS  Google Scholar 

  • Choi CH, Jung YK, Oh SH (2010b) Selective induction of catalase-mediated autophagy by dihydrocapsaicin in lung cell lines. Free Radic Biol Med 49:245–257

    Article  PubMed  CAS  Google Scholar 

  • Chueh PJ (2000) Cell membrane redox systems and transformation. Antioxid Redox Signal 2:177–187

    Article  PubMed  CAS  Google Scholar 

  • Chueh PJ, Morré DJ, Wilkinson FE, Gibson J, Morré DM (1997) A 33.5-kDa heat- and protease-resistant NADH oxidase inhibited by capsaicin from sera of cancer patients. Arch Biochem Biophys 342:38–47

    Article  PubMed  CAS  Google Scholar 

  • Chueh PJ, Kim C, Cho N, Morré DM, Morré DJ (2002a) Molecular cloning and characterization of a tumor-associated, growth-related, and time-keeping hydroquinone (NADH) oxidase (tNOX) of the HeLa cell surface. Biochemistry 41:3732–3741

    Article  PubMed  CAS  Google Scholar 

  • Chueh PJ, Morré DM, Morré DJ (2002b) A site-directed mutagenesis analysis of tNOX functional domains. Biochim Biophys Acta 1594:74–83

    Article  PubMed  CAS  Google Scholar 

  • Chueh PJ, Wu LY, Morré DM, Morré DJ (2004) tNOX is both necessary and sufficient as a cellular target for the anticancer actions of capsaicin and the green tea catechin (-)-epigallocatechin-3-gallate. Biofactors 20:235–249

    PubMed  Google Scholar 

  • Degli Esposti M (1998) Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys Acta 1364:222–235

    Article  PubMed  CAS  Google Scholar 

  • Dorai T, Dutcher JP, Dempster DW, Wiernik PH (2004) Therapeutic potential of curcumin in prostate cancer – V: interference with the osteomimetic properties of hormone refractory C4-2B prostate cancer cells. Prostate 60:1–17

    Article  PubMed  CAS  Google Scholar 

  • Duvoix A, Delhalle S, Blasius R, Schnekenburger M, Morceau F, Fougere M, Henry E, Galteau MM, Dicato M, Diederich M (2004) Effect of chemopreventive agents on glutathione S-transferase P1-1 gene expression mechanisms via activating protein 1 and nuclear factor kappaB inhibition. Biochem Pharmacol 68:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Er E, Oliver L, Cartron PF, Juin P, Manon S, Vallette FM (2006) Mitochondria as the target of the pro-apoptotic protein Bax. Biochim Biophys Acta 1757:1301–1311

    Article  PubMed  CAS  Google Scholar 

  • Erin N, Zhao W, Bylander J, Chase G, Clawson G (2006) Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells. Breast Cancer Res Treat 99:351–364

    Article  PubMed  CAS  Google Scholar 

  • Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263

    Article  PubMed  CAS  Google Scholar 

  • Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15:247–254

    Article  PubMed  CAS  Google Scholar 

  • Friedman AD (1996) GADD153/CHOP, a DNA damage-inducible protein, reduced CAAT/enhancer binding protein activities and increased apoptosis in 32D c13 myeloid cells. Cancer Res 56:3250–3256

    PubMed  CAS  Google Scholar 

  • Garg A, Aggarwal BB (2002) Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia 16:1053–1068

    Article  PubMed  CAS  Google Scholar 

  • Hail N Jr (2003) Mechanisms of vanilloid-induced apoptosis. Apoptosis 8:251–262

    Article  PubMed  CAS  Google Scholar 

  • Hail N Jr, Lotan R (2009) Cancer chemoprevention and mitochondria: targeting apoptosis in transformed cells via the disruption of mitochondrial bioenergetics/redox state. Mol Nutr Food Res 53:49–67

    Article  PubMed  CAS  Google Scholar 

  • Han SS, Keum YS, Seo HJ, Chun KS, Lee SS, Surh YJ (2001) Capsaicin suppresses phorbol ester-induced activation of NF-kappaB/Rel and AP-1 transcription factors in mouse epidermis. Cancer Lett 164:119–126

    Article  PubMed  CAS  Google Scholar 

  • Han SS, Keum YS, Chun KS, Surh YJ (2002) Suppression of phorbol ester-induced NF-kappaB activation by capsaicin in cultured human promyelocytic leukemia cells. Arch Pharm Res 25:475–479

    Article  PubMed  CAS  Google Scholar 

  • Hedges KL, Morré DM, Wu LY, Morré DJ (2003) Adriamycin tolerance in human mesothelioma lines and cell surface NADH oxidase. Life Sci 73:1189–1198

    Article  PubMed  CAS  Google Scholar 

  • Hu F, Sun WW, Zhao XT, Cui ZJ, Yang WX (2008) TRPV1 mediates cell death in rat synovial fibroblasts through calcium entry-dependent ROS production and mitochondrial depolarization. Biochem Biophys Res Commun 369:989–993

    Article  PubMed  CAS  Google Scholar 

  • Huang SP, Chen JC, Wu CC, Chen CT, Tang NY, Ho YT, Lo C, Lin JP, Chung JG, Lin JG (2009) Capsaicin-induced apoptosis in human hepatoma HepG2 cells. Anticancer Res 29:165–174

    PubMed  CAS  Google Scholar 

  • Hwang MK, Bode AM, Byun S, Song NR, Lee HJ, Lee KW, Dong Z (2010) Cocarcinogenic effect of capsaicin involves activation of EGFR signaling but not TRPV1. Cancer Res 70:6859–6869

    Article  PubMed  CAS  Google Scholar 

  • Ip SW, Lan SH, Huang AC, Yang JS, Chen YY, Huang HY, Lin ZP, Hsu YM, Yang MD, Chiu CF et al (2010) Capsaicin induces apoptosis in SCC-4 human tongue cancer cells through mitochondria-dependent and -independent pathways. Environ Toxicol 27(6):332–341

    Article  PubMed  CAS  Google Scholar 

  • Ip SW, Lan SH, Lu HF, Huang AC, Yang JS, Lin JP, Huang HY, Lien JC, Ho CC, Chiu CF et al (2011) Capsaicin mediates apoptosis in human nasopharyngeal carcinoma NPC-TW 039 cells through mitochondrial depolarization and endoplasmic reticulum stress. Hum Exp Toxicol 31(6):539–549

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Nakazato T, Yamato K, Miyakawa Y, Yamada T, Hozumi N, Segawa K, Ikeda Y, Kizaki M (2004) Induction of apoptosis in leukemic cells by homovanillic acid derivative, capsaicin, through oxidative stress: implication of phosphorylation of p53 at Ser-15 residue by reactive oxygen species. Cancer Res 64:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Wang X (2004) Cytochrome C-mediated apoptosis. Annu Rev Biochem 73:87–106

    Article  PubMed  CAS  Google Scholar 

  • Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    Article  PubMed  CAS  Google Scholar 

  • Kang HJ, Soh Y, Kim MS, Lee EJ, Surh YJ, Kim HR, Kim SH, Moon A (2003) Roles of JNK-1 and p38 in selective induction of apoptosis by capsaicin in ras-transformed human breast epithelial cells. Int J Cancer 103:475–482

    Article  PubMed  CAS  Google Scholar 

  • Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233

    Article  PubMed  CAS  Google Scholar 

  • Kim JD, Kim JM, Pyo JO, Kim SY, Kim BS, Yu R, Han IS (1997) Capsaicin can alter the expression of tumor forming-related genes which might be followed by induction of apoptosis of a Korean stomach cancer cell line, SNU-1. Cancer Lett 120:235–241

    Article  PubMed  CAS  Google Scholar 

  • Kim CS, Kawada T, Kim BS, Han IS, Choe SY, Kurata T, Yu R (2003) Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cell Signal 15:299–306

    Article  PubMed  CAS  Google Scholar 

  • Kim CS, Park WH, Park JY, Kang JH, Kim MO, Kawada T, Yoo H, Han IS, Yu R (2004) Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor gamma in HT-29 human colon cancer cells. J Med Food 7:267–273

    PubMed  CAS  Google Scholar 

  • Kim SR, Kim SU, Oh U, Jin BK (2006) Transient receptor potential vanilloid subtype 1 mediates microglial cell death in vivo and in vitro via Ca2+-mediated mitochondrial damage and cytochrome c release. J Immunol 177:4322–4329

    PubMed  CAS  Google Scholar 

  • Kim YM, Hwang JT, Kwak DW, Lee YK, Park OJ (2007) Involvement of AMPK signaling cascade in capsaicin-induced apoptosis of HT-29 colon cancer cells. Ann N Y Acad Sci 1095:496–503

    Article  PubMed  CAS  Google Scholar 

  • Kim MY, Trudel LJ, Wogan GN (2009) Apoptosis induced by capsaicin and resveratrol in colon carcinoma cells requires nitric oxide production and caspase activation. Anticancer Res 29:3733–3740

    PubMed  CAS  Google Scholar 

  • Kim JY, Kim EH, Kim SU, Kwon TK, Choi KS (2010) Capsaicin sensitizes malignant glioma cells to TRAIL-mediated apoptosis via DR5 upregulation and survivin downregulation. Carcinogenesis 31:367–375

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ (2008) Autophagy revisited: a conversation with Christian de Duve. Autophagy 4:740–743

    PubMed  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Takada Y, Boriek AM, Aggarwal BB (2004) Nuclear factor-kappaB: its role in health and disease. J Mol Med (Berl) 82:434–448

    Article  CAS  Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342

    Article  PubMed  CAS  Google Scholar 

  • Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  PubMed  CAS  Google Scholar 

  • Lawen A, Martinus RD, McMullen GL, Nagley P, Vaillant F, Wolvetang EJ, Linnane AW (1994) The universality of bioenergetic disease: the role of mitochondrial mutation and the putative inter-relationship between mitochondria and plasma membrane NADH oxidoreductase. Mol Aspects Med 15(Suppl):s13–s27

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Kwon EJ, Jin DQ, Park SH, Kang YS, Huh K, Kim JA (2002) Redox status-dependent regulation of cyclooxygenases mediates the capsaicin-induced apoptosis in human neuroblastoma cells. J Environ Pathol Toxicol Oncol 21:113–120

    PubMed  CAS  Google Scholar 

  • Lee YS, Kang YS, Lee JS, Nicolova S, Kim JA (2004) Involvement of NADPH oxidase-mediated generation of reactive oxygen species in the apototic cell death by capsaicin in HepG2 human hepatoma cells. Free Radic Res 38:405–412

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Wang CJ, Kuo HC, Chou FP, Jean LF, Tseng TH (2005) Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK. Toxicol Appl Pharmacol 203:124–131

    Article  PubMed  CAS  Google Scholar 

  • Lee MJ, Kee KH, Suh CH, Lim SC, Oh SH (2009) Capsaicin-induced apoptosis is regulated by endoplasmic reticulum stress- and calpain-mediated mitochondrial cell death pathways. Toxicology 264:205–214

    Article  PubMed  CAS  Google Scholar 

  • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676

    Article  PubMed  CAS  Google Scholar 

  • Liu SC, Yang JJ, Shao KN, Chueh PJ (2008) RNA interference targeting tNOX attenuates cell migration via a mechanism that involves membrane association of Rac. Biochem Biophys Res Commun 365:672–677

    Article  PubMed  CAS  Google Scholar 

  • Lo YC, Yang YC, Wu IC, Kuo FC, Liu CM, Wang HW, Kuo CH, Wu JY, Wu DC (2005) Capsaicin-induced cell death in a human gastric adenocarcinoma cell line. World J Gastroenterol 11:6254–6257

    PubMed  CAS  Google Scholar 

  • Lopez-Carrillo L, Lopez-Cervantes M, Robles-Diaz G, Ramirez-Espitia A, Mohar-Betancourt A, Meneses-Garcia A, Lopez-Vidal Y, Blair A (2003) Capsaicin consumption, Helicobacter pylori positivity and gastric cancer in Mexico. Int J Cancer 106:277–282

    Article  PubMed  CAS  Google Scholar 

  • Macho A, Sancho R, Minassi A, Appendino G, Lawen A, Munoz E (2003) Involvement of reactive oxygen species in capsaicinoid-induced apoptosis in transformed cells. Free Radic Res 37:611–619

    Article  PubMed  CAS  Google Scholar 

  • Malagarie-Cazenave S, Olea-Herrero N, Vara D, Diaz-Laviada I (2009) Capsaicin, a component of red peppers, induces expression of androgen receptor via PI3K and MAPK pathways in prostate LNCaP cells. FEBS Lett 583:141–147

    Article  PubMed  CAS  Google Scholar 

  • Malagarie-Cazenave S, Olea-Herrero N, Vara D, Morell C, Diaz-Laviada I (2011) The vanilloid capsaicin induces IL-6 secretion in prostate PC-3 cancer cells. Cytokine 54:330–337

    Article  PubMed  CAS  Google Scholar 

  • Mao LC, Wang HM, Lin YY, Chang TK, Hsin YH, Chueh PJ (2008) Stress-induced down-regulation of tumor-associated NADH oxidase during apoptosis in transformed cells. FEBS Lett 582:3445–3450

    Article  PubMed  CAS  Google Scholar 

  • Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137:1062–1075

    Article  PubMed  CAS  Google Scholar 

  • McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259

    Article  PubMed  CAS  Google Scholar 

  • Min JK, Han KY, Kim EC, Kim YM, Lee SW, Kim OH, Kim KW, Gho YS, Kwon YG (2004) Capsaicin inhibits in vitro and in vivo angiogenesis. Cancer Res 64:644–651

    Article  PubMed  CAS  Google Scholar 

  • Moon DO, Kang CH, Kang SH, Choi YH, Hyun JW, Chang WY, Kang HK, Koh YS, Maeng YH, Kim YR et al (2011) Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: involvement of Ca(2+) influx. Toxicol Appl Pharmacol 259(1):87–95

    Article  PubMed  CAS  Google Scholar 

  • Mori A, Lehmann S, O’Kelly J, Kumagai T, Desmond JC, Pervan M, McBride WH, Kizaki M, Koeffler HP (2006) Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells. Cancer Res 66:3222–3229

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ, Reust T (1997) A circulating form of NADH oxidase activity responsive to the antitumor sulfonylurea N-4-(methylphenylsulfonyl)-N′-(4-chlorophenyl)urea (LY181984) specific to sera from cancer patients. J Bioenerg Biomembr 29:281–289

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ, Chueh PJ, Morré DM (1995) Capsaicin inhibits preferentially the NADH oxidase and growth of transformed cells in culture. Proc Natl Acad Sci U S A 92:1831–1835

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ, Caldwell S, Mayorga A, Wu LY, Morré DM (1997a) NADH oxidase activity from sera altered by capsaicin is widely distributed among cancer patients. Arch Biochem Biophys 342:224–230

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ, Kim C, Paulik M, Morré DM, Faulk WP (1997b) Is the drug-responsive NADH oxidase of the cancer cell plasma membrane a molecular target for adriamycin? J Bioenerg Biomembr 29:269–280

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ, Bridge A, Wu LY, Morré DM (2000) Preferential inhibition by (-)-epigallocatechin-3-gallate of the cell surface NADH oxidase and growth of transformed cells in culture. Biochem Pharmacol 60:937–946

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ, Chueh PJ, Yagiz K, Balicki A, Kim C, Morré DM (2007) ECTO-NOX target for the anticancer isoflavene phenoxodiol. Oncol Res 16:299–312

    PubMed  Google Scholar 

  • Nagabhushan M, Bhide SV (1985) Mutagenicity of chili extract and capsaicin in short-term tests. Environ Mutagen 7:881–888

    Article  PubMed  CAS  Google Scholar 

  • Nagy I, Santha P, Jancso G, Urban L (2004) The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol 500:351–369

    Article  PubMed  CAS  Google Scholar 

  • Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231

    Article  PubMed  CAS  Google Scholar 

  • Oh SH, Lim SC (2009) Endoplasmic reticulum stress-mediated autophagy/apoptosis induced by capsaicin (8-methyl-N-vanillyl-6-nonenamide) and dihydrocapsaicin is regulated by the extent of c-Jun NH2-terminal kinase/extracellular signal-regulated kinase activation in WI38 lung epithelial fibroblast cells. J Pharmacol Exp Ther 329:112–122

    Article  PubMed  CAS  Google Scholar 

  • Oh SH, Kim YS, Lim SC, Hou YF, Chang IY, You HJ (2008) Dihydrocapsaicin (DHC), a saturated structural analog of capsaicin, induces autophagy in human cancer cells in a catalase-regulated manner. Autophagy 4:1009–1019

    PubMed  CAS  Google Scholar 

  • Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    Article  PubMed  CAS  Google Scholar 

  • Pathak SK, Sharma RA, Steward WP, Mellon JK, Griffiths TR, Gescher AJ (2005) Oxidative stress and cyclooxygenase activity in prostate carcinogenesis: targets for chemopreventive strategies. Eur J Cancer 41:61–70

    Article  PubMed  CAS  Google Scholar 

  • Patil C, Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13:349–355

    Article  PubMed  CAS  Google Scholar 

  • Pramanik KC, Boreddy SR, Srivastava SK (2011) Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PLoS One 6:e20151

    Article  PubMed  CAS  Google Scholar 

  • Prevarskaya N, Zhang L, Barritt G (2007) TRP channels in cancer. Biochim Biophys Acta 1772:937–946

    Article  PubMed  CAS  Google Scholar 

  • Puthalakath H, O’Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, Hughes PD, Michalak EM, McKimm-Breschkin J, Motoyama N et al (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337–1349

    Article  PubMed  CAS  Google Scholar 

  • Sánchez AM, Sánchez MG, Malagarie-Cazenave S, Olea N, Diaz-Laviada I (2006) Induction of apoptosis in prostate tumor PC-3 cells and inhibition of xenograft prostate tumor growth by the vanilloid capsaicin. Apoptosis 11:89–99

    Article  PubMed  CAS  Google Scholar 

  • Sánchez AM, Malagarie-Cazenave S, Olea N, Vara D, Chiloeches A, Diaz-Laviada I (2007) Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation. Apoptosis 12:2013–2024

    Article  PubMed  CAS  Google Scholar 

  • Sánchez AM, Martinez-Botas J, Malagarie-Cazenave S, Olea N, Vara D, Lasuncion MA, Diaz-Laviada I (2008) Induction of the endoplasmic reticulum stress protein GADD153/CHOP by capsaicin in prostate PC-3 cells: a microarray study. Biochem Biophys Res Commun 372:785–791

    Article  PubMed  CAS  Google Scholar 

  • Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763:1755–1766

    Article  PubMed  CAS  Google Scholar 

  • Serra I, Yamamoto M, Calvo A, Cavada G, Baez S, Endoh K, Watanabe H, Tajima K (2002) Association of chili pepper consumption, low socioeconomic status and longstanding gallstones with gallbladder cancer in a Chilean population. Int J Cancer 102:407–411

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228

    Article  PubMed  CAS  Google Scholar 

  • Shin DH, Kim OH, Jun HS, Kang MK (2008) Inhibitory effect of capsaicin on B16-F10 melanoma cell migration via the phosphatidylinositol 3-kinase/Akt/Rac1 signal pathway. Exp Mol Med 40:486–494

    Article  PubMed  CAS  Google Scholar 

  • Shishodia S, Aggarwal BB (2004) Nuclear factor-kappaB activation mediates cellular transformation, proliferation, invasion angiogenesis and metastasis of cancer. Cancer Treat Res 119:139–173

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Natarajan K, Aggarwal BB (1996) Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is a potent inhibitor of nuclear transcription factor-kappa B activation by diverse agents. J Immunol 157:4412–4420

    PubMed  CAS  Google Scholar 

  • Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25:795–800

    Article  PubMed  CAS  Google Scholar 

  • Thomas KC, Sabnis AS, Johansen ME, Lanza DL, Moos PJ, Yost GS, Reilly CA (2007) Transient receptor potential vanilloid 1 agonists cause endoplasmic reticulum stress and cell death in human lung cells. J Pharmacol Exp Ther 321:830–838

    Article  PubMed  CAS  Google Scholar 

  • Toth B, Gannett P (1992) Carcinogenicity of lifelong administration of capsaicin of hot pepper in mice. In Vivo 6:59–63

    PubMed  CAS  Google Scholar 

  • Vander Heiden MG, Thompson CB (1999) Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1:E209–E216

    Article  PubMed  CAS  Google Scholar 

  • Vriens J, Janssens A, Prenen J, Nilius B, Wondergem R (2004) TRPV channels and modulation by hepatocyte growth factor/scatter factor in human hepatoblastoma (HepG2) cells. Cell Calcium 36:19–28

    Article  PubMed  CAS  Google Scholar 

  • Wajant H (2002) The Fas signaling pathway: more than a paradigm. Science 296:1635–1636

    Article  PubMed  CAS  Google Scholar 

  • Wang HM, Chueh PJ, Chang SP, Yang CL, Shao KN (2009) Effect of Ccapsaicin on tNOX (ENOX2) protein expression in stomach cancer cells. Biofactors 34:209–217

    Article  Google Scholar 

  • Wang HM, Chuang SM, Su YC, Li YH, Chueh PJ (2011) Down-regulation of tumor-associated NADH oxidase, tNOX (ENOX2), enhances capsaicin-induced inhibition of gastric cancer cell growth. Cell Biochem Biophys 61:355–366

    Article  PubMed  CAS  Google Scholar 

  • Waning J, Vriens J, Owsianik G, Stuwe L, Mally S, Fabian A, Frippiat C, Nilius B, Schwab A (2007) A novel function of capsaicin-sensitive TRPV1 channels: involvement in cell migration. Cell Calcium 42:17–25

    Article  PubMed  CAS  Google Scholar 

  • Wolvetang EJ, Larm JA, Moutsoulas P, Lawen A (1996) Apoptosis induced by inhibitors of the plasma membrane NADH-oxidase involves Bcl-2 and calcineurin. Cell Growth Differ 7:1315–1325

    PubMed  CAS  Google Scholar 

  • Yagiz K, Wu LY, Kuntz CP, James Morré D, Morré DM (2007) Mouse embryonic fibroblast cells from transgenic mice overexpressing tNOX exhibit an altered growth and drug response phenotype. J Cell Biochem 101:295–306

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822

    Article  PubMed  CAS  Google Scholar 

  • Yoon JH, Ahn SG, Lee BH, Jung SH, Oh SH (2011) Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1. Biochem Pharmacol 83(6):745–757

    Google Scholar 

  • Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(Suppl 2):1542–1552

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304:1500–1502

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Nagasaki M, Tanaka Y, Morikawa S (2003) Capsaicin inhibits growth of adult T-cell leukemia cells. Leuk Res 27:275–283

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Humphreys I, Sahu RP, Shi Y, Srivastava SK (2008) In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis 13:1465–1478

    Article  PubMed  CAS  Google Scholar 

  • Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Council (NSC 100-2320-B-005-005) and the Ministry of Education, Taiwan, Republic of China under the ATU plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pin Ju Chueh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chueh, P.J. (2013). The Cancer-Suppressing and -Promoting Actions of Capsaicin. In: Srivastava, S. (eds) Role of Capsaicin in Oxidative Stress and Cancer. Diet and Cancer, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6317-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6317-3_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6316-6

  • Online ISBN: 978-94-007-6317-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics