Skip to main content

Role of Death Receptors Belonging to the TNF Family in Capsaicin-Induced Apoptosis of Tumor Cells

  • Chapter
  • First Online:

Part of the book series: Diet and Cancer ((DICA,volume 3))

Abstract

Capsaicin has been shown to induce apoptosis in various transformed cell types in vitro and in vivo. Apoptosis is triggered by an induction phase that is highly dependent on cell type and apoptogenic stimuli (e.g., death receptors, oxidative stress, DNA damage, ion fluctuations, and cytokines). This is followed by an effector phase where the cell undergo distinct biochemical changes as results of intrinsic mitochondrial-dependent and/or extrinsic death receptor-mediated apoptotic pathways. Depending on the concentration, duration of exposure and route of administration, CPS may either induce apoptosis in different cell types in a TRPV1-dependent and independent manner. It is generally accepted that CPS-mediated apoptosis is manifested by reactive oxygen species (ROS) generation, elevations in [Ca2+]i and mitochondrial transmembrane potential dissipation. However recent reports, indicate the ability of CPS to induce also up-regulation of Fas/CD95, TRAIL-R1/DR4, TRAIL-R2/DR5 and TNF-R1/DR1 death receptor expression, Fas Ligand-independent Fas-dependent TRPV1-mediated apoptosis of cancer cells, or to sensitize tumor cells to TRAIL-induced apoptosis. Unraveling the molecular mechanisms that underlie the CPS-induced targeting of death receptor in tumor cells and the death intracellular pathways activated by capsaicin, could provide the basis for novel therapeutic strategies in cancer patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

[Ca2+]i :

Intracellular free Ca2+

AEA:

Anandamide

AFT3:

Activating transcription factor 3

AKT:

V-akt murine thymoma viral oncogene homolog

AP-1:

Activator protein 1

APRIL:

A PRoliferation Inducing Ligand

ATM:

Ataxia telangiectasia mutated

ATP:

Adenosine triphosphate

BAFF:

B-cell activating factor (BAFF)

BAX:

The Bcl-2–associated X protein

Bcl-2:

B-cell lymphoma 2

Bcl-XL :

Bcl-2-like protein 1

Bid:

BH3 interacting domain death agonist

C/EBPβ:

CCAAT/enhancer binding protein β

CaM:

Ca2+/calmodulin-dependent protein

CFLAR:

CASP8 and FADD-like apoptosis regulator

CHOP:

C/EBP homology protein

COXs:

Cyclooxygenases

CPS:

Capsaicin

c-Src:

Sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog

CyT C:

Cytochrome C

DAXX:

Death Associated Protein

DD:

Death domain

DED:

Death effector domain

DISC:

Death-inducing signaling complex

DR:

Death receptors

DRG:

Dorsal root ganglion

EDAR:

Ectodysplasin A receptor

FADD:

Fas-associated death domain

FAF1:

Fas-associated factor 1

FAF-1:

FAS-associated factor 1

FAP-1:

Fas-associated phosphatase 1

FASL:

FAS ligand

FASL:

Fas ligand

FLASH:

FLICE - associated huge protein

FLICE:

FADD-like interleukin-1 beta-converting enzyme

FLIP:

FLICE inhibitory protein

GADD153:

DNA-damage-inducible transcript 3

GADD45:

DNA-damage-inducible 45 alpha

GRP78:

78 kDa glucose-regulated protein

GSK3β:

Glycogen synthase kinase 3 β

HER:

Human epidermal growth factor receptor

IAP:

Inhibitors of Apoptosis

IKK:

IκB kinase inhibitor

IRE 1:

Internal ribosome entry site

IκB:

Inhibitor of NF-κB

JNK:

c-Jun N-terminal protein kinase

MAPK:

Mitogen-activating protein kinase

MAPK:

Mitogen activated Protein Kinase

MDM2:

Murine double minute protein

MYC:

Myelocytomatosis viral oncogene homolog

NADH:

Nicotinamide adenine dinucleotide

NAG1:

Growth differentiation factor 15

NF-κB:

Nuclear factor kappa B

NGF:

Nerve Growth Factor

PIP2:

Phosphatidylinositol 4,5-bisphosphate

PMOR:

Plasma membrane oxidoreductase

RANK:

Receptor Activator for Nuclear Factor κ B Ligand

RIP:

Receptor interacting protein

RIP:

Receptor-interacting protein

RIPK2:

Receptor-interacting serine/threonine-protein kinase 2

ROS:

Reactive oxygen species

RTX:

Resinferatoxin

STAT 3:

Signal transducer and activator of transcription

TNF:

Tumor necrosis factor

TNFRs:

TNF receptors

TRADD:

TNFR-associated death domain

TRAF:

Tumor Necrosis Factor (TNF) receptor-associated factors

TRAFs:

TNF receptor associate factors

TRAIL:

TNF related apoptosis induced ligand

TRP:

Transient receptor potential

TRPV1:

Transient receptor potential vanilloid type-1

UC:

Urothelial cancer

WAF-1:

Cyclin-dependent kinase inhibitor 1

ΔΨ(m):

Mitochondrial membrane potential

References

  • Amantini C, Mosca M, Lucciarini R et al (2004) Distinct thymocyte subsets express the vanilloid receptor VR1 that mediates capsaicin-induced apoptotic cell death. Cell Death Differ 11:1342–1356

    Article  PubMed  CAS  Google Scholar 

  • Amantini C, Mosca M, Nabissi M et al (2007) Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J Neurochem 102:977–990

    Article  PubMed  CAS  Google Scholar 

  • Amantini C, Ballarini P, Caprodossi S et al (2009) Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner. Carcinogenesis 30:1320–1329

    Article  PubMed  CAS  Google Scholar 

  • Anderson DM, Maraskovsky E, Billingsley WL et al (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179

    Article  PubMed  CAS  Google Scholar 

  • Appendino G, Szallasi A (1997) Euphorbium: modern research on its active principle resiniferatoxin, revives an ancient medicine. Life Sci 60:681–696

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi A, Pai RC, Fong S et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162

    Article  PubMed  CAS  Google Scholar 

  • Baens M, Chaffanet M, Cassiman JJ et al (1993) Construction and evaluation of a hncDNA library of human 12p transcribed sequences derived from a somatic cell hybrid. Genomics 16:214–218

    Article  PubMed  CAS  Google Scholar 

  • Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11:372–377

    Article  PubMed  CAS  Google Scholar 

  • Bhutani M, Pathak AK, Nair AS et al (2007) Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation. Clin Cancer Res 13:3024–3032

    Article  PubMed  CAS  Google Scholar 

  • Bırò T, Acs G, Acs P et al (1997) Recent advances in understanding of vanilloid receptors: a therapeutic target for treatment of pain and inflammation in skin. J Invest Dermatol Symp Proc 2:56–60

    Article  Google Scholar 

  • Bode AM, Cho YY, Zheng D et al (2009) Transient receptor potential type vanilloid 1 suppresses skin carcinogenesis. Cancer Res 69:905–913

    Article  PubMed  CAS  Google Scholar 

  • Boldin MP, Mett IL, Varfolomeev EE et al (1995) Self-association of the “death domains” of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNF and Fas/APO1 effects. J Biol Chem 270:387–391

    Article  PubMed  CAS  Google Scholar 

  • Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85:803–815

    Article  PubMed  CAS  Google Scholar 

  • Bush JA, Cheung KJ Jr, Li G (2001) Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res 271:305–314

    Article  PubMed  CAS  Google Scholar 

  • Camerini D, Walz G, Loenen WA et al (1991) The T cell activation antigen CD27 is a member of the nerve growth factor/tumor necrosis factor receptor gene family. J Immunol 147:3165–3169

    PubMed  CAS  Google Scholar 

  • Caprodossi S, Amantini C, Nabissi M et al. (2011) Capsaicin (CPS) promotes a more aggressive gene expression phenotype and invasiveness in null-TRPV1 urothelial cancer cells. Carcinogenesis 32:686–694

    Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacker MA, Tominaga M et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  • Chan FK, Chun HJ, Zheng L et al (2000) A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288:2351–2354

    Article  PubMed  CAS  Google Scholar 

  • Chang DW, Xing Z, Capacio VL et al (2003) Interdimer processing mechanism of procaspase-8 activation. EMBO J 22:4132–4142

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science 296:1634–1635

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81:505–512

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan AM, O’Rourke K, Yu GL et al (1996) Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 274:990–992

    Article  PubMed  CAS  Google Scholar 

  • Chow J, Norng M, Zhang J, Chai J (2007) TRPV6 Mediates capsaicin-induced apoptosis in gastric cancer cells – mechanisms behind a possible new “hot” cancer treatment. Biochim Biophys Acta 1773:565–576

    Article  PubMed  CAS  Google Scholar 

  • Chu K, Niu X, Williams LT (1995) A Fas-associated protein factor, FAF1, potentiates Fas-mediated apoptosis. Proc Natl Acad Sci USA 92:11894–11898

    Article  PubMed  CAS  Google Scholar 

  • Chu CJ, Huang SM, De Petrocellis L et al (2003) N-oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J Biol Chem 278:13633–13639

    Article  PubMed  CAS  Google Scholar 

  • Chuang HH, Prescott ED, Kong H et al (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962

    Article  PubMed  CAS  Google Scholar 

  • Costantini P, Jocotot E, Decaudin D, Kroemer G (2000) Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 92:1042–1053

    Article  PubMed  CAS  Google Scholar 

  • Davis JB, Gray J, Gunthorpe MJ et al (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:183–187

    Article  PubMed  CAS  Google Scholar 

  • De Petrocellis L, Harrison S, Bisogno T et al (2001) The vanilloid receptor (VR1)-mediated effects of anandamide are potently enhanced by the cAMP-dependent protein kinase. J Neurochem 77:1660–1663

    Article  PubMed  Google Scholar 

  • Dedov VN, Mandadi S, Armati PJ, Verkhratski A (2001) Capsaicin induced depolarization of mitochondria in dorsal root ganglion neurons is enhanced by vanilloid receptors. Neurosci 103:219–226

    Article  CAS  Google Scholar 

  • Deeb D, Jiang H, Gao X et al (2004) Curcumin sensitizes prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L by inhibiting nuclear factor-kappaB through suppression of IkappaBalpha phosphorylation. Mol Cancer Ther 3:803–812

    PubMed  CAS  Google Scholar 

  • Deeb D, Jiang H, Gao X et al (2007) Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1-6-heptadine-3,5-dione; C21H20O6] sensitizes human prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L-induced apoptosis by suppressing nuclear factor-kappaB via inhibition of the prosurvival Akt signaling pathway. J Pharmacol Exp Ther 321:616–25

    Article  PubMed  CAS  Google Scholar 

  • DeMorrow S, Glaser S, Francis H et al (2007) Opposing actions of endocannabinoids on cholangiocarcinoma growth: recruitment of Fas and Fas ligand to lipid rafts. J Biol Chem 282:13098–13113

    Article  PubMed  CAS  Google Scholar 

  • Dempsey PW, Doyle SE, He JQ, Cheng G (2003) The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 14:193–209

    Article  PubMed  CAS  Google Scholar 

  • Desagher S, Osen-Sand A, Nichols A et al (1999) BID-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901

    Article  PubMed  CAS  Google Scholar 

  • Dìaz-Laviada I (2010) Effect of capsaicin on prostate cancer cells. Future Oncol 6:1545–1550

    Article  PubMed  Google Scholar 

  • Dimanche-Boitrel MT, Meurette O, Rebillard A, Lacour S (2005) Role of early plasma membrane events in chemotherpay-induced cell death. Drug Resist Updat 8:5–14

    Article  PubMed  CAS  Google Scholar 

  • Docherty RJ, Yeats JC, Bevan S, Boddeke HW (1996) Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats. Pflugers Arch 431:828–837

    PubMed  CAS  Google Scholar 

  • Durkop H, Latza U, Hummel M et al (1992) Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell 68:421–427

    Article  PubMed  CAS  Google Scholar 

  • Eby MT, Jasmin A, Kumar A et al (2000) TAJ, a novel member of the tumor necrosis factor receptor family, activates the c-Jun N-terminal kinase pathway and mediates caspase-independent cell death. J Biol Chem 275:15336–15342

    Article  PubMed  CAS  Google Scholar 

  • Fésüs L, Szondy Z, Uray IU (1995) Probing the molecular program of apoptosis by cancer chemopreventive agents. J Cell Biochem Suppl 22:151–161

    Article  PubMed  Google Scholar 

  • Fisher DE (1994) Apoptosis in cancer therapy: crossing the threshold. Cell 78:539–542

    Article  PubMed  CAS  Google Scholar 

  • Fuchs P, Strehl S, Dworzak M et al (1992) Structure of the human TNF receptor 1 (p60) gene (TNFR1) and localization to chromosome 12p13. Genomics 13:219–224

    Article  PubMed  CAS  Google Scholar 

  • Ghosh AK, Basu S (2010) Fas-associated factor 1 is a negative regulator in capsaicin induced cancer cell apoptosis. Cancer Lett 287:142–149

    Article  PubMed  CAS  Google Scholar 

  • Gohda J, Matsumura T, Inoue J (2004) Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J Immunol 173:2913–2917

    PubMed  CAS  Google Scholar 

  • Goswami C, Dreger M, Jahnel R et al (2004) Identification and characterization of a Ca2+-sensitive interaction of the vanilloid receptor TRPV1 with tubulin. J Neurochem 91:1092–1103

    Article  PubMed  CAS  Google Scholar 

  • Goswami C, Dreger M, Otto H et al (2006) Rapid disassembly of dynamic microtubules upon activation of the capsaicin receptor TRPV1. J Neurochem 96:254–266

    Article  PubMed  CAS  Google Scholar 

  • Goswami C, Hucho TB, Hucho F (2007) Identification and characterisation of novel tubulin-binding motifs located within the C-terminus of TRPV1. J Neurochem 101:250–262

    Article  PubMed  CAS  Google Scholar 

  • Grassme H, Cremesti A, Kolesnick R, Gulbins E (2003) Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22:5457–5470

    Article  PubMed  CAS  Google Scholar 

  • Gurney AL, Marsters SA, Huang RM et al (1999) Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Curr Biol 9:215–218

    Article  PubMed  CAS  Google Scholar 

  • Hail N Jr (2003) Mechanisms of vanilloid-induced apoptosis. Apoptosis 8:251–262

    Article  PubMed  CAS  Google Scholar 

  • Hail N Jr, Lotan R (2009) Cancer chemoprevention and mitochondria: targeting apoptosis in transformed cells via the disruption of mitochondrial bioenergetics/redox state. Mol Nutr Food Res 53:49–67

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt W, Sugden B (1989) Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature 340:393–397

    Article  PubMed  CAS  Google Scholar 

  • Harder T, Simons K (1999) Clusters of glycolipid and glycosylphosphatidylinositol-anchored proteins in lymphoid cells: accumulation of actin regulated by local tyrosine phosphorylation. Eur J Immunol 29:556–562

    Article  PubMed  CAS  Google Scholar 

  • Harper N, Hughes M, MacFarlane M, Cohen GM (2003) Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J Biol Chem 278:25534–25541

    Article  PubMed  CAS  Google Scholar 

  • Hensellek S, Brell P, Schaible HG et al (2007) The cytokine TNFalpha increases the proportion of DRG neurones expressing the TRPV1 receptor via the TNFR1 receptor and ERK activation. Mol Cell Neurosci 36:381–391

    Article  PubMed  CAS  Google Scholar 

  • Hiura A, Nakagawa H, Nakae Y (2002) Cell death of primary afferent nerve cells in neonatal mice treated with capsaicin. Anat Sci Int 77:47–50

    Article  PubMed  Google Scholar 

  • Hong S, Pusapati RV, Powers JT, Johnson DG (2006) Oncogene and the DNA damage response Myc and E2F1 engage the ATM signalling pathway to activate p53 and induce apoptosis. Cell Cycle 5:801–803

    Article  PubMed  CAS  Google Scholar 

  • Hsu H, Shu HB, Pan MG, Goeddel DV (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299–308

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Eberstadt M, Olejniczak ET, Meadows RP et al (1996) NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 384:638–641

    Article  PubMed  CAS  Google Scholar 

  • Huang SM, Bisogno T, Trevisani M et al (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 99:8400–8405

    Article  PubMed  CAS  Google Scholar 

  • Huang HL, Fang LW, Lu SP et al (2003) DNA-damaging reagents induce apoptosis through reactive oxygen species-dependent Fas aggregation. Oncogene 22:8168–8177

    Article  PubMed  CAS  Google Scholar 

  • Huang SP, Chen JC, Wu CC et al (2009) Capsaicin-induced apoptosis in human hepatoma HepG2 cells. Anticancer Res 29:165–74

    PubMed  CAS  Google Scholar 

  • Hueber AO, Bernard AM, Herincs Z et al (2002) An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep 3:190–196

    Article  PubMed  CAS  Google Scholar 

  • Hwang SW, Cho H, Kwak J et al (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci USA 97:6155–6160

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Nakazato T, Yamato K et al (2004) Induction of apoptosis in leukemic cells by homovanillic acid derivative, capsaicin, through oxidative stress: implication of phosphorylation of p53 at Ser-15 residue by reactive oxygen species. Cancer Res 64:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Yonehara S, Ishii A, Yonehara M et al (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66:233–243

    Article  PubMed  CAS  Google Scholar 

  • Jancsò G, Kiraly E, Jancsò-Gabor A (1977) Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones. Nature 270:741–743

    Article  PubMed  Google Scholar 

  • Jang JJ, Kim SH, Yun TK (1989) Inhibitory effects of capsaicin on mouse lung tumor development. In Vivo 33:49–54

    Google Scholar 

  • Jinushi M, Vanneman M, Munshi NC et al (2008) MHC class I chain-related protein a antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci USA 105:1285–1290

    Article  PubMed  CAS  Google Scholar 

  • Johnson D, Lanahan A, Buck CR (1986) Expression and structure of the human NGF receptor. Cell 47:545–554

    Article  PubMed  CAS  Google Scholar 

  • Jung J, Hwang SW, Kwak J et al (1999) Capsaicin binds to the intracellular domain of the capsaicin-activated ion channel. J Neurosci 19:529–538

    PubMed  CAS  Google Scholar 

  • Jung M-Y, Kang H-J, Moon A (2001) Capsaicin-induced apoptosis in SK-Hep-1 hepatocarcinoma cells involves Bcl-2 downregulation and caspase-3 activation. Cancer Lett 165:139–145

    Article  PubMed  CAS  Google Scholar 

  • Jung EM, Park JW, Choi KS et al (2006) Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis through CHOP-independent DR5 upregulation. Carcinogenesis 27:2008–2017

    Article  PubMed  CAS  Google Scholar 

  • Juo P, Kuo CJ, Yuan J, Blenis J (1998) Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr Biol 8:1001–1008

    Article  PubMed  CAS  Google Scholar 

  • Kang H-J, Soh Y, Kim M-S et al (2003) Roles of JNK-1 and p38 in selective induction of apoptosis by capsaicin in rastransformed human breast epithelial cells. Int J Cancer 103:475–482

    Article  PubMed  CAS  Google Scholar 

  • Khan N, Adhami VM, Mukhtar H (2008) Apoptosis by dietary agents for prevention and treatment of cancer. Biochem Pharmacol 76:1333–1339

    Article  PubMed  CAS  Google Scholar 

  • Kim JD, Kim JM, Pyo JO et al (2002) Capsaicin can alter the expression of tumor forming-related genes which might be followed by induction of apoptosis of a Korean stomach cancer cell line, SNU-1. Cancer Lett 120:235–241

    Article  Google Scholar 

  • Kim CS, Park WH, Park JY et al (2004) Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor gamma in HT-29 human colon cancer cells. J Med Food 7:267–273

    PubMed  CAS  Google Scholar 

  • Kim HJ, Song EJ, Lee YS et al (2005) Human Fas-associated factor 1 interacts with heat shock protein 70 and negatively regulates chaperone activity. J Biol Chem 280:8125–8133

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Kang C, Shin CY et al (2006) TRPV1 Recapitulates native capsaicin receptor in sensory neurons in association with Fas-associated factor 1. J Neurosci 26:2403–2412

    Article  PubMed  CAS  Google Scholar 

  • Kim YM, Hwang JT, Kwak DW et al (2007) Involvement of AMPK signaling cascade in capsaicin-induced apoptosis of HT-29 colon cancer cells. Ann N Y Acad Sci 1095:496–503

    Article  PubMed  CAS  Google Scholar 

  • Kim EH, Yoon MJ, Kim SU et al (2008) Arsenic trioxide sensitizes human glioma cells, but not normal astrocytes, to TRAIL-induced apoptosis via CCAAT/enhancer-binding protein homologous protein-dependent DR5 up-regulation. Cancer Res 68:266–275

    Article  PubMed  CAS  Google Scholar 

  • Kim MY, Trudel LJ, Wogan GN (2009) Apoptosis induced by capsaicin and resveratrol in colon carcinoma cells requires nitric oxide production and caspase activation. Anticancer Res 29:3733–3740

    PubMed  CAS  Google Scholar 

  • Kim JY, Kim EH, Kim SU (2010) Capsaicin sensitizes malignant glioma cells to TRAIL-mediated apoptosis via DR5 upregulation and survivin downregulation. Carcinogenesis 31:367–375

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Kondoh C, Hasegawa M et al (2006) Fas-associated factor 1 is a negative regulator of PYRIN-containing Apaf-1-like protein 1. Int Immunol 18:1701–1706

    Article  PubMed  CAS  Google Scholar 

  • Kischkel FC, Hellbardt S, Behrmann I et al (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588

    PubMed  CAS  Google Scholar 

  • Kischkel FC, Lawrence DA, Chuntharapai A et al (2000) Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12:611–620

    Article  PubMed  CAS  Google Scholar 

  • Knight MJ, Riffkin CD, Muscat AM et al (2001) Analysis of FasL and TRAIL induced apoptosis pathways in glioma cells. Oncogene 20:5789–5798

    Article  PubMed  CAS  Google Scholar 

  • Kochukov MY, McNearney TA, Yin H et al (2009) Tumor necrosis factor-alpha (TNF-alpha) enhances functional thermal and chemical responses of TRP cation channels in human synoviocytes. Mol Pain 5:49

    Article  PubMed  CAS  Google Scholar 

  • Kreuz S, Siegmund D, Scheurich P, Wajant H (2001) NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 21:3964–3973

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Petit P, Zamzami N, Vayssìere J-L (1995) The biochemistry of programmed cell death. FASEB J 9:1277–1287

    PubMed  CAS  Google Scholar 

  • Laabi Y, Gras MP, Brouet JC et al (1994) The BCMA gene, preferentially expressed during B lymphoid maturation, is bidirectionally transcribed. Nucleic Acids Res 22:1147–1154

    Article  PubMed  CAS  Google Scholar 

  • Latza U, Durkop H, Schnittger S et al (1994) The human OX40 homolog: cDNA structure, expression and chromosomal assignment of the ACT35 antigen. Eur J Immunol 24:677–683

    Article  PubMed  CAS  Google Scholar 

  • Lavin MF, Gueven N (2006) The complexity of p53 stabilization and activation. Cell Death Differ 13:941–950

    Article  PubMed  CAS  Google Scholar 

  • Lavrik I, Golks A, Krammer PH (2005) Death receptor signaling. J Cell Sci 118:265–267

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Nam DH, Kim JA (2000) Induction of apoptosis by capsaicin in A172 human glioblastoma cells. Cancer Lett 161:121–130

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Kwon EJ, Jin DQ et al (2002) Redox status-dependent regulation of cyclooxygenases mediates the capsaicin-induced apoptosis in human neuroblastoma cells. J Environ Pathol Toxicol Oncol 21:113–120

    PubMed  CAS  Google Scholar 

  • Lee YS, Kang YS, Lee JS et al (2004) Involvement of NADPH oxidase-mediated generation of reactive oxygen species in the apoptotic cell death by capsaicin in HepG2 human hepatoma cells. Free Radic Res 38:405–412

    Article  PubMed  CAS  Google Scholar 

  • Lee MJ, Kee KH, Suh CH et al (2009) Capsaicin-induced apoptosis is regulated by endoplasmic reticulum stress- and calpain-mediated mitochondrial cell death pathways. Toxicology 264:205–214

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Krisanapun C, Baek SJ (2010) NSAID-activated gene-1 as a molecular target for capsaicin-induced apoptosis through a novel molecular mechanism involving GSK3beta, C/EBPbeta and ATF3. Carcinogenesis 31:719–728

    Article  PubMed  CAS  Google Scholar 

  • Lu HF, Chen YL, Yang JS et al (2010) Antitumor activity of capsaicin on human colon cancer cells in vitro and colo 205 tumor xenografts in vivo. J Agric Food Chem 58:12999–12305

    Article  PubMed  CAS  Google Scholar 

  • Ma F, Zhang L, Westlund KN (2009) Reactive oxygen species mediate TNFR1 increase after TRPV1 activation in mouse DRG neurons. Mol Pain 5:31

    Article  PubMed  CAS  Google Scholar 

  • Macho A, Blázquez MV, Navas P, Muñoz E (1998) Induction of apoptosis by vanilloid compounds does not require de novo gene transcription and activator protein 1 activity. Cell Growth Differ 9:277–286

    PubMed  CAS  Google Scholar 

  • Macho A, Calcado MA, Munoz-Blanco J et al (1999) Selective induction of apoptosis by capsaicin in transformed cells: the role of reactive oxygen species and calcium. Cell Death Differ 6:155–165

    Article  PubMed  CAS  Google Scholar 

  • Macho A, Lucena C, Calzado MA et al (2000) Phorboid 20-homovanillates induce apoptosis through a VR1-independent mechanism. Chem Biol 7:483–492

    Article  PubMed  CAS  Google Scholar 

  • Mahmood Z, Shukla Y (2010) Death receptors: targets for cancer therapy. Exp Cell Res 316:887–899

    Article  PubMed  CAS  Google Scholar 

  • Maity R, Sharma J, Jana NR (2010) Capsaicin induces apoptosis through ubiquitin-proteasome system dysfunction. J Cell Biochem 109:933–942

    PubMed  CAS  Google Scholar 

  • Marsters SA, Sheridan JP, Pitti RM et al (1997) A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 7:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Meddings JB, Hogaboam CM, Tran K et al (1991) Capsaicin effects on non-neuronal plasma membranes. Biochim Biophys Acta 1070:43–50

    Article  PubMed  CAS  Google Scholar 

  • Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    Article  PubMed  CAS  Google Scholar 

  • Micheau O, Lens S, Gaide O et al (2001) NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol 21:5299–5305

    Article  PubMed  CAS  Google Scholar 

  • Mimeault M, Pommery N, Wattez N et al (2003) Anti-proliferative and apoptotic effects of anandamide in human prostatic cancer cell lines: implication of epidermal growth factor receptor down-regulation and ceramide production. Prostate 56:1–12

    Article  PubMed  CAS  Google Scholar 

  • Miyaji M, Jin ZX, Yamaoka S et al (2005) Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J Exp Med 202:249–259

    Article  PubMed  CAS  Google Scholar 

  • Mollinedo F, Gajate C (2003) Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 8:413–450

    Article  PubMed  CAS  Google Scholar 

  • Monreal AW, Ferguson BM, Headon DJ (1999) Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia. Nat Genet 22:366–369

    Article  PubMed  CAS  Google Scholar 

  • Montgomery RI, Warner MS, Lum BJ et al (1996) Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87:427–436

    Article  PubMed  CAS  Google Scholar 

  • Mori A, Lehmann S, O’Kelly J et al (2006) Capsaicin a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells. Cancer Res 66:3222–3229

    Article  PubMed  CAS  Google Scholar 

  • Morrè DJ, Chueh P-J, Morrè DM (1995) Capsaicin inhibits preferentially the NADH oxidase and growth of transformed cells in culture. Proc Natl Acad Sci USA 92:1831–1835

    Article  PubMed  Google Scholar 

  • Morrè DJ, Sun E, Geilen C et al (1996) Capsaicin inhibits plasma membrane NADH oxidase and growth of human and mouse melanoma lines. Eur J Cancer 32:1995–2003

    Article  Google Scholar 

  • Muller M, Wilder S, Bannasch D et al (1998) p53 Activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188:2033–2045

    Article  PubMed  CAS  Google Scholar 

  • Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    Article  PubMed  CAS  Google Scholar 

  • Nicol GD, Lopshire JC, Pafford CM (1997) Tumor necrosis factor enhances the capsaicin sensitivity of rat sensory neurons. J Neurosci 17:975–982

    PubMed  CAS  Google Scholar 

  • Oh SH, Kim YS, Lim SC et al (2008) Dihydrocapsaicin (DHC), a saturated structural analog of capsaicin, induces autophagy in human cancer cells in a catalase-regulated manner. Autophagy 4:1009–1019

    PubMed  CAS  Google Scholar 

  • Oyagbemi AA, Saba AB, Azeez OI (2010) Capsaicin: a novel chemopreventive molecule and its underlying molecular mechanisms of action. Indian J Cancer 47:53–58

    Article  PubMed  CAS  Google Scholar 

  • Pan G, Ni J, Wei YF et al (1997a) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277:815–818

    Article  PubMed  CAS  Google Scholar 

  • Pan G, O’Rourke K, Chinnaiyan AM (1997b) The receptor for the cytotoxic ligand TRAIL. Science 276:111–113

    Article  PubMed  CAS  Google Scholar 

  • Pan G, Bauer JH, Haridas V et al (1998) Identification and functional characterization of DR6, a novel death domain containing TNF receptor. FEBS Lett 431:351–356

    Article  PubMed  CAS  Google Scholar 

  • Papoff G, Hausler P, Eramo A et al (1999) Identification and characterization of a ligand-independent oligomerization domain in the extracellular region of the CD95 death receptor. J Biol Chem 274:38241–38250

    Article  PubMed  CAS  Google Scholar 

  • Park K-K, Surh Y-J (1997) Effects of capsaicin on chemicallyinduced two-stage mouse skin carcinogenesis. Cancer Lett 114:183–184

    Article  PubMed  CAS  Google Scholar 

  • Park MY, Jang HD, Lee SY et al (2004) Fas-associated factor-1 inhibits nuclear factor-kappaB (NF-kappaB) activity by interfering with nuclear translocation of the RelA (p65) subunit of NF-kappaB. J Biol Chem 279:2544–2549

    Article  PubMed  CAS  Google Scholar 

  • Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10:26–35

    Article  PubMed  CAS  Google Scholar 

  • Premkumar LS, Ahern GP (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408:985–990

    Article  PubMed  CAS  Google Scholar 

  • Rath PC, Aggarwal BB (1999) TNF-induced signaling in apoptosis. J Clin Immunol 19:350–364

    Article  PubMed  CAS  Google Scholar 

  • Reed JC (1999) Mechanisms of apoptosis avoidance in cancer. Curr Opin Oncol 11:68–75

    Article  PubMed  CAS  Google Scholar 

  • Ryu SW, Lee SJ, Park MY et al (2003) Fas-associated factor 1, FAF1, is a member of Fas death-inducing signaling complex. J Biol Chem 278:24003–24010

    Article  PubMed  CAS  Google Scholar 

  • Sánchez AM, Sánchez MG, Malagarie-Cazenave S et al (2006) Induction of apoptosis in prostate tumor PC-3 cells and inhibition of xenograft prostate tumor growth by the vanilloid capsaicin. Apoptosis 11:89–99

    Article  PubMed  CAS  Google Scholar 

  • Sánchez AM, Malagarie-Cazenave S, Olea N et al (2007) Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation. Apoptosis 12:2013–2024

    Article  PubMed  CAS  Google Scholar 

  • Sánchez AM, Martínez-Botas J, Malagarie-Cazenave S et al (2008) Induction of the endoplasmic reticulum stress protein GADD153/CHOP by capsaicin in prostate PC-3 cells: a microarray study. Biochem Biophys Res Commun 372:785–791

    Article  PubMed  CAS  Google Scholar 

  • Sancho R, de la Vega L, Appendino G et al (2003) The CB1/VR1 agonist arvanil induces apoptosis through an FADD/caspase-8-dependent pathway. Br J Pharmacol 140:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    Article  PubMed  CAS  Google Scholar 

  • Scheel-Toellner D, Wang K, Singh R et al (2002) The death-inducing signalling complex is recruited to lipid rafts in Fas-induced apoptosis. Biochem Biophys Res Commun 297:876–879

    Article  PubMed  CAS  Google Scholar 

  • Schwarz H, Tuckwell J, Lotz M (1993) A receptor induced by lymphocyte activation (ILA): a new member of the human nerve-growth-factor/tumor-necrosis-factor receptor family. Gene 134:295–298

    Article  PubMed  CAS  Google Scholar 

  • Shankar S, Ganapathy S, Chen Q, Srivastava RK (2008) Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis. Mol Cancer 7:16

    Article  PubMed  CAS  Google Scholar 

  • Sharma RA, Manson MM, Gescher A, Steward WP (2001) Colorectal cancer chemoprevention: biochemical targets and clinical development of promising agents. Eur J Cancer 37:12–22

    Article  PubMed  CAS  Google Scholar 

  • Sheridan JP, Marsters SA, Pitti RM et al (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277:818–821

    Article  PubMed  CAS  Google Scholar 

  • Shin S, Sung BJ, Cho YS et al (2001) An anti-apoptotic protein human surviving is a direct inhibitor of caspase-3 and -7. Biochemistry 40:1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Siegel RM, Frederiksen JK, Zacharias DA et al (2000) Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288:2354–2357

    Article  PubMed  CAS  Google Scholar 

  • Simonet WS, Lacey DL, Dunstan CR et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  CAS  Google Scholar 

  • Smith CA, Davis T, Anderson D et al (1990) A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248:1019–1023

    Article  PubMed  CAS  Google Scholar 

  • Snyman T, Stewart MJ, Steenkamp V (2001) A fatal case of pepper poisoning. Forensic Sci Int 124:43–46

    Article  PubMed  CAS  Google Scholar 

  • Song EJ, Yim SH, Kim E et al (2005) Human Fas-associated factor 1, interacting with ubiquitinated proteins and valosin containing protein, is involved in the ubiquitin-proteasome pathway. Mol Cell Biol 25:2511–2524

    Article  PubMed  CAS  Google Scholar 

  • Sorice M, Matarrese P, Tinari A et al (2009) Raft component GD3 associates with tubulin following CD95/Fas ligation. FASEB J 23:3298–3308

    Article  PubMed  CAS  Google Scholar 

  • Sprick M, Rieser E, Stahl H et al (2002) Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signaling complexes in FADD-dependent manner but can not functionally substitute caspase-8. EMBO J 21:4520–4530

    Article  PubMed  CAS  Google Scholar 

  • Stamenkovic I, Clark EA, Seed B (1989) A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas. EMBO J 8:1403–1410

    PubMed  CAS  Google Scholar 

  • Subauste MC, Sansom OJ, Porecha N et al (2010) Fem1b, a proapoptotic protein, mediates proteasome inhibitor-induced apoptosis of human colon cancer cells. Mol Carcinog 49:105–113

    PubMed  CAS  Google Scholar 

  • Sugimoto T, Xiao C, Ichikawa H (1998) Neonatal primary neuronal death induced by capsaicin and axotomy involves an apoptotic mechanism. Brain Res 807:147–154

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto T, Takeyama A, Xiao C et al (1999) Electron microscopic determination of nick endlabeled DNA fragments during capsaicin-induced apoptosis of trigeminal primary neurons in neonatal rats. Brain Res 818:147–152

    Article  PubMed  CAS  Google Scholar 

  • Surh Y (1999) Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res 428:305–327

    Article  PubMed  CAS  Google Scholar 

  • Szallasi A, Blumberg PM (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–212

    PubMed  CAS  Google Scholar 

  • Szoke E, Börzsei R, Tóth DM et al (2010) Effect of lipid raft disruption on TRPV1 receptor activation of trigeminal sensory neurons and transfected cell line. Eur J Pharmacol 628:67–74

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Kohno H, Sakata K et al (2002) Modifying effects of dietary capsaicin and rotenone on 4-nitroquinoline l-oxideinduced rat tongue carcinogenesis. Carcinogenesis 23:1361–1367

    Article  PubMed  CAS  Google Scholar 

  • Thoennissen NH, O’Kelly J, Lu D et al (2010) Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene 29:285–296

    Article  PubMed  CAS  Google Scholar 

  • Thomas, Sabnis AS, Johansen ME et al (2007) Transient receptor potential vanilloid 1 agonists cause endoplasmic reticulum stress and cell death in human lung cells. J Pharmacol Exp Ther 321:830–838

    Article  PubMed  CAS  Google Scholar 

  • Tourneur L, Chiocchia G (2010) FADD a regulator of life and death. Trends Immunol 31:260–269

    Article  PubMed  CAS  Google Scholar 

  • van Wetering S, van Buul JD, Quik S et al (2002) Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J Cell Sci 115:1837–1846

    PubMed  Google Scholar 

  • von Bulow GU, Bram RJ (1997) NF-AT activation induced by a CAML-interacting member of the tumor necrosis factor receptor superfamily. Science 278:138–141

    Article  Google Scholar 

  • Wahl H, Tan L, Griffith K et al (2007) Curcumin enhances Apo2L/TRAIL-induced apoptosis in chemoresistant ovarian cancer cells. Gynecol Oncol 105:104–112

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Gregory C, Sample C et al (1990) Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol 64:2309–2318

    PubMed  CAS  Google Scholar 

  • Wang CY, Mayo MW, Korneluk RG et al (1998) NF-κB antiapoptosis: induction of TRAF1 and TRAF2and c-IAP1 and IAP2 to suppress caspase 8 activation. Science 281:1680–1683

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Boja ES, Tan W et al (2001) Reversible glutathionylation regulates actin polymerization in A431 cells. J Biol Chem 276:47763–47766

    PubMed  CAS  Google Scholar 

  • Wang HM, Chueh PJ, Chang SP et al (2008) Effect of capsaicin on tNOX (ENOX2) protein expression in stomach cancer cells. Biofactors 34:209–217

    Article  PubMed  Google Scholar 

  • Weil R, Israël A (2004) T-cell-receptor- and B-cell-receptor-mediated activation of NF-kappaB in lymphocytes. Curr Opin Immunol 3:374–381

    Article  CAS  Google Scholar 

  • Willis S, Day CL, Hinds MG, Huang DC (2003) The Bcl-2 regulated apoptotic pathway. J Cell Sci 116:4053–4056

    Article  PubMed  CAS  Google Scholar 

  • Wolvetang EJ, Larm JA, Moutsoulas P, Lawen A (1996) Apoptosis induced by inhibitors of the plasma membrane NADHoxidase involves Bcl-2 and calcineurin. Cell Growth Differ 7:1315–1325

    PubMed  CAS  Google Scholar 

  • Wu CC, Lin JP, Yang JS et al (2006) Capsaicin induced cell cycle arrest and apoptosis in human esophagus epidermoid carcinoma CE 81T/VGH cells through the elevation of intracellular reactive oxygen species and Ca2+ productions and caspase-3 activation. Mutat Res 601:71–82

    Article  PubMed  CAS  Google Scholar 

  • Yang KM, Pyo JO, Kim GY et al (2009) Capsaicin induces apoptosis by generating reactive oxygen species and disrupting mitochondrial transmembrane potential in human colon cancer cell lines. Cell Mol Biol Lett 14:497–510

    Article  PubMed  CAS  Google Scholar 

  • Yeh WC, Pompa JL, McCurrach ME et al (1998) FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279:1954–1958

    Article  PubMed  CAS  Google Scholar 

  • Yeruva L, Elegbede JA, Carper SW (2008a) Methyl jasmonate decreases membrane fluidity and induces apoptosis through tumor necrosis factor receptor 1 in breast cancer cells. Anticancer Drugs 19:766–776

    Article  PubMed  CAS  Google Scholar 

  • Yeruva L, Pierre KJ, Bathina M et al (2008b) Delayed cytotoxic effects of methyl jasmonate and cis-jasmone induced apoptosis in prostate cancer cells. Cancer Invest 26:890–899

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Cado D, Chen A et al (1998) Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392:296–300

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Nagasaki M, Morikawa S (2003) Capsaicin inhibits growth of adult T-cell leukemia cells. Leuk Res 27:275–283

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Humphreys I, Sahu RP et al (2008) In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis 13:1465–1478

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt PM, Petersson J, Andersson DA (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Santoni Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Santoni, G., Caprodossi, S., Farfariello, V., Liberati, S., Amantini, C. (2013). Role of Death Receptors Belonging to the TNF Family in Capsaicin-Induced Apoptosis of Tumor Cells. In: Srivastava, S. (eds) Role of Capsaicin in Oxidative Stress and Cancer. Diet and Cancer, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6317-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6317-3_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6316-6

  • Online ISBN: 978-94-007-6317-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics