Advertisement

Co-transplantation of Islets with Mesenychymal Stem Cells Improves Islet Revascularization and Reversal of Hyperglycemia

  • Aileen King
  • Chloe Rackham
Chapter
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 10)

Abstract

Allogeneic islet transplantation offers the possibility to treat selected patients with Type 1 Diabetes Mellitus (T1DM). Limited availability of human pancreatic islets is a major obstacle to the more widespread use of islet transplantation as a therapy for the majority of patients with T1DM. This is exacerbated by extensive islet cell death during the early post transplantation period, which increases the number of islets required to achieve insulin independence. Additionally, suboptimal vascular engraftment contributes to the long term decline in graft function and survival. Mesenchymal Stem Cells (MSCs) play a major role in tissue repair through localized immunosuppressive effects and the release of soluble trophic factors to affect neighboring cells, making them excellent candidates for improving the engraftment and survival of transplanted islets. MSC-based modulations to the islet transplantation procedure therefore have the potential to reduce the number of donor islets required for each transplant recipient, which is likely to help in overcoming the problems associated with human islet donor shortage.

Keywords

Mesenchymal Stem Cell Beta Cell Human Islet Islet Transplantation Post Transplantation Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57:1759–1767PubMedCrossRefGoogle Scholar
  2. Berman DM, Willman MA, Han D, Kleiner G, Kenyon NM, Cabrera O, Karl JA, Wiseman RW, O’Connor DH, Bartholomew AM, Kenyon NS (2010) Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes 59:2558–2568PubMedCrossRefGoogle Scholar
  3. Brissova M, Fowler M, Wiebe P, Shostak A, Shiota M, Radhika A, Lin PC, Gannon M, Powers AC (2004) Intraislet endothelial cells contribute to revascularization of transplanted pancreatic islets. Diabetes 53:1318–1325PubMedCrossRefGoogle Scholar
  4. Brissova M, Shostak A, Shiota M, Wiebe PO, Poffenberger G, Kantz J, Chen Z, Carr C, Jerome WG, Chen J, Baldwin HS, Nicholson W, Bader DM, Jetton T, Gannon M, Powers AC (2006) Pancreatic islet production of vascular endothelial growth factor–a is essential for islet vascularization, revascularization, and function. Diabetes 55:2974–2985PubMedCrossRefGoogle Scholar
  5. Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 103:2334–2339PubMedCrossRefGoogle Scholar
  6. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347PubMedCrossRefGoogle Scholar
  7. Choi KS, Shin JS, Lee JJ, Kim YS, Kim SB, Kim CW (2005) In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun 330:1299–1305PubMedCrossRefGoogle Scholar
  8. Davalli AM, Scaglia L, Zangen DH, Hollister J, Bonner-Weir S, Weir GC (1996) Vulnerability of islets in the immediate posttransplantation period. Dynamic changes in structure and function. Diabetes 45:1161–1167PubMedCrossRefGoogle Scholar
  9. Ding Y, Xu D, Feng G, Bushell A, Muschel RJ, Wood KJ (2009) Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes 58:1797–1806PubMedCrossRefGoogle Scholar
  10. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRefGoogle Scholar
  11. Duprez IR, Johansson U, Nilsson B, Korsgren O, Magnusson PU (2011) Preparatory studies of composite mesenchymal stem cell islets for application in intraportal islet transplantation. Ups J Med Sci 116:8–17PubMedCrossRefGoogle Scholar
  12. Espes D, Eriksson O, Lau J, Carlsson PO (2011) Striated muscle as implantation site for transplanted pancreatic islets. J Transplant 2011:352043PubMedGoogle Scholar
  13. Figliuzzi M, Cornolti R, Perico N, Rota C, Morigi M, Remuzzi G, Remuzzi A, Benigni A (2009) Bone marrow–derived mesenchymal stem cells improve islet graft function in diabetic rats. Transplant Proc 41:1797–1800PubMedCrossRefGoogle Scholar
  14. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247PubMedCrossRefGoogle Scholar
  15. Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ (2007) Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 25:2363–2370PubMedCrossRefGoogle Scholar
  16. Ito T, Itakura S, Todorov I, Rawson J, Asari S, Shintaku J, Nair I, Ferreri K, Kandeel F, Mullen Y (2010) Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation 89:1438–1445PubMedCrossRefGoogle Scholar
  17. Johansson U, Rasmusson I, Niclou SP, Forslund N, Gustavsson L, Nilsson B, Korsgren O, Magnusson PU (2008) Formation of composite endothelial cell-mesenchymal stem cell islets: a novel approach to promote islet revascularization. Diabetes 57:2393–2401PubMedCrossRefGoogle Scholar
  18. Jung EJ, Kim SC, Wee YM, Kim YH, Choi MY, Jeong SH, Lee J, Lim DG, Han DJ (2011) Bone marrow-derived mesenchymal stromal cells support rat pancreatic islet survival and insulin secretory function in vitro. Cytotherapy 13:19–29PubMedCrossRefGoogle Scholar
  19. Lammert E, Cleaver O, Melton D (2001) Induction of pancreatic differentiation by signals from blood vessels. Science 294:564–567PubMedCrossRefGoogle Scholar
  20. Lau J, Carlsson PO (2009) Low revascularization of human islets when experimentally transplanted into the liver. Transplantation 87:322–325PubMedCrossRefGoogle Scholar
  21. Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, Prockop DJ (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A 103:17438–17443PubMedCrossRefGoogle Scholar
  22. Linn T, Schneider K, Hammes HP, Preissner KT, Brandhorst H, Morgenstern E, Kiefer F, Bretzel RG (2003) Angiogenic capacity of endothelial cells in islets of Langerhans. FASEB J 17:881–883PubMedGoogle Scholar
  23. Longoni B, Szilagyi E, Quaranta P, Paoli GT, Tripodi S, Urbani S, Mazzanti B, Rossi B, Fanci R, Demontis GC, Marzola P, Saccardi R, Cintorino M, Mosca F (2010) Mesenchymal stem cells prevent acute rejection and prolong graft function in pancreatic islet transplantation. Diabetes Technol Ther 12:435–446PubMedCrossRefGoogle Scholar
  24. Mattsson G, Jansson L, Carlsson PO (2002) Decreased vascular density in mouse pancreatic islets after transplantation. Diabetes 51:1362–1366PubMedCrossRefGoogle Scholar
  25. Meirelles LdS, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213CrossRefGoogle Scholar
  26. Menger MD, Jaeger S, Walter P, Feifel G, Hammersen F, Messmer K (1989) Angiogenesis and hemodynamics of microvasculature of transplanted islets of Langerhans. Diabetes 38(Suppl 1):199–201PubMedGoogle Scholar
  27. Nyqvist D, Köhler M, Wahlstedt H, Berggren PO (2005) Donor islet endothelial cells participate in formation of functional vessels within pancreatic islet grafts. Diabetes 54:2287–2293PubMedCrossRefGoogle Scholar
  28. Park KS, Kim YS, Kim JH, Choi BK, Kim SH, Oh SH, Ahn YR, Lee MS, Lee MK, Park JB, Kwon CH, Joh JW, Kim KW, Kim SJ (2009) Influence of human allogenic bone marrow and cord blood–derived mesenchymal stem cell secreting trophic factors on ATP (adenosine-5′-triphosphate)/ADP (adenosine-5′-diphosphate) ratio and insulin secretory function of isolated human islets from cadaveric donor. Transplant Proc 41:3813–3818PubMedCrossRefGoogle Scholar
  29. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  30. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74PubMedCrossRefGoogle Scholar
  31. Rackham CL, Chagastelles PC, Nardi NB, Hauge-Evans AC, Jones PM, King AJ (2011) Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice. Diabetologia 54:1127–1135PubMedCrossRefGoogle Scholar
  32. Solari MG, Srinivasan S, Boumaza I, Unadkat J, Harb G, Garcia-Ocana A, Feili-Hariri M (2009) Marginal mass islet transplantation with autologous mesenchymal stem cells promotes long-term islet allograft survival and sustained normoglycemia. J Autoimmun 32:116–124PubMedCrossRefGoogle Scholar
  33. Sordi V, Piemonti L (2010) Mesenchymal stem cells as feeder cells for pancreatic islet transplants. Rev Diabet Stud 7:132–143PubMedCrossRefGoogle Scholar
  34. Sordi V, Melzi R, Mercalli A, Formicola R, Doglioni C, Tiboni F, Ferrari G, Nano R, Chwalek K, Lammert E, Bonifacio E, Borg D, Piemonti L (2010) Mesenchymal cells appearing in pancreatic tissue culture are bone marrow-derived stem cells with the capacity to improve transplanted islet function. Stem Cells 28:140–151PubMedCrossRefGoogle Scholar
  35. Urbán VS, Kiss J, Kovács J, Gócza E, Vas V, Monostori Ė, Uher F (2008) Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 26:244–253PubMedCrossRefGoogle Scholar
  36. Xu Y-X, Chen L, Wang R, Hou WK, Lin P, Sun L, Sun Y, Dong QY (2008) Mesenchymal stem cell therapy for diabetes through paracrine mechanisms. Med Hypotheses 71:390–393PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Diabetes Research Group, Division of Diabetes and Nutrition, School of MedicineKing’s College LondonLondonUK

Personalised recommendations