Skip to main content

Protein Structure Modeling with Rosetta: Case Studies in Structure Prediction and Enzyme Repurposing

  • Conference paper
  • First Online:
Advancing Methods for Biomolecular Crystallography
  • 1655 Accesses

Abstract

The Rosetta protein structure methodology has evolved as a comprehensive tool for protein structure prediction and protein design. The software suite includes modules for protein structure prediction, protein-protein and protein-small molecule docking, as well as protein interface, enzyme, and symmetric protein design. This paper describes two recent Rosetta successes. We describe how Rosetta’s structure prediction – when augmented with experimental data – was used to solve difficult molecular replacement problems, yielding high-resolution models for 8 of 13 structures unsolvable by alternate approaches. We also show how Rosetta may be used to redesign metalloenzyme active sites, repurposing a metal binding site to provide new catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bradley P, Misur KMS, Baker D (2005) Toward high-resolution de novo structure prediction for small proteins. Science 309(5742):1868–1871

    Article  CAS  Google Scholar 

  2. Canutescu AA, Dunbrack RL Jr (2003) Cyclic coordinate descent: A robotics algorithm for protein loop closure. Protein Sci 12(5):963–972

    Article  CAS  Google Scholar 

  3. Das R, Baker D (2008) Macromolecular modeling with Rosetta. Annu Rev Biochem 77:363–382

    Article  CAS  Google Scholar 

  4. Davis IW, Baker D (2009) Rosetta Ligand docking with full ligand and receptor flexibility. J Mol Biol 385(2):381–392

    Article  CAS  Google Scholar 

  5. DiMaio F, Tyka MD, Baker ML, Chiu W, Baker D (2009) Refinement of protein structures into low-resolution density maps using Rosetta. J Mol Biol 392(1):181–190

    Article  CAS  Google Scholar 

  6. DiMaio F, Terwilliger TC, Read RJ, Wlodawer A, Oberdorfer G, Wagner U et al (2011) Improved molecular replacement by density- and energy-guided protein structure optimization. Nature 473:540–543

    Article  CAS  Google Scholar 

  7. Fleishman SJ, Khare SD, Koga N, Baker D (2011) Restricted sidechain plasticity in the structures of native proteins and complexes. Protein Sci 20(4):753–757

    Article  CAS  Google Scholar 

  8. Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C, Corn JE, Strauch E-M et al (2011) Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332(6031):816–821

    Article  CAS  Google Scholar 

  9. Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlisberger D, Zanghellini A et al (2008) De novo computational design of retro-aldol enzymes. Science 319(5868):1387–1391

    Article  CAS  Google Scholar 

  10. Kellogg EH, Leaver-Fay A, Baker D (2011) Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 79(3):830–838

    Article  CAS  Google Scholar 

  11. Khare SD, Kipnis Y, Greisen PJ, Takeuchi R, Ashani Y, Goldsmith M et al (2012) Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat Chem Biol 8:294–300

    Article  CAS  Google Scholar 

  12. King NP, Sheffler W, Sawaya MR, Vollmar BS, Sumida JP, André I, Gonen T, Yeates TO, Baker D (2012) Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336(6085):1171–1174

    Article  CAS  Google Scholar 

  13. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302(5649):1364–1368

    Article  CAS  Google Scholar 

  14. Lawrence MC, Colman PM (1993) Shape complementarity at protein/protein interfaces. J Mol Biol 234:946–950

    Article  CAS  Google Scholar 

  15. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R et al (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574

    Article  CAS  Google Scholar 

  16. Mandell DJ, Coutsias EA, Kortemme T (2009) Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat Method 6(8):551–552

    Article  CAS  Google Scholar 

  17. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  Google Scholar 

  18. Qian B, Raman S, Das R, Bradley P, McCoy AJ, Read RJ et al (2007) High-resolution structure prediction and the crystallographic phase problem. Nature 450(7167):259–264

    Article  CAS  Google Scholar 

  19. Raman S, Lange OF, Rossi P, Tyka M, Wang X, Aramini J et al (2010) NMR structure determination for larger proteins using backbone-only data. Science 327(5968):1014–1018

    Article  CAS  Google Scholar 

  20. Rohl CA, Strauss CEM, Misura KMS, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  CAS  Google Scholar 

  21. Sgourakis NG, Lange OF, DiMaio F, André I, Fitzkee NC, Rossi P et al (2011) Determination of the structures of symmetric protein oligomers from NMR chemical shifts and residual dipolar couplings. J Am Chem Soc 133(16):6288–6298

    Article  CAS  Google Scholar 

  22. Sheffler W, Baker D (2009) RosettaHoles: rapid assessment of protein core packing for structure prediction, refinement, design, and validation. Protein Sci 18(1):229–239

    CAS  Google Scholar 

  23. Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, St Clair JL et al (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329(5989):309–313

    Article  CAS  Google Scholar 

  24. Söding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21:951–960

    Article  Google Scholar 

  25. Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Zwart PH, Hung LW, Read RJ, Adams PD (2007) Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D64:61–69

    Google Scholar 

  26. Zanghellini A, Jiang L, Wollacott AM, Cheng G, Meiler J, Althoff EA et al (2006) New algorithms and an in silico benchmark for computational enzyme design. Protein Sci 15(12):2785–2794

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Sagar Khare for helpful discussions on enzyme redesign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank DiMaio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

DiMaio, F. (2013). Protein Structure Modeling with Rosetta: Case Studies in Structure Prediction and Enzyme Repurposing. In: Read, R., Urzhumtsev, A., Lunin, V. (eds) Advancing Methods for Biomolecular Crystallography. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6232-9_31

Download citation

Publish with us

Policies and ethics