Skip to main content

Environmental Assessment and Strategic Environmental Map Based on Footprints Assessment

  • Chapter
  • First Online:
  • 1222 Accesses

Abstract

The life cycle assessment (LCA) method is introduced as a powerful tool to assess the environmental impact of product/services. Some important limitations have been evidenced in the past years, including data quality and collection, definition of system and time boundaries, multi-functionality and allocation, occupational health. The environmental performance strategy map (EPSM) is a novel graphical representation reception the strength of ecological footprint and life cycle analyses. The use of EPSM has a potential as an environmental evaluation and strategic environmental map based on the various footprints such as carbon footprint, water footprint, energy footprint, emission footprint, work environment footprint, etc. This graphical method allows the use of these footprints with an additional dimension of cost.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antonsson, A. B., & Carlsson, H. (1995). The basis for a method to integrate work environment in life cycle assessment. Journal of Cleaner Production, 3, 215–220.

    Article  Google Scholar 

  • Ashford, N. A. (1997). Industrial safety: the neglected issue in industrial ecology. Journal of Cleaner Production, 5, 115–121.

    Article  Google Scholar 

  • Ayres, R. U. (2000). Commentary on the utility of the ecological footprint concept. Ecological Economics, 32, 357–358.

    Article  Google Scholar 

  • Boustead, I. (1996). LCA—how it came about: the beginning in the UK. International Journal of Life-Cycle Assessment, 1, 147–150.

    Article  Google Scholar 

  • Crawley, F. K., & Ashton, D. (2002). Safety, health or the environment—which comes first? Journal of Hazardous Materials, 93, 17–32.

    Article  CAS  Google Scholar 

  • Čuček, L., Lam, H. L., Klemeš, J. J., Varbanov, P. S., & Kravanja, Z. (2010). Synthesis of regional networks for the supply of energy and bioproducts. Clean Technologies and Environmental Policy, 12(6), 635–645.

    Article  Google Scholar 

  • Čuček, L., Klemeš, J. J., & Kravanja, Z. (2012). A review of footprint analysis tools for monitoring impacts on sustainability. Journal of Cleaner Production, 34, 9–20.

    Article  Google Scholar 

  • De Benedetto, L., & Klemeš, J. (2008a). LCA as environmental assessment tool in waste to energy, and contribution to occupational health and safety. Chemical Engineering Transactions, 13, 343–350.

    Google Scholar 

  • De Benedetto, L., & Klemeš, J. (2008b). Life cycle assessment as an environmental assessment tool in municipal solid waste management, energy for sustainable future. Veszprém: University Publisher, UoP Press. ISBN 978-963-9696-38-9.

    Google Scholar 

  • De Benedetto, L., & Klemeš, J. (2009). The environmental performance strategy map: an integrated lca approach to support the strategic decision making process. Journal of Cleaner Production, 17, 900–906.

    Article  Google Scholar 

  • De Benedetto, L., & Klemeš, J. (2010). The environmental bill of materials and technology routing: An integrated LCA approach. Clean Technologies and Environmental Policy, 12, 191–196.

    Article  Google Scholar 

  • Dongwoon, K., Jiyong, K., & Il, M. (2006). Integration of accident scenario generation and multiobjective optimization for safety-cost decision making in chemical processes. Journal of Loss Prevention in the Process Industries, 19, 705–713.

    Article  Google Scholar 

  • Eder, P., & Narodoslawsky, M. (1999). What environmental pressures are the region’s industry responsible for? A method of analysis with descriptive input, output models. Ecological Economics, 29, 359–374.

    Article  Google Scholar 

  • Ferng, J. J. (2005). Local sustainable yield and embodied resources in ecological footprint analysis. Ecological Economics, 53, 415–430.

    Article  Google Scholar 

  • Frankl, P., Masini, A., Gamberale, M., & Toccaceli, D. (1998). Simplified life-cycle analysis of PV systems in buildings: Present situation and future trends. Progress in Photovoltaics, 6, 137–146.

    Article  CAS  Google Scholar 

  • Guirardello, R., & Swaney, R. E. (2005). Optimization of process plant layout with pipe routing. Computers and Chemical Engineering, 30, 99–114.

    Article  CAS  Google Scholar 

  • Hillman, T., & Ramaswami, A. (2010). Greenhouse gas emission footprints and energy use benchmarks for eight U.S. Cities. Environmental Science Technology, 44, 1902–1910.

    Article  CAS  Google Scholar 

  • Hoekstra, A. Y. (2007). Human appropriation of natural capital: Comparing ecological footprint and water footprint analysis. Value of Water Report Series 23. Retrieved May 30, 2008 from www.waterfootprint.org/Reports/Report23-Hoekstra-2007.pdf.

  • Hoekstra, A. Y., & Chapagain, A. K. (2007). Water footprints of nations: water use by people as function of their consumption pattern. Water Resource Management, 21, 35–48.

    Article  Google Scholar 

  • Hoekstra, A. Y. & Hung, P. Q. (2002). Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. Value of Water Research Series 11. Retrieved May 30, 2008 from www.waterfootprint.org/Reports/Report11.pdf.

  • Honkasalo, A. (2000). Occupational Health and safety and environmental management systems. Environmental Science and Policy, 3, 39–45.

    Article  Google Scholar 

  • Huijbregts, M. A. J. (1999). A general framework for the analysis of uncertainty, and variability in life cycle assessment. International Journal of Life Cycle Assessment, 3, 273–280.

    Article  Google Scholar 

  • Hujbregts, M. A. J., Hellweg, S., & Frischknecht, R. (2008). Ecological footprint accounting in the life cycle assessment of products. Ecological Economics, 64, 798–807.

    Article  Google Scholar 

  • ISO 14040 (2006). Environmental managementlife cycle assessmentprinciples and framework. Geneva, Switzerland: International Organisation for Standardisation.

    Google Scholar 

  • ISO 14041 (1998). Environmental managementlife-cycle assessment; goal, scope definition and inventory analysis. Geneva, Switzerland: International Organisation for Standardisation.

    Google Scholar 

  • ISO 14042 (2000). Environmental managementlife-cycle assessment; life-cycle impact assessment. Geneva, Switzerland: International Organisation for Standardisation.

    Google Scholar 

  • ISO 14043 (2000). Environmental managementlife-cycle assessment; life-cycle interpretation. Geneva, Switzerland: International Organisationfor Standardisation.

    Google Scholar 

  • Jensen, A. A., Hoffman, L., Møller, B., Schmidt, A., Christiansen, K., Elkington, J., et al. (1997). Life cycle assessment—a guide to approaches, experiences and information sources. Environmental Issues Series no. 6, European Environment Agency. Retrieved August 21, 2010 from www.lca-center.dk/cms/site.asp?p=2867.

  • Klemeš, J., Friedler, F., Bulatov, I., & Varbanov, P. (2010a). Sustainability in the process industry—integration and optimization. New York: McGraw-Hill.

    Google Scholar 

  • Klemeš, J., Lam, H. L., & Foo, D. C. Y. (2010b). Water Recycling and recovery in food and drink industry. In K. Waldron, G. K. Moates, & C. B. Faulds (Eds.), Total food, sustainability of the agri-food chain (pp. 186–195). Cambridge, UK: Royal Society of Chemistry.

    Google Scholar 

  • Kratena, K. (2004). Ecological value added in an integrated ecosystem-economy model—an indicator for sustainability. Ecological Economics, 48, 189–200.

    Article  Google Scholar 

  • Krotscheck, C., & Narodoslawsky, M. (1996). The sustainable process index. A new dimension in ecological evaluation. Ecological Engineering, 6, 241–258.

    Article  Google Scholar 

  • Lam, H. L., Varbanov, P., & Klemeš, J. (2010). Minimising carbon footprint of regional biomass supply chains. Resources, Conservation and Recycling, 54, 303–309.

    Article  Google Scholar 

  • Lam, H. L., Varbanov, P. S., & Klemeš, J. J. (2011). Regional renewable energy and resource planning. Applied Energy, 88(2), 545–550.

    Article  Google Scholar 

  • Lee, S. H., Choi, K., Osako, M., & Dong, J. (2007). Evaluation of environmental burdens caused by changes of food waste management systems in Seoul, Korea. Science of the Total Environment, 387, 42–53.

    Article  CAS  Google Scholar 

  • Lindeijer, E. (1996). Part VI: Normalisation and valualtion. In H. A. Udo de Haes (Ed.), Towards a methodology for life cycle impact assessment. Brussels: Society of Environmental Toxicology and Chemistry (SETAC).

    Google Scholar 

  • Lindfors, L. G., Christiansen, K. & Hoffmann, L. (1995). Nordic guidelines on life cycle assessment. Nord 20, Copenhagen, Denmark: Nordic Council of Ministers.

    Google Scholar 

  • Monfreda, C., Wackernagel, M., & Deumling, D. (2004). Establishing natural capital accounts based on detailed ecological footprint and biological capacity assessment. Land Use Policy, 21, 231–246.

    Article  Google Scholar 

  • Padgett, J. P., Steinemann, A. C., Clarke, J. H., & Vandenbergh, M. P. (2008). A comparison of carbon calculators. Environmental Impact Assessment Review, 28, 106–115.

    Article  Google Scholar 

  • Pennington, D. W., Potting, J., Finnveden, G., Lindeijer, E., Jolliet, O., & Rydberg, T. (2004). Life cycle assessment—part 2: Current impact assessment practice. Environment International, 30, 21–734.

    Article  Google Scholar 

  • Perry, S., Klemeš, J., & Bulatov, I. (2008). Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors. Energy, 33, 1489–1497.

    Article  CAS  Google Scholar 

  • Pierucci, S., Brandani, P., Ranzi, E., & Sogaro, A. (2006). An industrial application of an on-line data reconciliation and optimization problem. Computers and Chemical Engineering, 20, S1539–S1544.

    Article  Google Scholar 

  • Sandholzer, D., & Narodoslawsky, M. (2007). SPIonExcel—fast and easy calculation of the sustainable process index via computer. Resources, Conservation and Recycling, 50, 130–142.

    Article  Google Scholar 

  • Saw, S. Y., Lee, L., Lim, M. H., Foo, D. C. Y., Chew, I. M. L., Tan, R. R., et al. (2011). An extended graphical targeting technique for direct reuse/recycle in concentration and property-based resource conservation networks. Clean Technologies and Environmental Policy, 13(2), 347–357. doi:10.1007/s10098-010-0305-5. 1-11.

    Article  Google Scholar 

  • Schmidt, A., Poulsen, P. B., Andreasen, J., Floee, T. & Poulsen, K. E. (2004). The working environment in LCA. A new Approach. Guidelines from the Danish Environmental Agency, 72. Copenhagen, Denmark. Retrieved September 20, 2010 from www.lca-center.dk/cms/site.asp?p=2867.

  • Schmidt, J. H., Holm, P., Merrild, A., & Christensen, P. (2007). Life cycle assessment of the waste hierarchy—a Danish case study on waste paper. Waste Management, 27, 1519–1530.

    Article  CAS  Google Scholar 

  • Stoeglehner, G. (2003). Ecological footprint—a tool for assessing sustainable energy supplies. Journal of Cleaner Production, 11, 267–277.

    Article  Google Scholar 

  • Stranddorf, H. K., Hoffmann, L. & Schmidt, A. (2003). LCA technical report: Impact categories, normalisation and weighting in LCA. Update on selected EDIP97-data, Serititel nr xxx 2003. FORCE Technology/Denmark. Retrieved September 5, 2010 from www.lca-center.dk/cms/site.asp?p=2867.

  • Udo de Haes, H. A., & Heijungs, R. (2007). Life-cycle assessment for energy analysis and management. Applied Energy, 84, 817–827.

    Article  CAS  Google Scholar 

  • Varbanov, P., & Friedler, F. (2008). P-graph methodology for cost-effective reduction of carbon emissions involving fuel cell combined cycles. Applied Thermal Engineering, 28, 2020–2029.

    Article  CAS  Google Scholar 

  • Weber, C. L., Jaramillo, P., Marriott, J., & Samaras, C. (2010). Life cycle assessment and grid electricity: What do we know and what can we know? Environmental Science Technology, 44, 1895–1901.

    Article  CAS  Google Scholar 

  • Wiedmann, T., & Lenzen, M. (2007). On the conversion between local and global hectares in ecological footprint analysis. Ecological Economics, 60, 673–677.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Jaromír Klemeš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Klemeš, J.J., De Benedetto, L. (2013). Environmental Assessment and Strategic Environmental Map Based on Footprints Assessment. In: Jawahir, I., Sikdar, S., Huang, Y. (eds) Treatise on Sustainability Science and Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6229-9_10

Download citation

Publish with us

Policies and ethics