Skip to main content

The Role of Tumor Associated Neutrophils in Cancer

  • Chapter
  • First Online:
The Tumor Immunoenvironment
  • 2208 Accesses

Abstract

Neutrophils play an established role in host defense and in killing invading microorganisms. As so, they are traditionally considered in the context of their anti-bacterial functions. It is becoming increasingly clear that tumor-associated neutrophils (TAN) play a major role in cancer biology, and especially in the tumor immune-microenvironment. Neutrophils, the major immune cell in the blood in humans, make up also a significant portion of the inflammatory cell infiltrate in many types of cancer. Like all other leukocytes, they move into tissues under the influence of specific chemokines, cytokines and cell adhesion molecules, most of them coming from the tumor microenvironment, being responsible for their recruitment into the tumor. We have found that TAN are a distinct population of neutrophils, differing markedly in their transcriptomic profile from both naïve neutrophils and the granulocytic fraction of myeloid-derived suppressor cells (G-MDSC). Furthermore, we recently found that neutrophils in the tumor develop to have a pro-tumorigenic phenotype during tumor progression. Studies have demonstrated specific examples of tumor-mediated signals (such as transforming growth factor-β [TGF-β]) that induce the formation of a pro-tumorigenic (N2) phenotype capable of supporting tumor growth and suppressing the anti-tumor immune response. Other studies show that TAN can also have an anti-tumorigenic (N1) phenotype. We explore here the literature on the different mechanisms of TAN-recruitment to tumors, the unique characteristics of TAN in animals and humans, and what shapes their pro- and/or anti-tumor effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abi Abdallah DS, Egan CE, Butcher BA, Denkers EY (2011) Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int Immunol 23:317–326

    Article  PubMed  CAS  Google Scholar 

  • Acuff HB, Carter KJ, Fingleton B, Gorden DL, Matrisian LM (2006) Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res 66:259–266

    Article  PubMed  CAS  Google Scholar 

  • Allen SS, Mackie JT, Russell K, Jeevan A, Skwor TA, McMurray DN (2008) Altered inflammatory responses following transforming growth factor-[beta] neutralization in experimental guinea pig tuberculous pleurisy. Tuberculosis 88:430–436

    Article  PubMed  CAS  Google Scholar 

  • Appelberg R (1992) Mycobacterial infection primes T cells and macrophages for enhanced recruitment of neutrophils. J Leukoc Biol 51:472–477

    PubMed  CAS  Google Scholar 

  • Aruga A, Aruga E, Cameron MJ, Chang AE (1997) Different cytokine profiles released by CD4+ and CD8+ tumor-draining lymph node cells involved in mediating tumor regression. J Leukoc Biol 61:507–516

    PubMed  CAS  Google Scholar 

  • Ashtekar A, Bhaskar S (2003) Poly’s plea: membership to the club of APC’s. Trends Immunol 24:485–490

    Article  PubMed  CAS  Google Scholar 

  • Atzpodien J, Reitz M (2008) Peripheral blood neutrophils as independent immunologic predictor of response and long-term survival upon immunotherapy in metastatic renal-cell carcinoma. Cancer Biother Radiopharm 23:129–134

    Article  PubMed  CAS  Google Scholar 

  • Balbin M, Fueyo A, Tester AM et al (2003) Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35:252–257

    Article  PubMed  CAS  Google Scholar 

  • Beauvillain C, Delneste Y, Scotet M et al (2007) Neutrophils efficiently cross-prime naive T cells in vivo. Blood 110:2965–2973

    Article  PubMed  CAS  Google Scholar 

  • Bellocq A, Antoine M, Flahault A et al (1998) Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome. Am J Pathol 152:83–92

    PubMed  CAS  Google Scholar 

  • Brandau S, Dumitru CA, Lang S (2012) Protumor and antitumor functions of neutrophil granulocytes. Semin Immunopathol [E-pub ahead of print]

    Google Scholar 

  • Breitbach CJ, Paterson JM, Lemay CG et al (2007) Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther 15:1686–1693

    Article  PubMed  CAS  Google Scholar 

  • Caruso RA, Bellocco R, Pagano M, Bertoli G, Rigoli L, Inferrera C (2002) Prognostic value of intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy. Mod Pathol 15:831–837

    Article  PubMed  Google Scholar 

  • Cavallo F, Giovarelli M, Gulino A et al (1992) Role of neutrophils and CD4+ T lymphocytes in the primary and memory response to nonimmunogenic murine mammary adenocarcinoma made immunogenic by IL-2 gene. J Immunol 149:3627–3635

    PubMed  CAS  Google Scholar 

  • Chen YL, Chen SH, Wang JY, Yang BC (2003) Fas ligand on tumor cells mediates inactivation of neutrophils. J Immunol 171:1183–1191

    PubMed  CAS  Google Scholar 

  • Cheung IY, Hsu K, Cheung NK (2012) Activation of peripheral-blood granulocytes is strongly correlated with patient outcome after immunotherapy with anti-GD2 monoclonal antibody and granulocyte-macrophage colony-stimulating factor. J Clin Oncol 30:426–432

    Article  PubMed  CAS  Google Scholar 

  • Colombo MP, Modesti A, Parmiani G, Forni G (1992a) Local cytokine availability elicits tumor rejection and systemic immunity through granulocyte-T-lymphocyte cross-talk. Cancer Res 52:4853–4857

    PubMed  CAS  Google Scholar 

  • Colombo MP, Lombardi L, Stoppacciaro A et al (1992b) Granulocyte colony-stimulating factor (G-CSF) gene transduction in murine adenocarcinoma drives neutrophil-mediated tumor inhibition in vivo. Neutrophils discriminate between G-CSF-producing and G-CSF- nonproducing tumor cells. J Immunol 149:113–119

    PubMed  CAS  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  • Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  PubMed  CAS  Google Scholar 

  • De Larco JE, Wuertz BRK, Yee D, Rickert BL, Furcht LT (2003) Atypical methylation of the interleukin-8 gene correlates strongly with the metastatic potential of breast carcinoma cells. Proc Natl Acad Sci 100:13988–13993

    Article  PubMed  CAS  Google Scholar 

  • De Larco JE, Wuertz BRK, Furcht LT (2004) The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clin Cancer Res 10:4895–4900

    Article  PubMed  Google Scholar 

  • Demers M, Krause DS, Schatzberg D et al (2012) Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A 109:13076–13081

    Article  PubMed  CAS  Google Scholar 

  • Di Carlo E, Forni G, Lollini P, Colombo MP, Modesti A, Musiani P (2001a) The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood 97:339–345

    Article  PubMed  Google Scholar 

  • Di Carlo E, Iezzi M, Pannellini T et al (2001b) Neutrophils in anti-cancer immunological strategies: old players in new games. J Hematother Stem Cell Res 10:739–748

    Article  PubMed  Google Scholar 

  • Doi K, Horiuchi T, Uchinami M et al (2002) Neutrophil elastase inhibitor reduces hepatic metastases induced by ischaemia-reperfusion in rats. Eur J Surg 168:507–510

    Google Scholar 

  • Dolcetti L, Peranzoni E, Ugel S et al (2010) Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40:22–35

    Article  PubMed  CAS  Google Scholar 

  • Donskov F, von der Maase H (2006) Impact of immune parameters on long-term survival in metastatic renal cell carcinoma. J Clin Oncol 24:1997–2005

    Article  PubMed  Google Scholar 

  • Dumitru CA, Gholaman H, Trellakis S et al (2011) Tumor-derived macrophage migration inhibitory factor modulates the biology of head and neck cancer cells via neutrophil activation. Int J Cancer 129:859–869

    Article  PubMed  CAS  Google Scholar 

  • Dumitru CA, Fechner MK, Hoffmann TK, Lang S, Brandau S (2012a) A novel p38-MAPK signaling axis modulates neutrophil biology in head and neck cancer. J Leukoc Biol 91:591–598

    Article  PubMed  CAS  Google Scholar 

  • Dumitru CA, Moses K, Trellakis S, Lang S, Brandau S (2012b) Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother 61:1155–1167

    Article  PubMed  CAS  Google Scholar 

  • Dupont PJ, Warrens AN (2007) Fas ligand exerts its pro-inflammatory effects via neutrophil recruitment but not activation. Immunology 120:133–139

    Article  PubMed  CAS  Google Scholar 

  • Eash KJ, Greenbaum AM, Gopalan PK, Link DC (2010) CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest 120:2423–2431

    Google Scholar 

  • Fossati G, Ricevuti G, Edwards SW, Walker C, Dalton A, Rossi ML (1999) Neutrophil infiltration into human gliomas. Acta Neuropathol 98:349–354

    Article  PubMed  CAS  Google Scholar 

  • Fridlender ZG, Sun J, Kim S et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194

    Article  PubMed  CAS  Google Scholar 

  • Fridlender ZG, Sun J, Mishalian I et al (2012) Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PLoS ONE 7:e31524

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  PubMed  CAS  Google Scholar 

  • Gerrard TL, Cohen DJ, Kaplan AM (1981) Human neutrophil-mediated cytotoxicity to tumor cells. J Natl Cancer Inst 66:483–488

    PubMed  CAS  Google Scholar 

  • Gijsbers K, Gouwy M, Struyf S et al (2005) GCP-2/CXCL6 synergizes with other endothelial cell-derived chemokines in neutrophil mobilization and is associated with angiogenesis in gastrointestinal tumors. Exp Cell Res 303:331–342

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Cambronero J, Horn J, Paul CC, Baumann MA (2003) Granulocyte-macrophage colony-stimulating factor is a chemoattractant cytokine for human neutrophils: involvement of the ribosomal p70 S6 kinase signaling pathway. J Immunol 171:6846–6855

    PubMed  CAS  Google Scholar 

  • Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R (2011) Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20:300–314

    Article  PubMed  CAS  Google Scholar 

  • Gregory AD, Houghton AM (2011) Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res 71:2411–2416

    Article  PubMed  CAS  Google Scholar 

  • Heifets L (1982) Centennial of Metchnikoff’s discovery. J Reticuloendothel Soc 31:381–391

    PubMed  CAS  Google Scholar 

  • Hicks AM, Riedlinger G, Willingham MC et al (2006) Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proc Natl Acad Sci 103:7753–7758

    Article  PubMed  CAS  Google Scholar 

  • Himmel ME, Crome SQ, Ivison S, Piccirillo C, Steiner TS, Levings MK (2011) Human CD4+ FOXP3+ regulatory T cells produce CXCL8 and recruit neutrophils. Eur J Immunol 41:306–312

    Article  PubMed  CAS  Google Scholar 

  • Hirose K, Hakozaki M, Nyunoya Y et al (1995) Chemokine gene transfection into tumour cells reduced tumorigenicity in nude mice in association with neutrophilic infiltration. Br J Cancer 72:708–714

    Article  PubMed  CAS  Google Scholar 

  • Houghton AM, Rzymkiewicz DM, Ji H et al (2010) Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 16:219–223

    Article  PubMed  CAS  Google Scholar 

  • Hubert P, Heitzmann A, Viel S et al (2011) Antibody-dependent cell cytotoxicity synapses form in mice during tumor-specific antibody immunotherapy. Cancer Res 71:5134–5143

    Article  PubMed  CAS  Google Scholar 

  • Huh SJ, Liang S, Sharma A, Dong C, Robertson GP (2010) Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res 70:6071–6082

    Article  PubMed  CAS  Google Scholar 

  • Iking-Konert C, Vogl T, Prior B et al (2008) T lymphocytes in patients with primary vasculitis: expansion of CD8+ T cells with the propensity to activate polymorphonuclear neutrophils. Rheumatology 47:609–616

    Article  PubMed  CAS  Google Scholar 

  • Ilie M, Hofman V, Ortholan C et al (2012) Predictive clinical outcome of the intratumoral CD66b-positive neutrophil-to-CD8-positive T-cell ratio in patients with resectable nonsmall cell lung cancer. Cancer 118:1726–1737

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Kubota Y, Yamamoto S et al (2005) Neutrophils enhance invasion activity of human cholangiocellular carcinoma and hepatocellular carcinoma cells: an in vitro study. J Gastroenterol Hepatol 20:287–293

    Article  PubMed  CAS  Google Scholar 

  • Ishihara YIH, Matsunaga K (1998) Contribution of cytokines on the suppression of lung metastasis. Biotherapy 11:267–275

    Article  PubMed  CAS  Google Scholar 

  • Ishihara Y, Fujii T, Iijima H, Saito K, Matsunaga K (1998) The role of neutrophils as cytotoxic cells in lung metastasis: suppression of tumor cell metastasis by a biological response modifier (PSK). In Vivo 12:175–182

    Google Scholar 

  • Jablonska E, Puzewska W, Grabowska Z, Jablonski J, Talarek L (2005) VEGF, IL-18 and NO production by neutrophils and their serum levels in patients with oral cavity cancer. Cytokine 30:93–99

    Article  PubMed  CAS  Google Scholar 

  • Jablonska E, Jablonski J, Marcinczyk M, Grabowska Z, Piotrowski L (2008) The release of soluble forms of TRAIL and DR5 by neutrophils of oral cavity cancer patients. Folia Histochem Cytobiol 46:177–183

    Article  PubMed  CAS  Google Scholar 

  • Jablonska E, Garley M, Jablonski J (2009) The expressions of intrinsic and extrinsic apoptotic pathway proteins in neutrophils of oral cavity cancer patients: a preliminary study. Arch Immunol Ther Exp 57:229–234 (Warsz)

    Article  CAS  Google Scholar 

  • Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S (2010) Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest 120:1151–1164

    Article  PubMed  CAS  Google Scholar 

  • Jensen HK, Donskov F, Marcussen N, Nordsmark M, Lundbeck F, von der Maase H (2009) Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J Clin Oncol 27:4709–4717

    Article  PubMed  Google Scholar 

  • Joshita S, Nakazawa K, Sugiyama Y et al (2009) Granulocyte-colony stimulating factor-producing pancreatic adenosquamous carcinoma showing aggressive clinical course. Intern Med 48:687–691

    Article  PubMed  Google Scholar 

  • Kandasamy M, Bay BH, Lee YK, Mahendran R (2011) Lactobacilli secreting a tumor antigen and IL15 activates neutrophils and dendritic cells and generates cytotoxic T lymphocytes against cancer cells. Cell Immunol 271:89–96

    Article  PubMed  CAS  Google Scholar 

  • Katano M, Torisu M (1982) Neutrophil-mediated tumor cell destruction in cancer ascites. Cancer 50:62–68

    Article  PubMed  CAS  Google Scholar 

  • Khajah M, Millen B, Cara DC, Waterhouse C, McCafferty DM (2011) Granulocyte-macrophage colony-stimulating factor (GM-CSF): a chemoattractive agent for murine leukocytes in vivo. J Leukoc Biol 89:945–953

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Buchlis G, Fridlender ZG et al (2008) Systemic blockade of transforming growth factor-beta signaling augments the efficacy of immunogene therapy. Cancer Res 68:10247–10256

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y (2006) Neutrophil infiltration and chemokines. Crit Rev Immunol 26:307–315

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y (2008) The role of chemokines in neutrophil biology. Front Biosci 13:2400–2407

    Article  PubMed  CAS  Google Scholar 

  • Kousis PC, Henderson BW, Maier PG, Gollnick SO (2007) Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils. Cancer Res 67:10501–10510

    Article  PubMed  CAS  Google Scholar 

  • Kuang DM, Zhao Q, Wu Y et al (2011) Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol 54:948–955

    Article  PubMed  CAS  Google Scholar 

  • Kusmartsev S, Nagaraj S, Gabrilovich DI (2005) Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol 175:4583–4592

    PubMed  CAS  Google Scholar 

  • Lechner MG, Liebertz DJ, Epstein AL (2010) Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 185:2273–2284

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein A, Seelig M, Berek J, Zighelboim J (1989) Human neutrophil-mediated lysis of ovarian cancer cells. Blood 74:805–809

    PubMed  CAS  Google Scholar 

  • Loukinova E, Dong G, Enamorado-Ayalya I et al (2000) Growth regulated oncogene-alpha expression by murine squamous cell carcinoma promotes tumor growth, metastasis, leukocyte infiltration and angiogenesis by a host CXC receptor-2 dependent mechanism. Oncogene 19:3477–3486

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531

    Article  PubMed  CAS  Google Scholar 

  • Masson V, de la Ballina LR, Munaut C et al (2005) Contribution of host MMP-2 and MMP-9 to promote tumor vascularization and invasion of malignant keratinocytes. FASEB J 19:234–236

    PubMed  CAS  Google Scholar 

  • Maus UA, Waelsch K, Kuziel WA et al (2003) Monocytes are potent facilitators of alveolar neutrophil emigration during lung inflammation: role of the CCL2-CCR2 axis. J Immunol 170:3273–3278

    PubMed  CAS  Google Scholar 

  • McGary CT, Mele M, Welch DR (1995) Highly metastatic 13762NF rat mammary adenocarcinoma cell clones stimulate bone marrow by secretion of granulocyte-macrophage colony-stimulating factor/interleukin-3 activity. Am J Pathol 147:1668–1681

    Google Scholar 

  • Medina-Echeverz J, Fioravanti J, Zabala M, Ardaiz N, Prieto J, Berraondo P (2011) Successful colon cancer eradication after chemoimmunotherapy is associated with profound phenotypic change of intratumoral myeloid cells. J Immunol 186:807–815

    Article  PubMed  CAS  Google Scholar 

  • Morales J, Kmieciak M, Knutson K, Bear H, Manjili M (2010) GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res Treat 123:39–49

    Article  PubMed  CAS  Google Scholar 

  • Movahedi K, Guilliams M, Van den Bossche J et al (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111:4233–4244

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI (2010) Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol 184:3106–3116

    Article  PubMed  CAS  Google Scholar 

  • Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci 103:12493–12498

    Article  PubMed  CAS  Google Scholar 

  • Orr FW, Wang HH (2001) Tumor cell interactions with the microvasculature: a rate-limiting step in metastasis. Surg Oncol Clin N Am 10:357–381, ix–x

    Google Scholar 

  • Pekarek LA, Starr BA, Toledano AY, Schreiber H (1995) Inhibition of tumor growth by elimination of granulocytes. J Exp Med 181:435–440

    Article  PubMed  CAS  Google Scholar 

  • Peranzoni E, Zilio S, Marigo I et al (2010) Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol 22:238–244

    Article  PubMed  CAS  Google Scholar 

  • Piccard H, Muschel RJ, Opdenakker G (2011) On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit Rev Oncol Hematol 82:296–309

    Article  PubMed  Google Scholar 

  • Queen MM, Ryan RE, Holzer RG, Keller-Peck CR, Jorcyk CL (2005) Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res 65:8896–8904

    Article  PubMed  CAS  Google Scholar 

  • Quigley JP, Deryugina EI (2012) Combating angiogenesis early: potential of targeting tumor-recruited neutrophils in cancer therapy. Future Oncol 8:5–8

    Article  PubMed  Google Scholar 

  • Reid MD, Basturk O, Thirabanjasak D et al (2011) Tumor-infiltrating neutrophils in pancreatic neoplasia. Mod Pathol 24:1612–1619

    Article  PubMed  CAS  Google Scholar 

  • Reiman JM, Kmieciak M, Manjili MH, Knutson KL (2007) Tumor immunoediting and immunosculpting pathways to cancer progression. Semin Cancer Biol 17:275–287

    Article  PubMed  CAS  Google Scholar 

  • Richards H, Williams A, Jones E et al (2010) Novel role of regulatory T cells in limiting early neutrophil responses in skin. Immunology 131:583–592

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Quiceno DG, Zabaleta J et al (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64:5839–5849

    Article  PubMed  CAS  Google Scholar 

  • Rotondo R, Barisione G, Mastracci L et al (2009) IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. Int J Cancer 125:887–893

    Article  PubMed  CAS  Google Scholar 

  • Sarraf KM, Belcher E, Raevsky E, Nicholson AG, Goldstraw P, Lim E (2009) Neutrophil/lymphocyte ratio and its association with survival after complete resection in non-small cell lung cancer. J Thorac Cardiovasc Surg 137:425–428

    Article  PubMed  Google Scholar 

  • Sato T, Takahashi S, Mizumoto T et al (2006) Neutrophil elastase and cancer. Surg Oncol 15:217–222

    Article  PubMed  Google Scholar 

  • Sawanobori Y, Ueha S, Kurachi M et al (2008) Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111:5457–5466

    Article  PubMed  CAS  Google Scholar 

  • Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203

    Article  PubMed  CAS  Google Scholar 

  • Schaider H, Oka M, Bogenrieder T et al (2003) Differential response of primary and metastatic melanomas to neutrophils attracted by IL-8. Int J Cancer 103:335–343

    Article  PubMed  CAS  Google Scholar 

  • Schmidt H, Bastholt L, Geertsen P et al (2005) Elevated neutrophil and monocyte counts in peripheral blood are associated with poor survival in patients with metastatic melanoma: a prognostic model. Br J Cancer 93:273–278

    Article  PubMed  CAS  Google Scholar 

  • Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 61:4756–4760

    PubMed  CAS  Google Scholar 

  • Schneider-Merck T, Lammerts van Bueren JJ, Berger S et al (2010) Human IgG2 antibodies against epidermal growth factor receptor effectively trigger antibody-dependent cellular cytotoxicity but, in contrast to IgG1, only by cells of myeloid lineage. J Immunol 184:512–520

    Google Scholar 

  • Shen L, Smith JM, Shen Z, Eriksson M, Sentman C, Wira CR (2007) Inhibition of human neutrophil degranulation by transforming growth factor-beta. Clin Exp Immunol 149:155–161

    Article  PubMed  CAS  Google Scholar 

  • Sherwood ER, Enoh VT, Murphey ED, Lin CY (2004) Mice depleted of CD8+ T and NK cells are resistant to injury caused by cecal ligation and puncture. Lab Invest 84:1655–1665

    Article  PubMed  Google Scholar 

  • Shojaei F, Wu X, Malik AK et al (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+ Gr1+ myeloid cells. Nat Biotech 25:911–920

    Article  CAS  Google Scholar 

  • Shojaei F, Singh M, Thompson JD, Ferrara N (2008) Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci 105:2640–2645

    Article  PubMed  CAS  Google Scholar 

  • Smith WB, Noack L, Khew-Goodall Y, Isenmann S, Vadas MA, Gamble JR (1996) Transforming growth factor-beta 1 inhibits the production of IL-8 and the transmigration of neutrophils through activated endothelium. J Immunol 157:360–368

    PubMed  CAS  Google Scholar 

  • Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6:447–458

    Article  PubMed  CAS  Google Scholar 

  • Stoppacciaro A, Melani C, Parenza M et al (1993) Regression of an established tumor genetically modified to release granulocyte colony-stimulating factor requires granulocyte-T cell cooperation and T cell-produced interferon gamma. J Exp Med 178:151–161

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Yang P (2004) Role of imbalance between neutrophil elastase and alpha 1-antitrypsin in cancer development and progression. Lancet Oncol 5:182–190

    Article  PubMed  CAS  Google Scholar 

  • Suttmann H, Riemensberger J, Bentien G et al (2006) Neutrophil granulocytes are required for effective bacillus Calmette-Guerin immunotherapy of bladder cancer and orchestrate local immune responses. Cancer Res 66:8250–8257

    Article  PubMed  CAS  Google Scholar 

  • Tazawa H, Okada F, Kobayashi T et al (2003) Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: implication of inflammation-associated carcinogenesis and tumor progression. Am J Pathol 163:2221–2232

    Article  PubMed  CAS  Google Scholar 

  • Tazzyman S, Lewis CE, Murdoch C (2009) Neutrophils: key mediators of tumour angiogenesis. Int J Exp Pathol 90:222–231

    Article  PubMed  CAS  Google Scholar 

  • Teramukai S, Kitano T, Kishida Y et al (2009) Pretreatment neutrophil count as an independent prognostic factor in advanced non-small-cell lung cancer: an analysis of Japan Multinational Trial Organisation LC00-03. Eur J Cancer 45:1950–1958

    Article  PubMed  Google Scholar 

  • Theilgaard-Monch K, Jacobsen LC, Borup R et al (2005) The transcriptional program of terminal granulocytic differentiation. Blood 105:1785–1796

    Article  PubMed  CAS  Google Scholar 

  • Trellakis S, Farjah H, Bruderek K et al (2011) Peripheral blood neutrophil granulocytes from patients with head and neck squamous cell carcinoma functionally differ from their counterparts in healthy donors. Int J Immunopathol Pharmacol 24:683–693

    PubMed  CAS  Google Scholar 

  • Tvinnereim AR, Hamilton SE, Harty JT (2004) Neutrophil involvement in cross-priming CD8+ T cell responses to bacterial antigens. J Immunol 173:1994–2002

    PubMed  CAS  Google Scholar 

  • Ueha S, Shand FH, Matsushima K (2011) Myeloid cell population dynamics in healthy and tumor-bearing mice. Int Immunopharmacol 11:783–788

    Article  PubMed  CAS  Google Scholar 

  • Uehara M, Sato N (1994) Impaired ability of neutrophils to produce oxygen-derived free radicals in patients with chronic liver disease and hepatocellular carcinoma. Hepatology 20:326–330

    Article  PubMed  CAS  Google Scholar 

  • Van Gisbergen KP, Geijtenbeek TB, Van Kooyk Y (2005) Close encounters of neutrophils and DCs. Trends Immunol 26:626–631

    Article  PubMed  CAS  Google Scholar 

  • Verbeke H, Struyf S, Berghmans N et al (2011) Isotypic neutralizing antibodies against mouse GCP-2/CXCL6 inhibit melanoma growth and metastasis. Cancer Lett 302:54–62

    Article  PubMed  CAS  Google Scholar 

  • Walsh SR, Cook EJ, Goulder F, Justin TA, Keeling NJ (2005) Neutrophil-lymphocyte ratio as a prognostic factor in colorectal cancer. J Surg Oncol 91:181–184

    Article  PubMed  CAS  Google Scholar 

  • Wang LC, Thomsen L, Sutherland R et al (2009) Neutrophil influx and chemokine production during the early phases of the antitumor response to the vascular disrupting agent DMXAA (ASA404). Neoplasia 11:793–803

    PubMed  CAS  Google Scholar 

  • Welch DR, Schissel DJ, Howrey RP, Aeed PA (1989) Tumor-elicited polymorphonuclear cells, in contrast to “normal” circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells. Proc Natl Acad Sci U S A 86:5859–5863

    Article  PubMed  CAS  Google Scholar 

  • Wengner AM, Pitchford SC, Furze RC, Rankin SM (2008) The coordinated action of G-CSF and ELR + CXC chemokines in neutrophil mobilization during acute inflammation. Blood 111:42–49

    Article  PubMed  CAS  Google Scholar 

  • Wu QD, Wang JH, Condron C, Bouchier-Hayes D, Redmond HP (2001) Human neutrophils facilitate tumor cell transendothelial migration. Am J Physiol Cell Physiol 280:C814–C822

    PubMed  CAS  Google Scholar 

  • Wu Y, Zhao Q, Peng C, Sun L, Li XF, Kuang DM (2011) Neutrophils promote motility of cancer cells via a hyaluronan-mediated TLR4/PI3 K activation loop. J Pathol 225:438–447

    Article  PubMed  CAS  Google Scholar 

  • Youn J-I, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802

    PubMed  CAS  Google Scholar 

  • Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91:167–181

    Article  PubMed  CAS  Google Scholar 

  • Yunping L, He Z, Krueger J et al (2006) Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116:2132–2141

    Article  CAS  Google Scholar 

  • Zhao JJ, Pan K, Wang W et al (2012) The prognostic value of tumor-infiltrating neutrophils in gastric adenocarcinoma after resection. PLoS ONE 7:e33655

    Article  PubMed  CAS  Google Scholar 

  • Zhou SL, Dai Z, Zhou ZJ et al (2012) Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology 56:2242–2254

    Article  PubMed  CAS  Google Scholar 

  • Zivkovic M, Poljak-Blazi M, Zarkovic K, Mihaljevic D, Schaur RJ, Zarkovic N (2007) Oxidative burst of neutrophils against melanoma B16–F10. Cancer Lett 246:100–108

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi G. Fridlender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fridlender, Z.G. (2013). The Role of Tumor Associated Neutrophils in Cancer. In: Shurin, M., Umansky, V., Malyguine, A. (eds) The Tumor Immunoenvironment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6217-6_19

Download citation

Publish with us

Policies and ethics