Skip to main content

T Cell Mulfunction in the Tumor Environment

  • Chapter
  • First Online:
The Tumor Immunoenvironment

Abstract

The cancer microenvironment may be envisaged as a battlefield of a fight between the host’s immune system and the tumor. An army of T lymphocytes, which are trained to combat bacterial and viral infections, is mobilized to attack the tumor, but most of the times succumbs to its powers and lose the war. A major reason for this failure is the unique composition of the cancer microenvironment, which is shaped by the tumor in favor of its progression. The immunosuppressive environment of the tumor makes it a hard place for T cells to exert their otherwise powerful effector functions. The study of the cancer microenvironment yields important insights into the nature of the tumor protective shields surrounding the tumor. Recent studies bring new prospects for intervention therapies based on recruitment and activation of T cells at the cancer microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadzadeh M, Johnson LA, Heemskerk B et al (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114:1537–1544

    Article  PubMed  CAS  Google Scholar 

  • Andersen RS, Thrue CA, Junker N et al (2012) Dissection of T-cell antigen specificity in human melanoma. Cancer Res 72:1642–1650

    Google Scholar 

  • Badoual C, Hans S, Fridman WH, Brasnu D, Erdman S, Tartour E (2009) Revisiting the prognostic value of regulatory T cells in patients with cancer. J Clin Oncol 27:e5–6; author reply e7

    Google Scholar 

  • Baniyash M (2004) TCR zeta-chain downregulation: curtailing an excessive inflammatory immune response. Nat Rev Immunol 4:675–687

    Article  PubMed  CAS  Google Scholar 

  • Beal AM, Anikeeva N, Varma R et al (2008) Protein kinase C theta regulates stability of the peripheral adhesion ring junction and contributes to the sensitivity of target cell lysis by CTL. J Immunol 181:4815–4824

    PubMed  CAS  Google Scholar 

  • Benatar T, Cao MY, Lee Y et al (2008) Virulizin induces production of IL-17E to enhance antitumor activity by recruitment of eosinophils into tumors. Cancer Immunol Immunother 57:1757–1769

    Article  PubMed  CAS  Google Scholar 

  • Benatar T, Cao MY, Lee Y et al (2010) IL-17E, a proinflammatory cytokine, has antitumor efficacy against several tumor types in vivo. Cancer Immunol Immunother 59:805–817

    Google Scholar 

  • Benchetrit F, Ciree A, Vives V et al (2002) Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism. Blood 99:2114–2121

    Article  PubMed  CAS  Google Scholar 

  • Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896

    Google Scholar 

  • Blackburn SD, Shin H, Haining WN et al (2009) Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 10:29–37

    Article  PubMed  CAS  Google Scholar 

  • Blesson S, Thiery J, Gaudin C et al (2002) Analysis of the mechanisms of human cytotoxic T lymphocyte response inhibition by NO. Int Immunol 14:1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Boissonnas A, Scholer-Dahirel A, Simon-Blancal V (2010) Foxp3+ T cells induce perforin-dependent dendritic cell death in tumor-draining lymph nodes. Immunity 32:266–278

    Google Scholar 

  • Bollard CM, Huls MH, Buza E et al (2006) Administration of latent membrane protein 2-specific cytotoxic T lymphocytes to patients with relapsed Epstein-Barr virus-positive lymphoma. Clin Lymphoma Myeloma 6:342–347

    Article  PubMed  CAS  Google Scholar 

  • Bronstein-Sitton N, Cohen-Daniel L, Vaknin I et al (2003) Sustained exposure to bacterial antigen induces interferon-gamma-dependent T cell receptor zeta down-regulation and impaired T cell function. Nat Immunol 4:957–964

    Article  PubMed  CAS  Google Scholar 

  • Bronte V, Zanovello P (2005) Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5:641–654

    Article  PubMed  CAS  Google Scholar 

  • Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176:284–290

    PubMed  CAS  Google Scholar 

  • Burnet M (1957) Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J 1:841–847

    Article  PubMed  CAS  Google Scholar 

  • Burnet FM (1971) Immunological surveillance in neoplasia. Transplant Rev 7:3–25

    PubMed  CAS  Google Scholar 

  • Carreno BM, Collins M (2002) The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Ann Rev Immunol 20:29–53

    Article  CAS  Google Scholar 

  • Cederbaum SD, Yu H, Grody WW, Kern RM, Yoo P, Iyer RK (2004) Arginases I and II: do their functions overlap? Mol Genet Metab 81(Suppl 1):S38–S44

    Article  PubMed  CAS  Google Scholar 

  • Cerottini JC, Nordin AA, Brunner KT (1970) Specific in vitro cytotoxicity of thymus-derived lymphocytes sensitized to alloantigens. Nature 228:1308–1309

    Article  PubMed  CAS  Google Scholar 

  • Charles KA, Kulbe H, Soper R et al (2009) The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J Clin Invest 119:3011–3023

    Article  PubMed  CAS  Google Scholar 

  • Chen CA, Ho CM, Chang MC et al (2010) Metronomic chemotherapy enhances antitumor effects of cancer vaccine by depleting regulatory T lymphocytes and inhibiting tumor angiogenesis. Mol Ther 18:1233–1243

    Google Scholar 

  • Chiou SH, Sheu BC, Chang WC, Huang SC, Hong-Nerng H (2005) Current concepts of tumor-infiltrating lymphocytes in human malignancies. J Reprod Immunol 67:35–50

    Article  PubMed  CAS  Google Scholar 

  • Chizzolini C, Chicheportiche R, Alvarez M et al (2008) Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion. Blood 112:3696–3703

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Miyamoto M, Kato K et al (2003) CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res 63:1555–1559

    PubMed  CAS  Google Scholar 

  • Curiel TJ, Wei S, Dong H et al (2003) Blockade of B7–H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9:562–567

    Article  PubMed  CAS  Google Scholar 

  • Currie AJ, Prosser A, McDonnell A et al (2009) Dual control of antitumor CD8 T cells through the programmed death-1/programmed death-ligand 1 pathway and immunosuppressive CD4 T cells: regulation and counterregulation. J Immunol 183:7898–7908

    Article  PubMed  CAS  Google Scholar 

  • Deaglio S, Dwyer KM, Gao W et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Debatin KM, Krammer PH (2004) Death receptors in chemotherapy and cancer. Oncogene 23:2950–2966

    Article  PubMed  CAS  Google Scholar 

  • Ezernitchi AV, Vaknin I, Cohen-Daniel L et al (2006) TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol 177:4763–4772

    PubMed  CAS  Google Scholar 

  • Facciabene A, Peng X, Hagemann IS et al (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475:226–230

    Google Scholar 

  • Fallarino F, Grohmann U, You S et al (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176:6752–6761

    PubMed  CAS  Google Scholar 

  • Fischer K, Hoffmann P, Voelkl S et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109:3812–3819

    Article  PubMed  CAS  Google Scholar 

  • Fontenot JD, Dooley JL, Farr AG, Rudensky AY (2005) Developmental regulation of Foxp3 expression during ontogeny. J Exp Med 202:901–906

    Article  PubMed  CAS  Google Scholar 

  • Fourcade J, Sun Z, Benallaoua M et al (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207:2175–2186

    Google Scholar 

  • Freedman LR, Cerottini JC, Brunner KT (1972) In vivo studies of the role of cytotoxic T cells in tumor allograft immunity. J Immunol 109:1371–1378

    PubMed  CAS  Google Scholar 

  • Fridman WH, Galon J, Pages F, Tartour E, Sautes-Fridman C, Kroemer G (2011) Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 71:5601–5605

    Google Scholar 

  • Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306

    Google Scholar 

  • Ghiringhelli F, Puig PE, Roux S et al (2005) Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+ CD25+ regulatory T cell proliferation. J Exp Med 202:919–929

    Article  PubMed  CAS  Google Scholar 

  • Gobert M, Treilleux I, Bendriss-Vermare N et al (2009) Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69:2000–2009

    Article  PubMed  CAS  Google Scholar 

  • Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Ann Rev Immunol 23:515–548

    Article  CAS  Google Scholar 

  • Harrington LE, Hatton RD, Mangan PR et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    Article  PubMed  CAS  Google Scholar 

  • Hirahara N, Nio Y, Sasaki S et al (2001) Inoculation of human interleukin-17 gene-transfected Meth-A fibrosarcoma cells induces T cell-dependent tumor-specific immunity in mice. Oncology 61:79–89

    Article  PubMed  CAS  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Apasov S, Koshiba M, Sitkovsky M (1997) Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 90:1600–1610

    PubMed  CAS  Google Scholar 

  • Huang B, Pan PY, Li Q et al (2006) Gr-1+ CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz AA, Watkins SK (2012) Immune suppression in the tumor microenvironment: a role for dendritic cell-mediated tolerization of T cells. Cancer Immunol Immunother 61:289–293

    Google Scholar 

  • Igney FH, Krammer PH (2005) Tumor counterattack: fact or fiction? Cancer Immunol Immunother 54:1127–1136

    Article  PubMed  Google Scholar 

  • Jones E, Dahm-Vicker M, Golgher D, Gallimore A (2003) CD25+ regulatory T cells and tumor immunity. Immunol Lett 85:141–143

    Article  PubMed  CAS  Google Scholar 

  • Kanterman J, Sade-Feldman M, Baniyash M (2012) New insights into chronic inflammation-induced immunosuppression. Semin Cancer Biol 22:307–318

    Google Scholar 

  • Klein G, Klein E (1977) Immune surveillance against virus-induced tumors and nonrejectability of spontaneous tumors: contrasting consequences of host versus tumor evolution. Proc Natl Acad Sci U S A 74:2121–2125

    Article  PubMed  CAS  Google Scholar 

  • Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21:467–476

    Article  PubMed  CAS  Google Scholar 

  • Kryczek I, Wei S, Zou L et al (2007) Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol 178:6730–6733

    PubMed  CAS  Google Scholar 

  • Kwek SS, Cha E, Fong L (2012) Unmasking the immune recognition of prostate cancer with CTLA4 blockade. Nat Rev Cancer 12:289–297

    Google Scholar 

  • Lai P, Rabinowich H, Crowley-Nowick PA, Bell MC, Mantovani G, Whiteside TL (1996) Alterations in expression and function of signal-transducing proteins in tumor-associated T and natural killer cells in patients with ovarian carcinoma. Clin Cancer Res 2:161–173

    PubMed  CAS  Google Scholar 

  • Lathrop SK, Santacruz NA, Pham D, Luo J, Hsieh CS (2008) Antigen-specific peripheral shaping of the natural regulatory T cell population. J Exp Med 205:3105–3117

    Article  PubMed  CAS  Google Scholar 

  • Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736

    Article  PubMed  CAS  Google Scholar 

  • Lee GK, Park HJ, Macleod M, Chandler P, Munn DH, Mellor AL (2002) Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 107:452–460

    Article  PubMed  CAS  Google Scholar 

  • Lehe C, Ghebeh H, Al-Sulaiman A et al (2008) The Wilms’ tumor antigen is a novel target for human CD4+ regulatory T cells: implications for immunotherapy. Cancer Res 68:6350–6359

    Article  PubMed  CAS  Google Scholar 

  • Leveque L, Deknuydt F, Bioley G et al (2009) Interleukin 2-mediated conversion of ovarian cancer-associated CD4+ regulatory T cells into proinflammatory interleukin 17-producing helper T cells. J Immunother 32:101–108

    Article  PubMed  CAS  Google Scholar 

  • Liddy N, Bossi G, Adams KJ et al (2012) Monoclonal TCR-redirected tumor cell killing. Nat Med 18:980–7

    Google Scholar 

  • Mangan PR, Harrington LE, O’Quinn DB et al (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231–234

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Allavena P, Sica A (2004) Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer 40:1660–1667

    Article  PubMed  CAS  Google Scholar 

  • Martin-Orozco N, Muranski P, Chung Y et al (2009) T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31:787–798

    Article  PubMed  CAS  Google Scholar 

  • McAllister F, Henry A, Kreindler JL et al (2005) Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J Immunol 175:404–412

    PubMed  CAS  Google Scholar 

  • Middleton GW, Annels NE, Pandha HS (2012) Are we ready to start studies of Th17 cell manipulation as a therapy for cancer? Cancer Immunol Immunother 61:1–7

    Google Scholar 

  • Miller JF (1961) Immunological function of the thymus. Lancet 2:748–749

    Article  PubMed  CAS  Google Scholar 

  • Miyahara Y, Odunsi K, Chen W, Peng G, Matsuzaki J, Wang RF (2008) Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci U S A 105:15505–15510

    Article  PubMed  Google Scholar 

  • Movahedi K, Laoui D, Gysemans C et al (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70:5728–5739

    Google Scholar 

  • Nagaraj S, Gupta K, Pisarev V et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

    Article  PubMed  CAS  Google Scholar 

  • Nakagomi H, Petersson M, Magnusson I et al (1993) Decreased expression of the signal-transducing zeta chains in tumor-infiltrating T-cells and NK cells of patients with colorectal carcinoma. Cancer Res 53:5610–5612

    PubMed  CAS  Google Scholar 

  • Nardin A, Abastado JP (2008) Macrophages and cancer. Front Biosci 13:3494–3505

    Article  PubMed  CAS  Google Scholar 

  • Numasaki M, Fukushi J, Ono M et al (2003) Interleukin-17 promotes angiogenesis and tumor growth. Blood 101:2620–2627

    Article  PubMed  CAS  Google Scholar 

  • Numasaki M, Watanabe M, Suzuki T et al (2005) IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol 175:6177–6189

    PubMed  CAS  Google Scholar 

  • Ochsenbein AF, Klenerman P, Karrer U et al (1999) Immune surveillance against a solid tumor fails because of immunological ignorance. Proc Natl Acad Sci U S A 96:2233–2238

    Article  PubMed  CAS  Google Scholar 

  • Ohta A, Gorelik E, Prasad SJ et al (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A 103:13132–13137

    Article  PubMed  CAS  Google Scholar 

  • Ong SM, Tan YC, Beretta O et al (2012) Macrophages in human colorectal cancer are pro-inflammatory and prime T cells towards an anti-tumour type-1 inflammatory response. Eur J Immunol 42:89–100

    Google Scholar 

  • Ostrand-Rosenberg S (2009a) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59:1593–1600

    Google Scholar 

  • Ostrand-Rosenberg S, Sinha P (2009b) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    Article  PubMed  CAS  Google Scholar 

  • Park H, Li Z, Yang XO et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    Article  PubMed  CAS  Google Scholar 

  • Peggs KS, Quezada SA, Korman AJ, Allison JP (2006) Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr Opin Immunol 18:206–213

    Article  PubMed  CAS  Google Scholar 

  • Rech AJ, Vonderheide RH (2009) Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann N Y Acad Sci 1174:99–106

    Article  PubMed  CAS  Google Scholar 

  • Reichert TE, Rabinowich H, Johnson JT, Whiteside TL (1998) Mechanisms responsible for signaling and functional defects. J Immunother 21:295–306

    Article  PubMed  CAS  Google Scholar 

  • Reichert TE, Strauss L, Wagner EM, Gooding W, Whiteside TL (2002) Signaling abnormalities, apoptosis, and reduced proliferation of circulating and tumor-infiltrating lymphocytes in patients with oral carcinoma. Clin Cancer Res 8:3137–3145

    PubMed  Google Scholar 

  • Rivoltini L, Carrabba M, Huber V et al (2002) Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev 188:97–113

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Ochoa AC (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180–191

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC (2002) Regulation of T cell receptor CD3zeta chain expression by l-arginine. J Biol Chem 277:21123–21129

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Quiceno DG, Ochoa AC (2007) l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109:1568–1573

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA (2012) Raising the bar: the curative potential of human cancer immunotherapy. Sci Transl Med 4:127ps8

    Google Scholar 

  • Serafini P, Mgebroff S, Noonan K, Borrello I (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68:5439–5449

    Article  PubMed  CAS  Google Scholar 

  • Shafer-Weaver KA, Watkins SK, Anderson MJ et al (2009) Immunity to murine prostatic tumors: continuous provision of T-cell help prevents CD8 T-cell tolerance and activates tumor-infiltrating dendritic cells. Cancer Res 69:6256–6264

    Article  PubMed  CAS  Google Scholar 

  • Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218

    PubMed  CAS  Google Scholar 

  • Singer K, Gottfried E, Kreutz M, Mackensen A (2011) Suppression of T-cell responses by tumor metabolites. Cancer Immunol Immunother 60:425–431

    Google Scholar 

  • Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res 65:11743–11751

    Article  PubMed  CAS  Google Scholar 

  • Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181:4666–4675

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Godfrey DI, Trapani JA (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2:293–299

    Article  PubMed  CAS  Google Scholar 

  • Song X, Krelin Y, Dvorkin T et al (2005) CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. J Immunol 175:8200–8208

    PubMed  CAS  Google Scholar 

  • Sullivan R, Purushotham AD (2011) Avoiding the zero sum game in global cancer policy: beyond 2011 UN high level summit. Eur J Cancer 47:2375–80

    Google Scholar 

  • Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203:1685–1691

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Numasaki M, Lotze MT, Sasaki H (2005) Interleukin-17 enhances bFGF-, HGF- and VEGF-induced growth of vascular endothelial cells. Immunol Lett 98:189–193

    Article  PubMed  CAS  Google Scholar 

  • Taylor DD, Bender DP, Gercel-Taylor C, Stanson J, Whiteside TL (2001) Modulation of TcR/CD3-zeta chain expression by a circulating factor derived from ovarian cancer patients. Br J Cancer 84:1624–1629

    Article  PubMed  CAS  Google Scholar 

  • Thomas L (1959) In: Lawrence HS (ed) Cellular and humoral aspects of the hypersensitive state. Hober-Harper, New York, p 529

    Google Scholar 

  • Uyttenhove C, Pilotte L, Theate I et al (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274

    Article  PubMed  CAS  Google Scholar 

  • Valitutti S, Muller S, Dessing M, Lanzavecchia A (1996) Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy. J Exp Med 183:1917–1921

    Article  PubMed  CAS  Google Scholar 

  • Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–189

    Article  PubMed  CAS  Google Scholar 

  • Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532

    Article  PubMed  CAS  Google Scholar 

  • Walker MR, Kasprowicz DJ, Gersuk VH et al (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+ CD25− T cells. J Clin Invest 112:1437–1443

    PubMed  CAS  Google Scholar 

  • Watkins SK, Hurwitz AA (2012) FOXO3: a master switch for regulating tolerance and immunity in dendritic cells. Oncoimmunology 1:252–254

    Google Scholar 

  • Watkins SK, Zhu Z, Riboldi E et al (2011) FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer. J Clin Invest 121:1361–1372

    Google Scholar 

  • Wing K, Onishi Y, Prieto-Martin P et al (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Rhee KJ, Albesiano E et al (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15:1016–1022

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Su X, Hsueh EC et al Human tumor-infiltrating Th17 cells have the capacity to differentiate into IFN-gamma+ and FOXP3+ T cells with potent suppressive function. Eur J Immunol 41:936–51

    Google Scholar 

  • Young MR, Newby M, Wepsic HT (1987) Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res 47:100–105

    PubMed  CAS  Google Scholar 

  • Zajac AJ, Blattman JN, Murali-Krishna K et al (1998) Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 188:2205–2213

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Conejo-Garcia JR, Katsaros D et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Rong G, Wei H et al (2008) The prevalence of Th17 cells in patients with gastric cancer. Biochem Biophys Res Commun 374:533–537

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, Drake CG, Levitsky HI (2006) Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood 107:628–636

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge support from Concern Foundation, Los Angeles, the German-Israel Foundation (GIF) and the Jewish Founders Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eitan Yefenof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yefenof, E. (2013). T Cell Mulfunction in the Tumor Environment. In: Shurin, M., Umansky, V., Malyguine, A. (eds) The Tumor Immunoenvironment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6217-6_13

Download citation

Publish with us

Policies and ethics