Defense Proteins with Antiproliferative and Antimicrobial Activities from Fungi and Bacteria

  • Jack Ho Wong
  • Tzi Bun Ng
  • Evandro Fei Fang
  • He-Xiang Wang
Chapter

Abstract

Defensins are a group of proteins characterized by a conservedcysteine-stabilized alpha-helix and beta-sheet structural motif. They are widely distributed among vertebrates and invertebrates. In addition to the presence of defensins in mammals and submammalian vertebrates enumerated in  Chap. 23, fungi and bacteria also produce a variety of defensins with antiproliferative activity toward tumor cells and anticancer activity in tumor bearing mice. The fungal proteins include ribonucleases, antifungal proteins, antibacterial proteins, ubiquitin-like peptides, ribosome inactivating proteins, hemolysins, hemagglutinins/lectins, laccases, and proteases. The bacterial proteins comprise ribonucleases and antifungal proteins. Some of the aforementioned proteins also display antimicrobial activities toward pathogenic microbes.

Keywords

Hemagglutinating Activity Antifungal Protein Oyster Mushroom Mouse Splenocytes Flammulina Velutipes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank National Science Foundation of China for award of a research grant (number 81201270).

References

  1. 1.
    Zhu S (2008) Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSalphabeta defensins. Mol Immunol 45:828–838PubMedCrossRefGoogle Scholar
  2. 2.
    Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sonksen CP, Ludvigsen S et al (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437:975–980PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang J, Yang Y, Teng D, Tian Z, Wang S, Wang J (2011) Expression of plectasin in Pichia pastoris and its characterization as a new antimicrobial peptide against Staphyloccocus and Streptococcus. Protein Expr Purif 78:189–196PubMedCrossRefGoogle Scholar
  4. 4.
    Jing XL, Luo XG, Tian WJ, Lv LH, Jiang Y, Wang N et al (2010) High-level expression of the antimicrobial peptide plectasin in Escherichia coli. Curr Microbiol 61:197–202PubMedCrossRefGoogle Scholar
  5. 5.
    Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U et al (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328:1168–1172PubMedCrossRefGoogle Scholar
  6. 6.
    Thomsen LE, Gottlieb CT, Gottschalk S, Wodskou TT, Kristensen HH, Gram L et al (2010) The heme sensing response regulator HssR in Staphylococcus aureus but not the homologous RR23 in Listeria monocytogenes modulates susceptibility to the antimicrobial peptide plectasin. BMC Microbiol 10:307PubMedCrossRefGoogle Scholar
  7. 7.
    Mandal K, Pentelute BL, Tereshko V, Thammavongsa V, Schneewind O, Kossiakoff AA et al (2009) Racemic crystallography of synthetic protein enantiomers used to determine the X-ray structure of plectasin by direct methods. Protein Sci: Publ Protein Soc 18:1146–1154CrossRefGoogle Scholar
  8. 8.
    Ostergaard C, Sandvang D, Frimodt-Moller N, Kristensen HH (2009) High cerebrospinal fluid (CSF) penetration and potent bactericidal activity in CSF of NZ2114, a novel plectasin variant, during experimental pneumococcal meningitis. Antimicrob Agents Chemother 53:1581–1585PubMedCrossRefGoogle Scholar
  9. 9.
    Xiong YQ, Hady WA, Deslandes A, Rey A, Fraisse L, Kristensen HH et al (2011) Efficacy of NZ2114, a novel plectasin-derived cationic antimicrobial peptide antibiotic, in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55:5325–5330PubMedCrossRefGoogle Scholar
  10. 10.
    Hara S, Mukae H, Sakamoto N, Ishimoto H, Amenomori M, Fujita H et al (2008) Plectasin has antibacterial activity and no affect on cell viability or IL-8 production. Biochem Biophys Res Commun 374:709–713PubMedCrossRefGoogle Scholar
  11. 11.
    Brinch KS, Sandberg A, Baudoux P, Van Bambeke F, Tulkens PM, Frimodt-Moller N et al (2009) Plectasin shows intracellular activity against Staphylococcus aureus in human THP-1 monocytes and in a mouse peritonitis model. Antimicrob Agents Chemother 53:4801–4808PubMedCrossRefGoogle Scholar
  12. 12.
    Ngai PH, Zhao Z, Ng TB (2005) Agrocybin, an antifungal peptide from the edible mushroom Agrocybe cylindracea. Peptides 26:191–196PubMedCrossRefGoogle Scholar
  13. 13.
    Wong JH, Ng TB, Wang H, Sze SC, Zhang KY, Li Q et al (2011) Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris. Phytomedicine : Int J Phytother Phytopharmacol 18:387–392CrossRefGoogle Scholar
  14. 14.
    Fang EF, Ng TB, Shaw PC, Wong RN (2011) Recent progress in medicinal investigations on trichosanthin and other ribosome inactivating proteins from the plant genus Trichosanthes. Curr Med Chem 18:4410–4417PubMedCrossRefGoogle Scholar
  15. 15.
    Lam SK, Ng TB (2001) Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochem Biophys Res Commun 285:1071–1075PubMedCrossRefGoogle Scholar
  16. 16.
    Ng TB, Lam YW, Wang H (2003) Calcaelin, a new protein with translation-inhibiting, antiproliferative and antimitogenic activities from the mosaic puffball mushroom Calvatia caelata. Planta Med 69:212–217PubMedCrossRefGoogle Scholar
  17. 17.
    Wong JH, Wang HX, Ng TB (2008) Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus. Appl Microbiol Biotechnol 81:669–674PubMedCrossRefGoogle Scholar
  18. 18.
    Ngai PH, Ng TB (2004) A ribonuclease with antimicrobial, antimitogenic and antiproliferative activities from the edible mushroom Pleurotus sajor-caju. Peptides 25:11–17PubMedCrossRefGoogle Scholar
  19. 19.
    Xia L, Chu KT, Ng TB (2005) A low-molecular mass ribonuclease from the brown oyster mushroom. J Pept Res : Off J Am Pept Soc 66:1–8CrossRefGoogle Scholar
  20. 20.
    Guan GP, Wang HX, Ng TB (2007) A novel ribonuclease with antiproliferative activity from fresh fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochim Biophys Acta 1770:1593–1597PubMedCrossRefGoogle Scholar
  21. 21.
    Zhao S, Zhao Y, Li S, Zhang G, Wang H, Ng TB (2010) An antiproliferative ribonuclease from fruiting bodies of the wild mushroom Russula delica. J Microbiol Biotechnol 20:693–699PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang RY, Zhang GQ, Hu DD, Wang HX, Ng TB (2010) A novel ribonuclease with antiproliferative activity from fresh fruiting bodies of the edible mushroom Lyophyllum shimeiji. Biochem Genet 48:658–668PubMedCrossRefGoogle Scholar
  23. 23.
    Wu X, Zheng S, Cui L, Wang H, Ng TB (2010) Isolation and characterization of a novel ribonuclease from the pink oyster mushroom Pleurotus djamor. J Gen Appl Microbiol 56:231–239PubMedCrossRefGoogle Scholar
  24. 24.
    Wu Y, Wang H, Ng T (2012) Purification and characterization of a novel RNase with antiproliferative activity from the mushroom Lactarius flavidulus. J Antibiot 65:67–72PubMedCrossRefGoogle Scholar
  25. 25.
    Ngai PH, Wang HX, Ng TB (2003) Purification and characterization of a ubiquitin-like peptide with macrophage stimulating, antiproliferative and ribonuclease activities from the mushroom Agrocybe cylindracea. Peptides 24:639–645PubMedCrossRefGoogle Scholar
  26. 26.
    Lam YW, Ng TB, Wang HX (2001) Antiproliferative and antimitogenic activities in a peptide from puffball mushroom Calvatia caelata. Biochem Biophys Res Commun 289:744–749PubMedCrossRefGoogle Scholar
  27. 27.
    Ngai PH, Ng TB (2006) A hemolysin from the mushroom Pleurotus eryngii. Appl Microbiol Biotechnol 72:1185–1191PubMedCrossRefGoogle Scholar
  28. 28.
    Wang HX, Ng TB, Liu WK, Ooi VE, Chang ST (1995) Isolation and characterization of two distinct lectins with antiproliferative activity from the cultured mycelium of the edible mushroom Tricholoma mongolicum. Int J Pept Protein Res 46:508–513PubMedCrossRefGoogle Scholar
  29. 29.
    Mahajan RG, Patil SI, Mohan DR, Shastry P (2002) Pleurotus Eous mushroom lectin (PEL) with mixed carbohydrate inhibition and antiproliferative activity on tumor cell lines. JBMBB : off J Fed Asian Ocean Biochem Mol Biol 6:341–345Google Scholar
  30. 30.
    Wang H, Ng TB, Liu Q (2003) A novel lectin from the wild mushroom Polyporus adusta. Biochem Biophys Res Commun 307:535–539PubMedCrossRefGoogle Scholar
  31. 31.
    Ngai PH, Ng TB (2004) A mushroom (Ganoderma capense) lectin with spectacular thermostability, potent mitogenic activity on splenocytes, and antiproliferative activity toward tumor cells. Biochem Biophys Res Commun 314:988–993PubMedCrossRefGoogle Scholar
  32. 32.
    Han CH, Liu QH, Ng TB, Wang HX (2005) A novel homodimeric lactose-binding lectin from the edible split gill medicinal mushroom Schizophyllum commune. Biochem Biophys Res Commun 336:252–257PubMedCrossRefGoogle Scholar
  33. 33.
    Feng K, Liu QH, Ng TB, Liu HZ, Li JQ, Chen G et al (2006) Isolation and characterization of a novel lectin from the mushroom Armillaria luteovirens. Biochem Biophys Res Commun 345:1573–1578PubMedCrossRefGoogle Scholar
  34. 34.
    Wong JH, Wang H, Ng TB (2009) A haemagglutinin from the medicinal fungus Cordyceps militaris. Biosci Rep 29:321–327PubMedCrossRefGoogle Scholar
  35. 35.
    Pohleven J, Obermajer N, Sabotic J, Anzlovar S, Sepcic K, Kos J et al (2009) Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic T cells. Biochim Biophys Acta 1790:173–181PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang GQ, Sun J, Wang HX, Ng TB (2009) A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa. Acta Biochim Pol 56:415–421PubMedGoogle Scholar
  37. 37.
    Zhao S, Zhao Y, Li S, Zhao J, Zhang G, Wang H et al (2010) A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the edible wild mushroom Russula delica. Glycoconj J 27:259–265PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang G, Sun J, Wang H, Ng TB (2010) First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. Phytomedicine : Int J Phytother Phytopharmacol 17:775–781CrossRefGoogle Scholar
  39. 39.
    Li Y, Zhang G, Ng TB, Wang H (2010) A novel lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from dried fruiting bodies of the monkey head mushroom Hericium erinaceum. J Biomed & Biotechnol 2010:716515Google Scholar
  40. 40.
    Wang SX, Zhang GQ, Zhao S, Xu F, Zhou Y, Geng XL, et al (2012) Purification and characterization of a novel lectin with antiphytovirus activities from the wild mushroom Paxillus involutus. Protein Pept LettGoogle Scholar
  41. 41.
    Wu Y, Wang H, Ng TB (2011) Purification and characterization of a lectin with antiproliferative activity toward cancer cells from the dried fruit bodies of Lactarius flavidulus. Carbohydr Res 346:2576–2581PubMedCrossRefGoogle Scholar
  42. 42.
    Liu Q, Wang H, Ng TB (2006) First report of a xylose-specific lectin with potent hemagglutinating, antiproliferative and anti-mitogenic activities from a wild ascomycete mushroom. Biochim Biophys Acta 1760:1914–1919PubMedCrossRefGoogle Scholar
  43. 43.
    Wang J, Wang HX, Ng TB (2007) A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides 28:560–565PubMedCrossRefGoogle Scholar
  44. 44.
    Sun J, Chen QJ, Cao QQ, Wu YY, Xu LJ, Zhu MJ et al (2012) A Laccase with Antiproliferative and HIV-I Reverse Transcriptase Inhibitory Activities from the Mycorrhizal Fungus Agaricus placomyces. J Biomed & Biotechnol 2012:736472Google Scholar
  45. 45.
    Hu DD, Zhang RY, Zhang GQ, Wang HX, Ng TB (2011) A laccase with antiproliferative activity against tumor cells from an edible mushroom, white common Agrocybe cylindracea. Phytomedicine : Int J Phytother Phytopharmacol 18:374–379CrossRefGoogle Scholar
  46. 46.
    Wong JH, Ng TB, Jiang Y, Liu F, Sze SC, Zhang KY (2010) Purification and characterization of a Laccase with inhibitory activity toward HIV-1 reverse transcriptase and tumor cells from an edible mushroom (Pleurotus cornucopiae). Protein Pept Lett 17:1040–1047PubMedCrossRefGoogle Scholar
  47. 47.
    Zou YJ, Wang HX, Ng TB, Huang CY, Zhang JX (2012) Purification and characterization of a novel laccase from the edible mushroom Hericium coralloides. J Microbiol 50:72–78PubMedCrossRefGoogle Scholar
  48. 48.
    Wang HX, Ng TB (2004) A new laccase from dried fruiting bodies of the monkey head mushroom Hericium erinaceum. Biochem Biophys Res Commun 322:17–21PubMedCrossRefGoogle Scholar
  49. 49.
    Wang HX, Ng TB (2004) Purification of a novel low-molecular-mass laccase with HIV-1 reverse transcriptase inhibitory activity from the mushroom Tricholoma giganteum. Biochem Biophys Res Commun 315:450–454PubMedCrossRefGoogle Scholar
  50. 50.
    Wang HX, Ng TB (2006) Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl Microbiol Biotechnol 69:521–525PubMedCrossRefGoogle Scholar
  51. 51.
    Wang HX, Ng TB (2006) A laccase from the medicinal mushroom Ganoderma lucidum. Appl Microbiol Biotechnol 72:508–513PubMedCrossRefGoogle Scholar
  52. 52.
    Sun J, Wang H, Ng TB (2011) Isolation of a laccase with HIV-1 reverse transcriptase inhibitory activity from fresh fruiting bodies of the Lentinus edodes (Shiitake mushroom). Indian J Biochem Biophys 48:88–94PubMedGoogle Scholar
  53. 53.
    El-Fakharany EM, Haroun BM, Ng TB, Redwan ER (2010) Oyster mushroom laccase inhibits hepatitis C virus entry into peripheral blood cells and hepatoma cells. Protein Pept Lett 17:1031–1039PubMedCrossRefGoogle Scholar
  54. 54.
    Sun J, Zhao Y, Chai H, Wang H, Ng TB (2011) A novel alkaline protease with antiproliferative activity from fresh fruiting bodies of the toxic wild mushroom Amanita farinosa. Acta Biochim Pol 58:567–572PubMedGoogle Scholar
  55. 55.
    Wang SX, Liu Y, Zhang GQ, Zhao S, Xu F, Geng XL et al (2012) Cordysobin, a novel alkaline serine protease with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Cordyceps sobolifera. J Biosci Bioeng 113:42–47PubMedCrossRefGoogle Scholar
  56. 56.
    Kim JS, Sapkota K, Park SE, Choi BS, Kim S, Nguyen TH et al (2006) A fibrinolytic enzyme from the medicinal mushroom Cordyceps militaris. J Microbiol 44:622–631PubMedGoogle Scholar
  57. 57.
    Shen MH, Kim JS, Sapkota K, Park SE, Choi BS, Kim S et al (2007) Purification, characterization, and cloning of fibrinolytic metalloprotease from Pleurotus ostreatus mycelia. J Microbiol Biotechnol 17:1271–1283PubMedGoogle Scholar
  58. 58.
    Kumaran S, Palani P, Nishanthi R, Kaviyarasan V (2011) Studies on screening, isolation and purification of a fibrinolytic protease from an isolate (VK12) of Ganoderma lucidum and evaluation of its antithrombotic activity. Medical Mycol J 52:153–162CrossRefGoogle Scholar
  59. 59.
    Lee SY, Kim JS, Kim JE, Sapkota K, Shen MH, Kim S et al (2005) Purification and characterization of fibrinolytic enzyme from cultured mycelia of Armillaria mellea. Protein Expr Purif 43:10–17PubMedCrossRefGoogle Scholar
  60. 60.
    Zheng S, Liu Q, Zhang G, Wang H, Ng TB (2010) Purification and characterization of an antibacterial protein from dried fruiting bodies of the wild mushroom Clitocybe sinopica. Acta Biochim Pol 57:43–48PubMedGoogle Scholar
  61. 61.
    Zelenikhin PV, Cherepnev GV, Kern F, Ilinskaia ON (2006) Binase does not induce polyclonal T-cell response. Dokl Bio Sci : Proc Acad Sci USSR, Biol Sci Sect ( translated from Russian) 407:195–197Google Scholar
  62. 62.
    Fang EF, Ng TB (1815) Ribonucleases of different origins with a wide spectrum of medicinal applications. Biochim Biophys Acta 2011:65–74Google Scholar
  63. 63.
    Makarov AA, Kolchinsky A, Ilinskaya ON (2008) Binase and other microbial RNases as potential anticancer agents. BioEssays: News Rev Mol, Cell Dev Biol 30:781–790CrossRefGoogle Scholar
  64. 64.
    Glinka EM, Edelweiss EF, Sapozhnikov AM, Deyev SM (2006) A new vector for controllable expression of an anti-HER2/neu mini-antibody-barnase fusion protein in HEK 293T cells. Gene 366:97–103PubMedCrossRefGoogle Scholar
  65. 65.
    Balandin TG, Edelweiss E, Andronova NV, Treshalina EM, Sapozhnikov AM, Deyev SM (2011) Antitumor activity and toxicity of anti-HER2 immunoRNase scFv 4D5-dibarnase in mice bearing human breast cancer xenografts. Invest New Drugs 29:22–32PubMedCrossRefGoogle Scholar
  66. 66.
    Wong JH, Hao J, Cao Z, Qiao M, Xu H, Bai Y et al (2008) An antifungal protein from Bacillus amyloliquefaciens. J Appl Microbiol 105:1888–1898PubMedCrossRefGoogle Scholar
  67. 67.
    Cui TB, Chai HY, Jiang LX (2012) Isolation and partial characterization of an antifungal protein produced by Bacillus licheniformis BS-3. Molecules 17:7336–7347PubMedCrossRefGoogle Scholar
  68. 68.
    Karakas-Sen A, Narbad A (2012) Heterologous expression and purification of NisA, the precursor peptide of lantibiotic nisin from Lactococcus lactis. Acta Biol Hung 63:301–310PubMedCrossRefGoogle Scholar
  69. 69.
    Singh PK (2012) Chittpurna, Ashish, Sharma V., Patil P.B., Korpole S., Identification, purification and characterization of laterosporulin, a novel bacteriocin produced by Brevibacillus sp. strain GI-9. PLoS ONE 7:e31498PubMedCrossRefGoogle Scholar
  70. 70.
    Choi YH, Cho SS, Simkhada JR, Yoo JC (2012) A novel thermotolerant and acidotolerant peptide produced by a Bacillus strain newly isolated from a fermented food (kimchi) shows activity against multidrug-resistant bacteria. Int J Antimicrob Agents 40:80–83PubMedCrossRefGoogle Scholar
  71. 71.
    Martinez MG (2012) Prado Acosta M., Candurra N.A., Ruzal S.M., S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection. Biochem Biophys Res Commun 422:590–595PubMedCrossRefGoogle Scholar
  72. 72.
    Song Z, Liu Q, Guo H, Ju R, Zhao Y, Li J et al (2012) Tostadin, a novel antibacterial peptide from an antagonistic microorganism Brevibacillus brevis XDH. Bioresour Technol 111:504–506PubMedCrossRefGoogle Scholar
  73. 73.
    Ng TB (1998) A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (Basidiomycetes: Polyporaceae). Gen Pharmacol 30:1–4PubMedCrossRefGoogle Scholar
  74. 74.
    Wang CR, Ng TB, Li L, Fang JC, Jiang Y, Wen TY et al (2011) Isolation of a polysaccharide with antiproliferative, hypoglycemic, antioxidant and HIV-1 reverse transcriptase inhibitory activities from the fruiting bodies of the abalone mushroom Pleurotus abalonus. J Pharmacy Pharmacol 63:825–832CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jack Ho Wong
    • 1
  • Tzi Bun Ng
    • 1
  • Evandro Fei Fang
    • 1
    • 2
  • He-Xiang Wang
    • 3
  1. 1.School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongShatin New TerritoriesHong Kong
  2. 2.Laboratory of Molecular GerontologyNational Institute on Aging, National Institutes of HealthBaltimoreUSA
  3. 3.State Key Laboratory for Agrobiotechnology and Department of MicrobiologyChina Agricultural UniversityBeijingChina

Personalised recommendations