Advertisement

Recent Research on Pharmacological Activities of the Medicinal Fungus Cordyceps sinensis

  • Tzi Bun NgEmail author
  • Jack Ho Wong
  • Evandro Fei Fang
Chapter

Abstract

The Cordyceps sinensis (CS) fungus is an herbal medicinal product in China with a history of over two millenniums. It exhibits a spectacular array of pharmacological activities encompassing anticancer, antidiabetic, anti-adipogenic, analgesic, anti-inflammatory, neuroprotective, anti-aging, eryptosis inducing activities; ameliorating effect on pulmonary fibrosis, hypoxic pulmonary hypertension, and hypertension; protective action against viral myocarditis, stimulatory effect on corticosterone and androgen production, and enhancing effect on exercise performance in healthy older subjects. In this chapter we try to sketch out the recent progress on the pharmacological studies of CS, identify its current research hurdles, and recommend directions for future research.

Keywords

LNCaP Cell Cockayne Syndrome Hypoxic Pulmonary Hypertension Dendritic Cell Sarcoma Cordyceps Sinensis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Buenz EJ, Bauer BA, Osmundson TW, Motley TJ (2005) The traditional Chinese medicine Cordyceps sinensis and its effects on apoptotic homeostasis. J Ethnopharmacol 96:19–29PubMedCrossRefGoogle Scholar
  2. 2.
    Ng TB, Wang HX (2005) Pharmacological actions of Cordyceps, a prized folk medicine. J Pharm Pharmacol 57:1509–1519PubMedCrossRefGoogle Scholar
  3. 3.
    Wu JY, Zhang QX, Leung PH (2007) Inhibitory effects of ethyl acetate extract of Cordyceps sinensis mycelium on various cancer cells in culture and B16 melanoma in C57BL/6 mice. Phytomedicine: Int J Phytotherapy Phytopharmacol 14:43–49CrossRefGoogle Scholar
  4. 4.
    Liu WC, Chuang WL, Tsai ML, Hong JH, McBride WH, Chiang CS (2008) Cordyceps sinensis health supplement enhances recovery from taxol-induced leukopenia. Exp Biol Med 233:447–455CrossRefGoogle Scholar
  5. 5.
    Wu Y, Hu N, Pan Y, Zhou L, Zhou X (2007) Isolation and characterization of a mannoglucan from edible Cordyceps sinensis mycelium. Carbohydr Res 342:870–875PubMedCrossRefGoogle Scholar
  6. 6.
    Yang J, Zhang W, Shi P, Chen J, Han X, Wang Y (2005) Effects of exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis fungus on c-Myc, c-Fos, and VEGF expression in B16 melanoma-bearing mice. Pathol Res Pract 201:745–750PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang W, Li J, Qiu S, Chen J, Zheng Y (2008) Effects of the exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis on immunocytes of H22 tumor bearing mice. Fitoterapia 79:168–173PubMedCrossRefGoogle Scholar
  8. 8.
    Shen YD, Shao XT, Ni YD, Xu H, Tong XM (2009) Cordyceps sinensis polysaccharide enhances apoptosis of HL-60 cells induced by triptolide. Zhejiang Da Xue Xue Bao. Yi Xue Ban. J Zhejiang Univ (Med Sci) 38:158–162Google Scholar
  9. 9.
    Matsuda H, Akaki J, Nakamura S, Okazaki Y, Kojima H, Tamesada M et al (2009) Apoptosis-inducing effects of sterols from the dried powder of cultured mycelium of Cordyceps sinensis. Chem Pharm Bull 57:411–414PubMedCrossRefGoogle Scholar
  10. 10.
    Ji NF, Yao LS, Li Y, He W, Yi KS, Huang M (2011) Polysaccharide of Cordyceps sinensis enhances cisplatin cytotoxicity in non-small cell lung cancer H157 cell line. Integr Cancer Ther 10:359–367PubMedCrossRefGoogle Scholar
  11. 11.
    Song D, He Z, Wang C, Yuan F, Dong P, Zhang W (2012) Regulation of the exopolysaccharide from an anamorph of Cordyceps sinensis on dendritic cell sarcoma (DCS) cell line. Eur J Nutr (in press)Google Scholar
  12. 12.
    Wong WC, Wu JY, Benzie IF (2011) Photoprotective potential of Cordyceps polysaccharides against ultraviolet B radiation-induced DNA damage to human skin cells. Br J Dermatol 164:980–986PubMedCrossRefGoogle Scholar
  13. 13.
    Wu WC, Hsiao JR, Lian YY, Lin CY, Huang BM (2007) The apoptotic effect of cordycepin on human OEC-M1 oral cancer cell line. Cancer Chemother Pharmacol 60:103–111PubMedCrossRefGoogle Scholar
  14. 14.
    Jeong JW, Jin CY, Park C, Hong SH, Kim GY, Jeong YK et al (2011) Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Toxicol In Vitro (International journal published in association with BIBRA) 25:817–824CrossRefGoogle Scholar
  15. 15.
    Jeong JW, Jin CY, Park C, Han MH, Kim GY, Moon SK et al (2012) Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. Int J Oncol 40:1697–1704PubMedGoogle Scholar
  16. 16.
    Kubo E, Yoshikawa N, Kunitomo M, Kagota S, Shinozuka K, Nakamura K (2010) Inhibitory effect of Cordyceps sinensis on experimental hepatic metastasis of melanoma by suppressing tumor cell invasion. Anticancer Res 30:3429–3433PubMedGoogle Scholar
  17. 17.
    Fang EF, Ng TB (2011) Bitter gourd (Momordica charantia) is a cornucopia of health: a review of its credited antidiabetic, anti-HIV, and antitumor properties. Curr Mol Med 11:417–436PubMedCrossRefGoogle Scholar
  18. 18.
    Lo HC, Hsu TH, Tu ST, Lin KC (2006) Anti-hyperglycemic activity of natural and fermented Cordyceps sinensis in rats with diabetes induced by nicotinamide and streptozotocin. Am J Chin Med 34:819–832PubMedCrossRefGoogle Scholar
  19. 19.
    Kan WC, Wang HY, Chien CC, Li SL, Chen YC, Chang LH et al (2012) Effects of extract from solid-state fermented Cordyceps sinensis on type 2 diabetes mellitus. Evidence-based Complement Altern Med: eCAM 2012:743107Google Scholar
  20. 20.
    El Zahraa ZEAF, Mahmoud MF, El Maraghy NN, Ahmed AF (2012) Effect of Cordyceps sinensis and taurine either alone or in combination on streptozotocin induced diabetes. Food Chem Toxicol (An international journal published for the British Industrial Biological Research Association) 50:1159–1165CrossRefGoogle Scholar
  21. 21.
    Hao L, Pan MS, Zheng Y (2012) Effects of Cordyceps sinensis and Tripterygium wilfordii Polyglycosidium on the podocytes in rats with diabetic nephropathy. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chin J Integr Tradit Western Med/Zhongguo Zhong xi yi jie he xue hui, Zhongguo Zhong yi yan jiu yuan zhu ban 32:261–265Google Scholar
  22. 22.
    Takahashi S, Tamai M, Nakajima S, Kato H, Johno H, Nakamura T et al (2012) Blockade of adipocyte differentiation by cordycepin. Br J Pharmacol 167:561–575PubMedCrossRefGoogle Scholar
  23. 23.
    Guo P, Kai Q, Gao J, Lian ZQ, Wu CM, Wu CA et al (2010) Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. J Pharmacol Sci 113:395–403PubMedCrossRefGoogle Scholar
  24. 24.
    Fang EF, Scheibye-Knudsen M, Bohr VA, Ng TB (2012) The anti-aging efficacy of natural compounds. Med Aromat Plants 1:1–2Google Scholar
  25. 25.
    Chen S, Li Z, Krochmal R, Abrazado M, Kim W, Cooper CB (2010) Effect of Cs-4 (Cordyceps sinensis) on exercise performance in healthy older subjects: a double-blind, placebo-controlled trial. J Altern Complement Med 16:585–590PubMedCrossRefGoogle Scholar
  26. 26.
    Li HP, Hu Z, Yuan JL, Fan HD, Chen W, Wang SJ et al (2007) A novel extracellular protease with fibrinolytic activity from the culture supernatant of Cordyceps sinensis: purification and characterization. Phytotherapy Res: PTR 21:1234–1241CrossRefGoogle Scholar
  27. 27.
    Qi W, Wang PJ, Guo WJ, Yan YB, Zhang Y, Lei W (2011) The mechanism of Cordyceps sinensis and strontium in prevention of osteoporosis in rats. Biol Trace Elem Res 143:302–309PubMedCrossRefGoogle Scholar
  28. 28.
    Qi W, Yan YB, Lei W, Wu ZX, Zhang Y, Liu D et al (2012) Prevention of disuse osteoporosis in rats by Cordyceps sinensis extract. Osteoporosis Int (A journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA) 23:2347–2357CrossRefGoogle Scholar
  29. 29.
    Ji DB, Ye J, Li CL, Wang YH, Zhao J, Cai SQ (2009) Antiaging effect of Cordyceps sinensis extract. Phytotherapy Res: PTR 23:116–122CrossRefGoogle Scholar
  30. 30.
    Scheibye-Knudsen M, Ramamoorthy M, Sykora P, Maynard S, Lin PC, Minor RK et al (2012) Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy. J Exp Med 209:855–869PubMedCrossRefGoogle Scholar
  31. 31.
    DiGiovanna JJ, Kraemer KH (2012) Shining a light on xeroderma pigmentosum. J Invest Dermatol 132:785–796PubMedCrossRefGoogle Scholar
  32. 32.
    Liu WC, Wang SC, Tsai ML, Chen MC, Wang YC, Hong JH et al (2006) Protection against radiation-induced bone marrow and intestinal injuries by Cordyceps sinensis, a Chinese herbal medicine. Radiat Res 166:900–907PubMedCrossRefGoogle Scholar
  33. 33.
    Chen YC, Huang BM (2010) Regulatory mechanisms of Cordyceps sinensis on steroidogenesis in MA-10 mouse Leydig tumor cells. Biosci Biotechnol Biochem 74:1855–1859PubMedCrossRefGoogle Scholar
  34. 34.
    Wang J, Liu YM, Cao W, Yao KW, Liu ZQ, Guo JY (2012) Anti-inflammation and antioxidant effect of Cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metab Brain Dis 27:159–165PubMedCrossRefGoogle Scholar
  35. 35.
    Qian GM, Pan GF, Guo JY (2012) Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Nat Prod Res 26(24):2358–2362PubMedCrossRefGoogle Scholar
  36. 36.
    Liu Z, Li P, Zhao D, Tang H, Guo J (2010) Protective effect of extract of Cordyceps sinensis in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Behav Brain Functions: BBF 6:61CrossRefGoogle Scholar
  37. 37.
    Liu Z, Li P, Zhao D, Tang H, Guo J (2011) Anti-inflammation effects of Cordyceps sinensis mycelium in focal cerebral ischemic injury rats. Inflammation 34:639–644PubMedCrossRefGoogle Scholar
  38. 38.
    Chiou YL, Lin CY (2012) The extract of Cordyceps sinensis inhibited airway inflammation by blocking NF-kappaB activity. Inflammation 35:985–993PubMedCrossRefGoogle Scholar
  39. 39.
    Yang ML, Kuo PC, Hwang TL, Wu TS (2011) Anti-inflammatory principles from Cordyceps sinensis. J Nat Prod 74:1996–2000PubMedCrossRefGoogle Scholar
  40. 40.
    Yu HM, Wang BS, Huang SC, Duh PD (2006) Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. J Agric Food Chem 54:3132–3138PubMedCrossRefGoogle Scholar
  41. 41.
    Wang Y, Wang M, Ling Y, Fan W, Wang Y, Yin H (2009) Structural determination and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps sinensis. Am J Chin Med 37:977–989PubMedCrossRefGoogle Scholar
  42. 42.
    Mizuha Y, Yamamoto H, Sato T, Tsuji M, Masuda M, Uchida M et al (2007) Water extract of Cordyceps sinensis (WECS) inhibits the RANKL-induced osteoclast differentiation. BioFactors 30:105–116PubMedCrossRefGoogle Scholar
  43. 43.
    Zhou X, Luo L, Dressel W, Shadier G, Krumbiegel D, Schmidtke P et al (2008) Cordycepin is an immunoregulatory active ingredient of Cordyceps sinensis. Am J Chin Med 36:967–980PubMedCrossRefGoogle Scholar
  44. 44.
    Park DK, Choi WS, Park PJ, Kim EK, Jeong YJ, Choi SY et al (2008) Immunoglobulin and cytokine production from mesenteric lymph node lymphocytes is regulated by extracts of Cordyceps sinensis in C57Bl/6N mice. J Med Food 11:784–788PubMedCrossRefGoogle Scholar
  45. 45.
    Shin S, Lee S, Kwon J, Moon S, Lee S, Lee CK et al (2009) Cordycepin suppresses expression of diabetes regulating genes by inhibition of lipopolysaccharide-induced inflammation in macrophages. Immune Netw 9:98–105PubMedCrossRefGoogle Scholar
  46. 46.
    Chen W, Zhang W, Shen W, Wang K (2010) Effects of the acid polysaccharide fraction isolated from a cultivated Cordyceps sinensis on macrophages in vitro. Cell Immunol 262:69–74PubMedCrossRefGoogle Scholar
  47. 47.
    Noh EM, Kim JS, Hur H, Park BH, Song EK, Han MK et al (2009) Cordycepin inhibits IL-1beta-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts. Rheumatology 48:45–48PubMedCrossRefGoogle Scholar
  48. 48.
    Li FH, Liu P, Xiong WG, Xu GF (2006) Effects of Cordyceps sinensis on dimethylnitrosamine-induced liver fibrosis in rats. Zhong Xi Yi Jie He Xue Bao/J Chin Integr Med 4:514–517CrossRefGoogle Scholar
  49. 49.
    Xu H, Li S, Lin Y, Liu R, Gu Y, Liao D (2011) Effectiveness of cultured Cordyceps sinensis combined with glucocorticosteroid on pulmonary fibrosis induced by bleomycin in rats. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China J Chin Mater Med 36:2265–2270Google Scholar
  50. 50.
    Gao BA, Yang J, Huang J, Cui XJ, Chen SX, Den HY et al (2010) Cordyceps sinensis extract suppresses hypoxia-induced proliferation of rat pulmonary artery smooth muscle cells. Saudi Med J 31:974–979PubMedGoogle Scholar
  51. 51.
    Li F, Gao XY, Rao BF, Liu L, Dong B, Cui LQ (2006) Effects of Cordyceps sinensis alcohol extractive on serum interferon-gamma level and splenic T lymphocyte subset in mice with viral myocarditis. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi = Chin J Cell Mol Immun 22:321–323Google Scholar
  52. 52.
    Zhou Q, Hu S (2010) Effect of Cordyceps sinensis extractant on apoptosis and expression of Toll-like receptor 4 mRNA in the ischemia-reperfusion injured NRK-52E cells. Zhong Nan Da Xue Xue Bao. Yi Xue Ban = J Central South Univ (Med Sci) 35:77–84Google Scholar
  53. 53.
    Wu R, Zhou Q, Lin S, Ao X, Chen X, Yang J (2010) Effect of Cordceps Sinensis on the expression of ICAM-1 and VCAM-1 in the kidney of spontaneously hypertensive rats. Zhong Nan Da Xue Xue Bao. Yi Xue Ban = J Central South Univ (Med Sci) 35:152–158Google Scholar
  54. 54.
    Tu S, Zhou Q, Tang R, Tang T, Hu S, Ao X (2012) Proapoptotic effect of angiotensin II on renal tubular epithelial cells and protective effect of Cordyceps sinensis. Zhong Nan Da Xue Xue Bao. Yi Xue Ban = J Central South Univ (Med Sci) 37:67–72Google Scholar
  55. 55.
    Yu H, Zhou Q, Huang R, Yuan M, Ao X, Yang J (2012) Effect of Cordyceps sinensis on the expression of HIF-1alpha and NGAL in rats with renal ischemia-reperfusion injury. Zhong Nan Da Xue Xue Bao. Yi Xue Ban = J Central South Univ (Med Sci) 37:57–66Google Scholar
  56. 56.
    Ding C, Tian P, Jia L, Li Y, Ding X, Xiang H et al (2009) The synergistic effects of C. Sinensis with CsA in preventing allograft rejection. Front Biosci (a journal and virtual library) 14:3864–3871CrossRefGoogle Scholar
  57. 57.
    Zhang Z, Wang X, Zhang Y, Ye G (2011) Effect of Cordyceps sinensis on renal function of patients with chronic allograft nephropathy. Urol Int 86:298–301PubMedCrossRefGoogle Scholar
  58. 58.
    Lang F, Qadri SM (2012) Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purif 33:125–130PubMedCrossRefGoogle Scholar
  59. 59.
    Lui JC, Wong JW, Suen YK, Kwok TT, Fung KP, Kong SK (2007) Cordycepin induced eryptosis in mouse erythrocytes through a Ca2+-dependent pathway without caspase-3 activation. Arch Toxicol 81:859–865PubMedCrossRefGoogle Scholar
  60. 60.
    Li CY, Chiang CS, Cheng WC, Wang SC, Cheng HT, Chen CR et al (2012) Gene expression profiling of dendritic cells in different physiological stages under Cordyceps sinensis treatment. PLoS One 7:e40824PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Tzi Bun Ng
    • 1
    Email author
  • Jack Ho Wong
    • 1
  • Evandro Fei Fang
    • 1
    • 2
  1. 1.School of Biomedical SciencesThe Chinese University of Hong KongShatinHong Kong
  2. 2.Laboratory of Molecular GerontologyNational Institute on Aging, National Institutes of HealthBaltimoreUSA

Personalised recommendations