Rapamycin: Current and Future Uses

  • Morten Scheibye-Knudsen


The mTOR inhibitor rapamycin has received growing attention due to its immunosuppresive, antineoplastic and lifespan extending properties. The discovery of the drug and its target has had widespread implications for our understanding of the underlying metabolic processes in the cell. Indeed, rapamycin has opened up a new field of potential pharmacological targets. In the following chapter I will briefly review the molecular target of rapamycin and the current clinical applications for this compound.


mTOR Inhibitor Tuberous Sclerosis Complex Peripheral Artery Disease Lichen Planus Rapamycin Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank Dr. Vilhelm A. Bohr and Dr. Evandro Fei Fang for invaluable feedback and critically reading the manuscript. This research was supported entirely by the Intramural Research Program of the NIH, National Institute on Aging.


  1. 1.
    Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS et al (2009) Nature 460:392–395PubMedGoogle Scholar
  2. 2.
    Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, Inoki K, Guan KL, Shen J, Person MD et al (2010) Proc Natl Acad Sci U S A 107:4153–4158PubMedCrossRefGoogle Scholar
  3. 3.
    Laplante M, Sabatini DM (2012) Cell 149:274–293PubMedCrossRefGoogle Scholar
  4. 4.
    Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS et al (2012) Science 335:1638–1643PubMedCrossRefGoogle Scholar
  5. 5.
    Hagiwara A, Cornu M, Cybulski N, Polak P, Betz C, Trapani F, Terracciano L, Heim MH, Ruegg MA, Hall MN (2012) Cell Metab 15:725–738PubMedCrossRefGoogle Scholar
  6. 6.
    Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Mol Cell 22:159–168PubMedCrossRefGoogle Scholar
  7. 7.
    Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, Guertin DA, Madden KL, Carpenter AE, Finck BN et al (2011) Cell 146:408–420PubMedCrossRefGoogle Scholar
  8. 8.
    Toschi A, Lee E, Gadir N, Ohh M, Foster DA (2008) J Biol Chem 283:34495–34499PubMedCrossRefGoogle Scholar
  9. 9.
    Chan EY (2009) Sci Signal 2:e51CrossRefGoogle Scholar
  10. 10.
    Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME (2001) Mol Cell Biol 21:952–965PubMedCrossRefGoogle Scholar
  11. 11.
    Chi H (2012) Nat Rev Immunol 12:325–338PubMedGoogle Scholar
  12. 12.
    Thomson AW, Turnquist HR, Raimondi G (2009) Nat Rev Immunol 9:324–337PubMedCrossRefGoogle Scholar
  13. 13.
    Langone AJ, Helderman JH (2012) Chest 142:734–737PubMedCrossRefGoogle Scholar
  14. 14.
    Fleg JL, Aronow WS, Frishman WH (2011) Nat Rev Cardiol 8:13–28PubMedCrossRefGoogle Scholar
  15. 15.
    Castro C, Campistol JM, Sancho D, Sanchez-Madrid F, Casals E, Andres V (2004) Atherosclerosis 172:31–38PubMedCrossRefGoogle Scholar
  16. 16.
    Elloso MM, Azrolan N, Sehgal SN, Hsu PL, Phiel KL, Kopec CA, Basso MD, Adelman SJ (2003) Am J Transplant 3:562–569PubMedCrossRefGoogle Scholar
  17. 17.
    De LG, Dirksen MT, Spaulding C, Kelbaek H, Schalij M, Thuesen L, van der Hoeven B, Vink MA, Kaiser C, Musto C et al (2012) Arch Intern Med 172:611–621CrossRefGoogle Scholar
  18. 18.
    Palmerini T, Biondi-Zoccai G, Della RD, Stettler C, Sangiorgi D, D’Ascenzo F, Kimura T, Briguori C, Sabate M, Kim HS et al (2012) Lancet 379:1393–1402PubMedCrossRefGoogle Scholar
  19. 19.
    Bove J, Martinez-Vicente M, Vila M (2011) Nat Rev Neurosci 12:437–452PubMedCrossRefGoogle Scholar
  20. 20.
    Modi PK, Komaravelli N, Singh N, Sharma P (2012) Mol Biol Cell 23:3722–3730PubMedCrossRefGoogle Scholar
  21. 21.
    Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, Wilson KA, Byars A, Sahmoud T, Franz DN (2010) N Engl J Med 363:1801–1811PubMedCrossRefGoogle Scholar
  22. 22.
    Curatolo P, Jozwiak S, Nabbout R (2012) Eur J Paediatr Neurol 16:582–586PubMedCrossRefGoogle Scholar
  23. 23.
    Cai Z, Zhao B, Li K, Zhang L, Li C, Quazi SH, Tan Y (2012) J Neurosci Res 90:1105–1118PubMedCrossRefGoogle Scholar
  24. 24.
    Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del TD, Bentivoglio AR, Healy DG et al (2004) Science 304:1158–1160PubMedCrossRefGoogle Scholar
  25. 25.
    Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS et al (2010) Proc Natl Acad Sci U S A 107:378–383PubMedCrossRefGoogle Scholar
  26. 26.
    Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA (2010) J Neurosci 30:1166–1175PubMedCrossRefGoogle Scholar
  27. 27.
    Dello RC, Lisi L, Feinstein DL, Navarra P (2012) Glia [Epub ahead of print] Google Scholar
  28. 28.
    Scheibye-Knudsen M, Ramamoorthy M, Sykora P, Maynard S, Lin PC, Minor RK, Wilson DM, III, Cooper M, Spencer R, de CR et al (2012) J Exp Med 209:855–869Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Laboratory of Molecular GerontologyNational Institute on Aging, National Institutes of HealthBaltimoreUSA

Personalised recommendations