Advertisement

Role of Calcium Signaling in Stem and Cancer Cell Proliferation

  • Maria Jimena Amaya
  • Vânia A. M. Goulart
  • Anderson K. Santos
  • Alexandre H. Kihara
  • Silvia Guatimosim
  • Rodrigo R. ResendeEmail author
Chapter

Abstract

Calcium (Ca2+) is a ubiquitous second messenger involved in the regulation of many cellular activities. Importantly, both cytosolic and nuclear Ca2+ signals have essential roles in the progression through the cell cycle. Ca2+ signals in the these subcellular compartments are generated through the concerted action of several components of the Ca2+ signaling machinery that reside in the plasma membrane, cytosol, nuclear envelope membrane, or the nucleus. The versatility and specificity of Ca2+ signals is determined by their spatial and temporal patterns, and Ca2+ signals can be regulated independently of cytosolic Ca2+ signals. This review discusses the machinery involved in cytosolic and nuclear Ca2+ signal formation, as well as the different mechanisms through which these Ca2+ signals modulate the process of cell proliferation.

Keywords

Calcium signaling Stem cells  Cells proliferation  Transcription factors Cancer Nucleoplasm Calcium channels Cell cycle  

Notes

Acknowledgments

We thank the Howard Hughes Medical Institute, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Fundação de Amparo à Pesquisa do Estado de Minas Gerais, Fundação de Amparo à Pesquisa do Estado de São Paulo, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

References

  1. Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2008) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103:1289–1299PubMedCrossRefGoogle Scholar
  2. Abrenica B, Gilchrist JS (2000) Nucleoplasmic Ca(2+) loading is regulated by mobilization of perinuclear Ca(2+). Cell Calcium 28:127–136PubMedCrossRefGoogle Scholar
  3. Abrenica B, Pierce GN, Gilchrist JS (2003) Nucleoplasmic calcium regulation in rabbit aortic vascular smooth muscle cells. Can J Physiol Pharmacol 81:301–310PubMedCrossRefGoogle Scholar
  4. Adebanjo OA, Anandatheerthavarada HK, Koval AP, Moonga BS, Biswas G, Sun L, Sodam BR, Bevis PJ, Huang CL, Epstein S, Lai FA, Avadhani NG, Zaidi M (1999) A new function for CD38/ADP-ribosyl cyclase in nuclear Ca2+ homeostasis. Nat Cell Biol 1:409–414PubMedCrossRefGoogle Scholar
  5. Aguiar CJ, Andrade VL, Gomes ER, Alves MN, Ladeira MS, Pinheiro AC, Gomes DA, Almeida AP, Goes AM, Resende RR, Guatimosim S, Leite MF (2010) Succinate modulates Ca(2+) transient and cardiomyocyte viability through PKA-dependent pathway. Cell Calcium 47:37–46PubMedCrossRefGoogle Scholar
  6. Akhtar A, Gasser SM (2007) The nuclear envelope and transcriptional control. Nat Rev Genet 8:507–517PubMedCrossRefGoogle Scholar
  7. Alicia S, Angelica Z, Carlos S, Alfonso S, Vaca L (2008) STIM1 converts TRPC1 from a receptor-operated to a store-operated channel: moving TRPC1 in and out of lipid rafts. Cell Calcium 44:479–491PubMedCrossRefGoogle Scholar
  8. Alonso MT, García-Sancho J (2011) Nuclear Ca2+ signalling. Cell Calcium 49:280–289Google Scholar
  9. Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJC, Frech M, Cron P, Cohen P, Lucocq JM, Hemmings BA (1997) Role of translocation in the activation and function of protein kinase B. J Biol Chem 272:31515–31524PubMedCrossRefGoogle Scholar
  10. Andrade V, Guerra M, Jardim C, Melo F, Silva W, Ortega JM, Robert M, Nathanson MH, Leite F (2011) Nucleoplasmic calcium regulates cell proliferation through legumain. J Hepatol 55:626–635PubMedCrossRefGoogle Scholar
  11. Arantes LA, Aguiara CJ, Amaya MJ, Figueiró NC, Andrade LM, Rocha-Resende C, Resende RR, Franchini KG, Guatimosim S, Leite MF (2012) Nuclear inositol 1,4,5-trisphosphate is a necessary and conserved signal for the induction of both pathological and physiological cardiomyocyte hypertrophy. J Mol Cell Cardiol 53:475–486Google Scholar
  12. Avazeri N, Courtot AM, Pesty A, Duquenne C, Lefevre B (2000) Cytoplasmic and nuclear phospholipase C-beta 1 relocation: role in resumption of meiosis in the mouse oocyte. Mol Biol Cell 11:4369–4380PubMedCrossRefGoogle Scholar
  13. Avedanian L, Jacques D, Bkaily G (2011) Presence of tubular and reticular structures in the nucleus of human vascular smooth muscle cells. J Mol Cell Cardiol 50:175–186PubMedCrossRefGoogle Scholar
  14. Bakowski D, Nelson C, Parekh AB (2012) Endoplasmic reticulum-mitochondria coupling: local Ca(2+) signalling with functional consequences. Pflugers Arch 464:27–32PubMedCrossRefGoogle Scholar
  15. Barisic S, Schmidt C, Walczak H, Kulms D (2010) Tyrosine phosphatase inhibition triggers sustained canonical serine-dependent NFkappaB activation via Src-dependent blockade of PP2A. Biochem Pharmacol 80:439–447PubMedCrossRefGoogle Scholar
  16. Baryshnikov SG, Pulina MV, Zulian A, Linde CI, Golovina VA (2009) Orai1, a critical component of store-operated Ca2+ entry, is functionally associated with Na+/Ca2+ exchanger and plasma membrane Ca2+ pump in proliferating human arterial myocytes. Am J Physiol Cell Physiol 297:C1103–C1112PubMedCrossRefGoogle Scholar
  17. Batrakou DG, Kerr AR, Schirmer EC (2009) Comparative proteomic analyses of the nuclear envelope and pore complex suggests a wide range of heretofore unexpected functions. J Proteomics 72:56–70PubMedCrossRefGoogle Scholar
  18. Baumann O, Walz B (2001) Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int Rev Cytol 205:149–214PubMedCrossRefGoogle Scholar
  19. Bernardi R, Papa A, Pandolfi PP (2008) Regulation of apoptosis by PML and the PML-NBs. Oncogene 27:6299–6312PubMedCrossRefGoogle Scholar
  20. Berridge MJ (1995) Inositol trisphosphate and calcium signaling. Ann N Y Acad Sci 766:31–43PubMedCrossRefGoogle Scholar
  21. Berridge MJ, Bootman MD, Lipp P (1998) Calcium–a life and death signal. Nature 395:645–648PubMedCrossRefGoogle Scholar
  22. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21PubMedCrossRefGoogle Scholar
  23. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529PubMedCrossRefGoogle Scholar
  24. Bezin S, Charpentier G, Lee HC, Baux G, Fossier P, Cancela JM (2008) Regulation of nuclear Ca2+ signaling by translocation of the Ca2+ messenger synthesizing enzyme ADP-ribosyl cyclase during neuronal depolarization. J Biol Chem 283:27859–27870PubMedCrossRefGoogle Scholar
  25. Bird GS, Putney JW (2005) Capacitative calcium entry supports calcium oscillations in human embryonic kidney cells. J Physiol 562:697–706PubMedCrossRefGoogle Scholar
  26. Bird GS, Hwang SY, Smyth JT, Fukushima M, Boyles RR, Putney JW Jr (2009) STIM1 is a calcium sensor specialized for digital signaling. Curr Biol 19:1724–1729PubMedCrossRefGoogle Scholar
  27. Blackshaw S, Sawa A, Sharp AH, Ross CA, Snyder SH, Khan AA (2000) Type 3 inositol 1,4,5-trisphosphate receptor modulates cell death. FASEB J 14:1375–1379PubMedCrossRefGoogle Scholar
  28. Boehning D, van Rossum DB, Patterson RL, Snyder SH (2005) A peptide inhibitor of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. Proc Natl Acad Sci USA 102:1466–1471PubMedCrossRefGoogle Scholar
  29. Bononi A, Agnoletto C, De Marchi E, Marchi S, Patergnani S, Bonora M, Giorgi C, Missiroli S, Poletti F, Rimessi A, Pinton P (2011) Protein kinases and phosphatases in the control of cell fate. Enzyme Res 2011:26CrossRefGoogle Scholar
  30. Bourgeois CA, Hemon D, Bouteille M (1979) Structural relationship between the nucleolus and the nuclear envelope. J Ultrastruct Res 68:328–340PubMedCrossRefGoogle Scholar
  31. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339PubMedCrossRefGoogle Scholar
  32. Cahalan MD, Zhang SL, Yeromin AV, Ohlsen K, Roos J, Stauderman KA (2007) Molecular basis of the CRAC channel. Cell Calcium 42:133–144PubMedCrossRefGoogle Scholar
  33. Capanni C, Mattioli E, Columbaro M, Lucarelli E, Parnaik VK, Novelli G, Wehnert M, Cenni V, Maraldi NM, Squarzoni S, Lattanzi G (2005) Altered pre-lamin A processing is a common mechanism leading to lipodystrophy. Hum Mol Genet 14:1489–1502PubMedCrossRefGoogle Scholar
  34. Capiod T (2011) Cell proliferation, calcium influx and calcium channels. Biochimie 93:2075–2079PubMedCrossRefGoogle Scholar
  35. Carpenter G (2003) Nuclear localization and possible functions of receptor tyrosine kinases. Curr Opin Cell Biol 15:143–148PubMedCrossRefGoogle Scholar
  36. Carrasco MA, Riveros N, Rios J, Muller M, Torres F, Pineda J, Lantadilla S, Jaimovich E (2003) Depolarization-induced slow calcium transients activate early genes in skeletal muscle cells. Am J Physiol Cell Physiol 284:C1438–C1447PubMedCrossRefGoogle Scholar
  37. Carrion AM, Link WA, Ledo F, Mellstrom B, Naranjo JR (1999) DREAM is a Ca2+-regulated transcriptional repressor. Nature 398:80–84PubMedCrossRefGoogle Scholar
  38. Chafouleas JG, Bolton WE, Hidaka H, Boyd AE 3rd, Means AR (1982) Calmodulin and the cell cycle: involvement in regulation of cell-cycle progression. Cell 28:41–50PubMedCrossRefGoogle Scholar
  39. Chafouleas JG, Lagace L, Bolton WE, Boyd AE 3rd, Means AR (1984) Changes in calmodulin and its mRNA accompany reentry of quiescent (G0) cells into the cell cycle. Cell 36:73–81PubMedCrossRefGoogle Scholar
  40. Chini EN (2002) Interactions between intracellular Ca2+ stores: Ca2+ released from the NAADP pool potentiates cADPR-induced Ca2+ release. Braz J Med Biol Res 35:543–547PubMedCrossRefGoogle Scholar
  41. Choi H, Jackson NL, Shaw DR, Emanuel PD, Liu YL, Tousson A, Meng Z, Blume SW (2008) mrtl-A translation/localization regulatory protein encoded within the human c-myc locus and distributed throughout the endoplasmic and nucleoplasmic reticular network. J Cell Biochem 105:1092–1108PubMedCrossRefGoogle Scholar
  42. Choi J, Husain M (2006) Calmodulin-mediated cell cycle regulation: new mechanisms for old observations. Cell Cycle 5:2183–2186PubMedCrossRefGoogle Scholar
  43. Chung HJ, Jan LY (2006) Channeling to the nucleus. Neuron 52:937–940PubMedCrossRefGoogle Scholar
  44. Clevenger CV (2003) Nuclear localization and function of polypeptide ligands and their receptors: a new paradigm for hormone specificity within the mammary gland? Breast Cancer Res 5:181–187PubMedCrossRefGoogle Scholar
  45. Clubb BH, Locke M (1998) 3T3 cells have nuclear invaginations containing F-actin. Tissue Cell 30:684–691PubMedCrossRefGoogle Scholar
  46. Cocco L, Gilmour RS, Ognibene A, Letcher AJ, Manzoli FA, Irvine RF (1987) Synthesis of polyphosphoinositides in nuclei of Friend cells—evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem J 248:765–770PubMedGoogle Scholar
  47. Cocco L, Faenza I, Fiume R, Maria Billi A, Gilmour RS, Manzoli FA (2006) Phosphoinositide-specific phospholipase C (PI-PLC) beta1 and nuclear lipid-dependent signaling. Biochim Biophys Acta 1761:509–521PubMedCrossRefGoogle Scholar
  48. Cole CN, Hammell CM (1998) Nucleocytoplasmic transport: driving and directing transport. Curr Biol 8:R368–R372PubMedCrossRefGoogle Scholar
  49. Collado-Hilly M, Shirvani H, Jaillard D, Mauger JP (2010) Differential redistribution of Ca2+-handling proteins during polarisation of MDCK cells: effects on Ca2+ signalling. Cell Calcium 48:215–224PubMedCrossRefGoogle Scholar
  50. Courjaret R, Machaca K (2012) STIM and Orai in cellular proliferation and division. Front Biosci (Elite Ed) 4:331–341Google Scholar
  51. Cronshaw JM, Matunis MJ (2003) The nuclear pore complex protein ALADIN is mislocalized in triple A syndrome. Proc Natl Acad Sci USA 100:5823–5827PubMedCrossRefGoogle Scholar
  52. Csordas G, Varnai P, Golenar T, Roy S, Purkins G, Schneider TG, Balla T, Hajnoczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132PubMedCrossRefGoogle Scholar
  53. Dahlman-Wright K, Qiao Y, Jonsson P, Gustafsson JÅ, Williams C, Zhao C (2012) Interplay between AP-1 and estrogen receptor α in regulating gene expression and proliferation networks in breast cancer cells. Carcinogenesis 33:1684–1691Google Scholar
  54. Davis TN (1992) A temperature-sensitive calmodulin mutant loses viability during mitosis. J Cell Biol 118:607–617PubMedCrossRefGoogle Scholar
  55. de Brito OM, Scorrano L (2010) An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J 29:2715–2723PubMedCrossRefGoogle Scholar
  56. Deisseroth K, Heist EK, Tsien RW (1998) Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392:198–202PubMedCrossRefGoogle Scholar
  57. Di Capite J, Ng SW, Parekh AB (2009) Decoding of cytoplasmic Ca(2+) oscillations through the spatial signature drives gene expression. Curr Biol 19:853–858PubMedCrossRefGoogle Scholar
  58. Ding F, Zhang G, Liu L, Jiang L, Wang R, Zheng Y, Wang G, Xie M, Duan Y (2012) Involvement of cationic channels in proliferation and migration of human mesenchymal stem cells. Tissue Cell 44:358–364Google Scholar
  59. Ding HF, Rimsky S, Batson SC, Bustin M, Hansen U (1994) Stimulation of RNA-polymerase-II elongation by chromosomal protein HMG-14. Science 265:796–799Google Scholar
  60. Divecha N, Banfic H, Irvine RF (1991) The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma-membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein-kinase-C to the nucleus. EMBO J 10:3207–3214PubMedGoogle Scholar
  61. Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858PubMedCrossRefGoogle Scholar
  62. Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936PubMedCrossRefGoogle Scholar
  63. Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294:333–339Google Scholar
  64. Dreger M, Bengtsson L, Schoneberg T, Otto H, Hucho F (2001) Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane. Proc Natl Acad Sci USA 98:11943–11948PubMedCrossRefGoogle Scholar
  65. Dupont G, Abou-Lovergne A, Combettes L (2008) Stochastic aspects of oscillatory Ca2+ dynamics in hepatocytes. Biophys J 95:2193–2202PubMedCrossRefGoogle Scholar
  66. Dupont G, Combettes L (2009) What can we learn from the irregularity of Ca2+ oscillations? Chaos 19:037112Google Scholar
  67. Dupont G, Combettes L, Bird GS, Putney JW (2011) Calcium oscillations. Cold Spring Harb Perspect Biol 3:a004226Google Scholar
  68. Echevarria W, Leite MF, Guerra MT, Zipfel WR, Nathanson MH (2003) Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat Cell Biol 5:440–446PubMedCrossRefGoogle Scholar
  69. Eckenrode EF, Yang J, Velmurugan GV, Foskett JK, White C (2010) Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J Biol Chem 285:13678–13684PubMedCrossRefGoogle Scholar
  70. El Boustany C, Bidaux G, Enfissi A, Delcourt P, Prevarskaya N, Capiod T (2008) Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation. Hepatology 47:2068–2077PubMedCrossRefGoogle Scholar
  71. English AR, Zurek N, Voeltz GK (2009) Peripheral ER structure and function. Curr Opin Cell Biol 21:596–602PubMedCrossRefGoogle Scholar
  72. Ercan E, Chung SH, Bhardwaj R, Seedorf M (2012) Di-arginine signals and the K-rich domain retain the Ca(2+) sensor STIM1 in the endoplasmic reticulum. Traffic 13:992–1003PubMedCrossRefGoogle Scholar
  73. Eylenstein A, Schmidt S, Gu S, Yang W, Schmid E, Schmidt EM, Alesutan I, Szteyn K, Regel I, Shumilina E, Lang F (2012) Transcription factor NF-kappaB regulates expression of pore-forming Ca2+ channel unit, Orai1, and its activator, STIM1, to control Ca2+ entry and affect cellular functions. J Biol Chem 287:2719–2730PubMedCrossRefGoogle Scholar
  74. Faouzi M, Hague F, Potier M, Ahidouch A, Sevestre H, Ouadid-Ahidouch H (2011) Down-regulation of Orai3 arrests cell-cycle progression and induces apoptosis in breast cancer cells but not in normal breast epithelial cells. J Cell Physiol 226:542–551PubMedCrossRefGoogle Scholar
  75. Fedida-Metula S, Elhyany S, Tsory S, Segal S, Hershfinkel M, Sekler I, Fishman D (2008) Targeting lipid rafts inhibits protein kinase B by disrupting calcium homeostasis and attenuates malignant properties of melanoma cells. Carcinogenesis 29:1546–1554PubMedCrossRefGoogle Scholar
  76. Fedida-Metula S, Feldman B, Koshelev V, Levin-Gromiko U, Voronov E, Fishman D (2012) Lipid rafts couple store-operated Ca2+ entry to constitutive activation of PKB/Akt in a Ca2+/calmodulin-, Src- and PP2A-mediated pathway and promote melanoma tumor growth. Carcinogenesis 33:740–750PubMedCrossRefGoogle Scholar
  77. Feldman B, Fedida-Metula S, Nita J, Sekler I, Fishman D (2010) Coupling of mitochondria to store-operated Ca(2+)-signaling sustains constitutive activation of protein kinase B/Akt and augments survival of malignant melanoma cells. Cell Calcium 47:525–537PubMedCrossRefGoogle Scholar
  78. Feske S, Prakriya M, Rao A, Lewis RS (2005) A severe defect in CRAC Ca2+ channel activation and altered K+ channel gating in T cells from immunodeficient patients. J Exp Med 202:651–662PubMedCrossRefGoogle Scholar
  79. Feske S (2009) ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 231:189–209PubMedCrossRefGoogle Scholar
  80. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185PubMedCrossRefGoogle Scholar
  81. Feske S, Skolnik EY, Prakriya M (2012) Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol 12:532–547PubMedCrossRefGoogle Scholar
  82. Fields AP, Tyler G, Kraft AS, May WS (1990) Role of nuclear protein kinase C in the mitogenic response to platelet-derived growth factor. J Cell Sci 96(Pt 1):107–114PubMedGoogle Scholar
  83. Flockhart RJ, Armstrong JL, Reynolds NJ, Lovat PE (2009) NFAT signalling is a novel target of oncogenic BRAF in metastatic melanoma. Br J Cancer 101:1448–1455PubMedCrossRefGoogle Scholar
  84. Foisner R, Gerace L (1993) Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73:1267–1279PubMedCrossRefGoogle Scholar
  85. Fox JL, Burgstahler AD, Nathanson MH (1997) Mechanism of long-range Ca2+ signalling in the nucleus of isolated rat hepatocytes. Biochem J 326(Pt 2):491–495PubMedGoogle Scholar
  86. Foyouzi-Youssefi R, Arnaudeau S, Borner C, Kelley WL, Tschopp J, Lew DP, Demaurex N, Krause KH (2000) Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci USA 97:5723–5728PubMedCrossRefGoogle Scholar
  87. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol 3:121–127PubMedCrossRefGoogle Scholar
  88. Fricker M, Hollinshead M, White N, Vaux D (1997) Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J Cell Biol 136:531–544PubMedCrossRefGoogle Scholar
  89. Frischauf I, Schindl R, Derler I, Bergsmann J, Fahrner M, Romanin C (2008) The STIM/Orai coupling machinery. Channels (Austin) 2:261–268CrossRefGoogle Scholar
  90. Gerace L, Burke B (1988) Functional organization of the nuclear envelope. Annu Rev Cell Biol 4:335–374PubMedCrossRefGoogle Scholar
  91. Gerasimenko JV, Maruyama Y, Yano K, Dolman NJ, Tepikin AV, Petersen OH, Gerasimenko OV (2003) NAADP mobilizes Ca2+ from a thapsigargin-sensitive store in the nuclear envelope by activating ryanodine receptors. J Cell Biol 163:271–282PubMedCrossRefGoogle Scholar
  92. Gerasimenko O, Gerasimenko J (2004) New aspects of nuclear calcium signalling. J Cell Sci 117:3087–3094Google Scholar
  93. Gerasimenko OV, Gerasimenko JV, Tepikin AV, Petersen OH (1995) ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell 80:439–444PubMedCrossRefGoogle Scholar
  94. Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A, Pizzo P, Pozzan T (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38:280–290PubMedCrossRefGoogle Scholar
  95. Giorgi C, Ito K, Lin HK, Santangelo C, Wieckowski MR, Lebiedzinska M, Bononi A, Bonora M, Duszynski J, Bernardi R, Rizzuto R, Tacchetti C, Pinton P, Pandolfi PP (2010) PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330:1247–1251Google Scholar
  96. Gloire G, Erneux C, Piette J (2007) The role of SHIP1 in T-lymphocyte life and death. Biochem Soc Trans 35:277–280PubMedCrossRefGoogle Scholar
  97. Gobeil F, Fortier A, Zhu T, Bossolasco M, Leduc M, Grandbois M, Heveker N, Bkaily G, Chemtob S, Barbaz D (2006) G-protein-coupled receptors signalling at the cell nucleus: an emerging paradigm. Can J Physiol Pharmacol 84:287–297PubMedCrossRefGoogle Scholar
  98. Gomes DA, Rodrigues MA, Leite MF, Gomez MV, Varnai P, Balla T, Bennett AM, Nathanson MH (2008) c-Met must translocate to the nucleus to initiate calcium signals. J Biol Chem 283:4344–4351PubMedCrossRefGoogle Scholar
  99. Gomes ER, Lara AA, Almeida PW, Guimaraes D, Resende RR, Campagnole-Santos MJ, Bader M, Santos RA, Guatimosim S (2010) Angiotensin-(1-7) prevents cardiomyocyte pathological remodeling through a nitric oxide/guanosine 3′,5′-cyclic monophosphate-dependent pathway. Hypertension 55:153–160PubMedCrossRefGoogle Scholar
  100. Gomez-Fernandez C, Lopez-Guerrero AM, Pozo-Guisado E, Alvarez IS, Martin-Romero FJ (2012) Calcium signaling in mouse oocyte maturation: the roles of STIM1, ORAI1 and SOCE. Mol Hum Reprod 18:194–203PubMedCrossRefGoogle Scholar
  101. Gomez-Ospina N, Tsuruta F, Barreto-Chang O, Hu L, Dolmetsch R (2006) The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell 127:591–606PubMedCrossRefGoogle Scholar
  102. Goss VL, Hocevar BA, Thompson LJ, Stratton CA, Burns DJ, Fields AP (1994) Identification of nuclear beta II protein kinase C as a mitotic lamin kinase. J Biol Chem 269:19074–19080PubMedGoogle Scholar
  103. Graef IA, Mermelstein PG, Stankunas K, Neilson JR, Deisseroth K, Tsien RW, Crabtree GR (1999) L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 401:703–708PubMedCrossRefGoogle Scholar
  104. Graham SJ, Dziadek MA, Johnstone LS (2011) A cytosolic STIM2 preprotein created by signal peptide inefficiency activates ORAI1 in a store-independent manner. J Biol Chem 286:16174–16185PubMedCrossRefGoogle Scholar
  105. Greer PL, Greenberg ME (2008) From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59:846–860PubMedCrossRefGoogle Scholar
  106. Guatimosim S, Amaya MJ, Guerra MT, Aguiar CJ, Goes AM, Gomez-Viquez NL, Rodrigues MA, Gomes DA, Martins-Cruz J, Lederer WJ, Leite MF (2008) Nuclear Ca2+ regulates cardiomyocyte function. Cell Calcium 44:230–242PubMedCrossRefGoogle Scholar
  107. Guerra MT, Fonseca EA, Melo FM, Andrade VA, Aguiar CJ, Andrade LM, Pinheiro AC, Casteluber MC, Resende RR, Pinto MC, Fernandes SO, Cardoso VN, Souza-Fagundes EM, Menezes GB, de Paula AM, Nathanson MH, Leite Mde F (2011) Mitochondrial calcium regulates rat liver regeneration through the modulation of apoptosis. Hepatology 54:296–306PubMedCrossRefGoogle Scholar
  108. Guo X, Zhou C, Sun N (2011) The neuropeptide catestatin promotes vascular smooth muscle cell proliferation through the Ca2+-calcineurin-NFAT signaling pathway. Biochem Biophys Res Commun 407:807–812PubMedCrossRefGoogle Scholar
  109. Gwack Y, Srikanth S, Feske S, Cruz-Guilloty F, Oh-hora M, Neems DS, Hogan PG, Rao A (2007) Biochemical and functional characterization of Orai proteins. J Biol Chem 282:16232–16243PubMedCrossRefGoogle Scholar
  110. Gwozdz T, Dutko-Gwozdz J, Schafer C, Bolotina VM (2012) Overexpression of Orai1 and STIM1 proteins alters regulation of store-operated Ca2+ entry by endogenous mediators. J Biol Chem 287:22865–22872PubMedCrossRefGoogle Scholar
  111. Hallstrom TC, Nevins JR (2009) Balancing the decision of cell proliferation and cell fate. Cell Cycle 8:532–535PubMedCrossRefGoogle Scholar
  112. Hansen DV, Tung JJ, Jackson PK (2006) CaMKII and Polo-like kinase 1 sequentially phosphorylate the cytostatic factor Emi2/XErp1 to trigger its destruction and meiotic exit. Proc Natl Acad Sci USA 103:608–613PubMedCrossRefGoogle Scholar
  113. Hardingham GE, Chawla S, Johnson CM, Bading H (1997) Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385:260–265PubMedCrossRefGoogle Scholar
  114. Hardingham GE, Arnold FJ, Bading H (2001) Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci 4:261–267PubMedCrossRefGoogle Scholar
  115. Harsman A, Kopp A, Wagner R, Zimmermann R, Jung M (2011) Calmodulin regulation of the calcium-leak channel Sec61 is unique to vertebrates. Channels (Austin) 5:293–298CrossRefGoogle Scholar
  116. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131:596–610PubMedCrossRefGoogle Scholar
  117. Hermann A, Donato R, Weiger TM, Chazin WJ (2012) S100 calcium binding proteins and ion channels. Front Pharmacol 3:67PubMedCrossRefGoogle Scholar
  118. Hetzer MW (2010) The nuclear envelope. Cold Spring Harb Perspect Biol 2:a000539PubMedCrossRefGoogle Scholar
  119. Higazi DR, Fearnley CJ, Drawnel FM, Talasila A, Corps EM, Ritter O, McDonald F, Mikoshiba K, Bootman MD, Roderick HL (2009) Endothelin-1-stimulated InsP3-induced Ca2+ release is a nexus for hypertrophic signaling in cardiac myocytes. Mol Cell 33:472–482PubMedCrossRefGoogle Scholar
  120. Hocevar BA, Fields AP (1991) Selective translocation of beta II-protein kinase C to the nucleus of human promyelocytic (HL60) leukemia cells. J Biol Chem 266:28–33PubMedGoogle Scholar
  121. Hofer T, Venance L, Giaume C (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 22:4850–4859PubMedGoogle Scholar
  122. Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:2205–2232PubMedCrossRefGoogle Scholar
  123. Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533PubMedCrossRefGoogle Scholar
  124. Holmes K, Chapman E, See V, Cross MJ (2010) VEGF stimulates RCAN1.4 expression in endothelial cells via a pathway requiring Ca2+/calcineurin and protein kinase C-delta. PLoS One 5:e11435PubMedCrossRefGoogle Scholar
  125. Holmuhamedov E, Lewis L, Bienengraeber M, Holmuhamedova M, Jahangir A, Terzic A (2002) Suppression of human tumor cell proliferation through mitochondrial targeting. FASEB J 16:1010–1016PubMedCrossRefGoogle Scholar
  126. Hou MF, Kuo HC, Li JH, Wang YS, Chang CC, Chen KC, Chen WC, Chiu CC, Yang SY, Chang WC (2011) Orai1/CRACM1 overexpression suppresses cell proliferation via attenuation of the store-operated calcium influx-mediated signalling pathway in A549 lung cancer cells. Biochim Biophys Acta Gen Subj 1810:1278–1284CrossRefGoogle Scholar
  127. Huang WC, Chai CY, Chen WC, Hou MF, Wang YS, Chiu YC, Lu SR, Chang WC, Juo SHH, Wang JY, Chang WC (2011) Histamine regulates cyclooxygenase 2 gene activation through Orai1-mediated NF kappa B activation in lung cancer cells. Cell Calcium 50:27–35PubMedCrossRefGoogle Scholar
  128. Huh YH, Yoo SH (2003) Presence of the inositol 1,4,5-triphosphate receptor isoforms in the nucleoplasm. FEBS Lett 555:411–418PubMedCrossRefGoogle Scholar
  129. Humbert JP, Matter N, Artault JC, Koppler P, Malviya AN (1996) Inositol 1,4,5-trisphosphate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphosphate. Discrete distribution of inositol phosphate receptors to inner and outer nuclear membranes. J Biol Chem 271:478–485. Erratum: J Biol Chem 271:5287PubMedCrossRefGoogle Scholar
  130. Irvine RF (2003) Nuclear lipid signalling. Nat Rev Mol Cell Biol 4:349–360PubMedCrossRefGoogle Scholar
  131. Irvine RF (2006) Nuclear inositide signalling—expansion, structures and clarification. Biochim Biophys Acta 1761:505–508PubMedCrossRefGoogle Scholar
  132. Jardin I, Albarran L, Bermejo N, Salido GM, Rosado JA (2012) Homers regulate calcium entry and aggregation in human platelets: a role for Homers in the association between STIM1 and Orai1. Biochem J 445:29–38PubMedCrossRefGoogle Scholar
  133. Jayaraman T, Marks AR (1997) T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. Mol Cell Biol 17:3005–3012PubMedGoogle Scholar
  134. Johnson HM, Subramaniam PS, Olsnes S, Jans DA (2004) Trafficking and signaling pathways of nuclear localizing protein ligands and their receptors. Bioessays 26:993–1004PubMedCrossRefGoogle Scholar
  135. Johnson N, Krebs M, Boudreau R, Giorgi G, LeGros M, Larabell C (2003) Actin-filled nuclear invaginations indicate degree of cell de-differentiation. Differ Res Biol Divers 71:414–424CrossRefGoogle Scholar
  136. Jong YJ, Kumar V, Kingston AE, Romano C, O’Malley KL (2005) Functional metabotropic glutamate receptors on nuclei from brain and primary cultured striatal neurons. Role of transporters in delivering ligand. J Biol Chem 280:30469–30480PubMedCrossRefGoogle Scholar
  137. Kahl CR, Means AR (2003) Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 24:719–736PubMedCrossRefGoogle Scholar
  138. Kar P, Nelson C, Parekh AB (2011) Selective activation of the transcription factor NFAT1 by calcium microdomains near Ca2+ release-activated Ca2+ (CRAC) channels. J Biol Chem 286:14795–14803PubMedCrossRefGoogle Scholar
  139. Kar P, Bakowski D, Di Capite J, Nelson C, Parekh AB (2012) Different agonists recruit different stromal interaction molecule proteins to support cytoplasmic Ca2+ oscillations and gene expression. Proc Natl Acad Sci USA 109:6969–6974PubMedCrossRefGoogle Scholar
  140. Kardalinou E, Zhelev N, Hazzalin CA, Mahadevan LC (1994) Anisomycin and rapamycin define an area upstream of P70/85(S6k) containing a bifurcation to histone H3-HMG-like protein-phosphorylation and c-fos-c-jun induction. Mol Cell Biol 14:1066–1074PubMedGoogle Scholar
  141. Kawano S, Otsu K, Kuruma A, Shoji S, Yanagida E, Muto Y, Yoshikawa F, Hirayama Y, Mikoshiba K, Furuichi T (2006) ATP autocrine/paracrine signaling induces calcium oscillations and NFAT activation in human mesenchymal stem cells. Cell Calcium 39:313–324PubMedCrossRefGoogle Scholar
  142. Keith CH, Ratan R, Maxfield FR, Bajer A, Shelanski ML (1985) Local cytoplasmic calcium gradients in living mitotic cells. Nature 316:848–850PubMedCrossRefGoogle Scholar
  143. Khan AA, Soloski MJ, Sharp AH, Schilling G, Sabatini DM, Li SH, Ross CA, Snyder SH (1996) Lymphocyte apoptosis: mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. Science 273:503–507Google Scholar
  144. Khan MT, Wagner L, Yule DI, Bhanumathy C, Joseph SK (2006) Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 281:3731–3737PubMedCrossRefGoogle Scholar
  145. Khoo KM, Han MK, Park JB, Chae SW, Kim UH, Lee HC, Bay BH, Chang CF (2000) Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus. J Biol Chem 275:24807–24817PubMedCrossRefGoogle Scholar
  146. Knudsen ES, Buckmaster C, Chen TT, Feramisco JR, Wang JY (1998) Inhibition of DNA synthesis by RB: effects on G1/S transition and S-phase progression. Genes Dev 12:2278–2292PubMedCrossRefGoogle Scholar
  147. Kockskamper J, Seidlmayer L, Walther S, Hellenkamp K, Maier LS, Pieske B (2008) Endothelin-1 enhances nuclear Ca2+ transients in atrial myocytes through Ins(1,4,5)P3-dependent Ca2+ release from perinuclear Ca2+ stores. J Cell Sci 121:186–195PubMedCrossRefGoogle Scholar
  148. Krolewski JJ (2005) Cytokine and growth factor receptors in the nucleus: what’s up with that? J Cell Biochem 95:478–487PubMedCrossRefGoogle Scholar
  149. Kumar V, Jong YJ, O’Malley KL (2008) Activated nuclear metabotropic glutamate receptor mGlu5 couples to nuclear Gq/11 proteins to generate inositol 1,4,5-trisphosphate-mediated nuclear Ca2+ release. J Biol Chem 283:14072–14083PubMedCrossRefGoogle Scholar
  150. Kummer U, Olsen LF, Dixon CJ, Green AK, Bornberg-Bauer E, Baier G (2000) Switching from simple to complex oscillations in calcium signaling. Biophys J 79:1188–1195PubMedCrossRefGoogle Scholar
  151. Kurosaki T, Baba Y (2010) Ca2+ signaling and STIM1. Prog Biophys Mol Biol 103:51–58PubMedCrossRefGoogle Scholar
  152. Langevin HM, Storch KN, Snapp RR, Bouffard NA, Badger GJ, Howe AK, Taatjes DJ (2010) Tissue stretch induces nuclear remodeling in connective tissue fibroblasts. Histochem Cell Biol 133:405–415PubMedCrossRefGoogle Scholar
  153. Lanini L, Bachs O, Carafoli E (1992) The calcium pump of the liver nuclear membrane is identical to that of endoplasmic reticulum. J Biol Chem 267:11548–11552PubMedGoogle Scholar
  154. Ledeen R, Wu G (2011) New findings on nuclear gangliosides: overview on metabolism and function. J Neurochem 116:714–720PubMedCrossRefGoogle Scholar
  155. Leite MF, Thrower EC, Echevarria W, Koulen P, Hirata K, Bennett AM, Ehrlich BE, Nathanson MH (2003) Nuclear and cytosolic calcium are regulated independently. Proc Natl Acad Sci USA 100:2975–2980Google Scholar
  156. Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J (1995) Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature 376:737–745PubMedCrossRefGoogle Scholar
  157. Levine T, Rabouille C (2005) Endoplasmic reticulum: one continuous network compartmentalized by extrinsic cues. Curr Opin Cell Biol 17:362–368PubMedCrossRefGoogle Scholar
  158. Li C, Wang X, Vais H, Thompson CB, Foskett JK, White C (2007) Apoptosis regulation by Bcl-x(L) modulation of mammalian inositol 1,4,5-trisphosphate receptor channel isoform gating. Proc Natl Acad Sci USA 104:12565–12570Google Scholar
  159. Lin C, Hajnoczky G, Thomas AP (1994) Propagation of cytosolic calcium waves into the nuclei of hepatocytes. Cell Calcium 16:247–258PubMedCrossRefGoogle Scholar
  160. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241PubMedCrossRefGoogle Scholar
  161. Liu J, Grimison B, Lewellyn AL, Maller JL (2006) The anaphase-promoting complex/cyclosome inhibitor Emi2 is essential for meiotic but not mitotic cell cycles. J Biol Chem 281:34736–34741PubMedCrossRefGoogle Scholar
  162. Liu Q, Leber B, Andrews DW (2012) Interactions of pro-apoptotic BH3 proteins with anti-apoptotic Bcl-2 family proteins measured in live MCF-7 cells using FLIM FRET. Cell Cycle 11:3536–3542Google Scholar
  163. Liu W, Akhand AA, Takeda K, Kawamoto Y, Itoigawa M, Kato M, Suzuki H, Ishikawa N, Nakashima I (2003) Protein phosphatase 2A-linked and -unlinked caspase-dependent pathways for downregulation of Akt kinase triggered by 4-hydroxynonenal. Cell Death Differ 10:772–781PubMedCrossRefGoogle Scholar
  164. Ljubojevic S, Walther S, Asgarzoei M, Sedej S, Pieske B, Kockskamper J (2011) In situ calibration of nucleoplasmic versus cytoplasmic Ca(2)+ concentration in adult cardiomyocytes. Biophys J 100:2356–2366PubMedCrossRefGoogle Scholar
  165. Lorca T, Cruzalegui FH, Fesquet D, Cavadore JC, Mery J, Means A, Doree M (1993) Calmodulin-dependent protein kinase-II mediates Inactivation of MPF and CSF upon fertilization of Xenopus eggs. Nature 366:270–273PubMedCrossRefGoogle Scholar
  166. Lui PP, Chan FL, Suen YK, Kwok TT, Kong SK (2003) The nucleus of HeLa cells contains tubular structures for Ca2+ signaling with the involvement of mitochondria. Biochem Biophys Res Commun 308:826–833PubMedCrossRefGoogle Scholar
  167. Ma HT, Venkatachalam K, Parys JB, Gill DL (2002) Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenyl borate in DT40 lymphocytes. J Biol Chem 277:6915–6922PubMedCrossRefGoogle Scholar
  168. Madhunapantula SV, Robertson GP (2009) The PTEN-AKT3 signaling cascade as a therapeutic target in melanoma. Pigment Cell Melanoma Res 22:400–419PubMedCrossRefGoogle Scholar
  169. Mak DO, Foskett JK (1994) Single-channel inositol 1,4,5-trisphosphate receptor currents revealed by patch clamp of isolated Xenopus oocyte nuclei. J Biol Chem 269:29375–29378PubMedGoogle Scholar
  170. Malhas A, Goulbourne C, Vaux DJ (2011) The nucleoplasmic reticulum: form and function. Trends Cell Biol 21:362–373PubMedCrossRefGoogle Scholar
  171. Mandinova A, Atar D, Schafer BW, Spiess M, Aebi U, Heizmann CW (1998) Distinct subcellular localization of calcium binding S100 proteins in human smooth muscle cells and their relocation in response to rises in intracellular calcium. J Cell Sci 111:2043–2054PubMedGoogle Scholar
  172. Manilal S, Nguyen TM, Morris GE (1998) Colocalization of emerin and lamins in interphase nuclei and changes during mitosis. Biochem Biophys Res Commun 249:643–647PubMedCrossRefGoogle Scholar
  173. Manji SS, Parker NJ, Williams RT, van Stekelenburg L, Pearson RB, Dziadek M, Smith PJ (2000) STIM1: a novel phosphoprotein located at the cell surface. Biochim Biophys Acta 1481:147–155PubMedCrossRefGoogle Scholar
  174. Marchi S, Rimessi A, Giorgi C, Baldini C, Ferroni L, Rizzuto R, Pinton P (2008) Akt kinase reducing endoplasmic reticulum Ca2+ release protects cells from Ca2+-dependent apoptotic stimuli. Biochem Biophys Res Commun 375:501–505PubMedCrossRefGoogle Scholar
  175. Marius P, Guerra MT, Nathanson MH, Ehrlich BE, Leite MF (2006) Calcium release from ryanodine receptors in the nucleoplasmic reticulum. Cell Calcium 39:65–73PubMedCrossRefGoogle Scholar
  176. Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM, Freire Lima BH, Oliveira Lopes GA, Russo RC, Avila TV, Melgaco JG, Oliveira AG, Pinto MA, Lima CX, de Paula AM, Cara DC, Leite MF, Teixeira MM, Menezes GB (2012) Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 56:1971–1982Google Scholar
  177. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445:931–935PubMedCrossRefGoogle Scholar
  178. Martelli AM, Neri LM, Gilmour RS, Barker PJ, Huskisson NS, Manzoli FA, Cocco L (1991) Temporal changes in intracellular-distribution of protein-kinase-C in Swiss 3T3 cells during mitogenic stimulation with insulin-like growth factor-I and bombesin—translocation to the nucleus follows rapid changes in nuclear polyphosphoinositides. Biochem Biophys Res Commun 177:480–487PubMedCrossRefGoogle Scholar
  179. Martelli AM, Gilmour RS, Bertagnolo V, Neri LM, Manzoli L, Cocco L (1992) Nuclear localization and signalling activity of phosphoinositidase C beta in Swiss 3T3 cells. Nature 358:242–245PubMedCrossRefGoogle Scholar
  180. Martin-Romero FJ, Lopez-Guerrero AM, Alvarez IS, Pozo-Guisado E (2012) Role of store-operated calcium entry during meiotic progression and fertilization of mammalian oocytes. Int Rev Cell Mol Biol 295:291–328PubMedCrossRefGoogle Scholar
  181. Matsumoto M, Fujii Y, Baba A, Hikida M, Kurosaki T, Baba Y (2011) The calcium sensors STIM1 and STIM2 control B cell regulatory function through interleukin-10 production. Immunity 34:703–714PubMedCrossRefGoogle Scholar
  182. Mauger JP (2012) Role of the nuclear envelope in calcium signalling. Biol Cell 104:70–83PubMedCrossRefGoogle Scholar
  183. Meier R, Alessi DR, Cron P, Andjelkovic M, Hemmings BA (1997) Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase B beta. J Biol Chem 272:30491–30497PubMedCrossRefGoogle Scholar
  184. Mellstrom B, Savignac M, Gomez-Villafuertes R, Naranjo JR (2008) Ca2+-operated transcriptional networks: molecular mechanisms and in vivo models. Physiol Rev 88:421–449PubMedCrossRefGoogle Scholar
  185. Mendes CCP, Gomes DA, Thompson M, Souto NC, Goes TS, Goes AM, Rodrigues MA, Gomez MV, Nathanson MH, Leite MF (2005) The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J Biol Chem 280:40892–40900PubMedCrossRefGoogle Scholar
  186. Mikoshiba K (2007) The IP3 receptor/Ca2+ channel and its cellular function. Biochem Soc Symp 74:9–22PubMedCrossRefGoogle Scholar
  187. Mochida S, Hunt T (2007) Calcineurin is required to release Xenopus egg extracts from meiotic M phase. Nature 449:336–340Google Scholar
  188. Moscat J, Diaz-Meco MT, Rennert P (2003) NF-kappaB activation by protein kinase C isoforms and B-cell function. EMBO Rep 4:31–36PubMedCrossRefGoogle Scholar
  189. Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J, Eder P, Schindl R, Hesch C, Polzinger B, Fritsch R, Kahr H, Madl J, Gruber H, Groschner K, Romanin C (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283:8014–8022PubMedCrossRefGoogle Scholar
  190. Nalaskowski MM, Metzner A, Brehm MA, Labiadh S, Brauer H, Grabinski N, Mayr GW, Jucker M (2012) The inositol 5-phosphatase SHIP1 is a nucleo-cytoplasmic shuttling protein and enzymatically active in cell nuclei. Cell Signal 24:621–628PubMedCrossRefGoogle Scholar
  191. Nazarian R, Shi HB, Wang Q, Kong XJ, Koya RC, Lee H, Chen ZG, Lee MK, Attar N, Sazegar H, Chodon T, Nelson SF, McArthur G, Sosman JA, Ribas A, Lo RS (2010) Melanomas acquire resistance toB-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973-U377Google Scholar
  192. Neher E (1995) The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology 34:1423–1442PubMedCrossRefGoogle Scholar
  193. Ng S-W, Nelson C, Parekh AB (2009) Coupling of Ca2+ microdomains to spatially and temporally distinct cellular responses by the tyrosine kinase Syk. J Biol Chem 284:24767–24772PubMedCrossRefGoogle Scholar
  194. Nicotera P, McConkey DJ, Jones DP, Orrenius S (1989) ATP stimulates Ca2+ uptake and increases the free Ca2+ concentration in isolated rat liver nuclei. Proc Natl Acad Sci USA 86:453–457PubMedCrossRefGoogle Scholar
  195. Nishiyama T, Yoshizaki N, Kishimoto T, Ohsumi K (2007) Transient activation of calcineurin is essential to initiate embryonic development in Xenopus laevis. Nature 449:341–345Google Scholar
  196. O’Brien EM, Gomes DA, Sehgal S, Nathanson MH (2007) Hormonal regulation of nuclear permeability. J Biol Chem 282:4210–4217PubMedCrossRefGoogle Scholar
  197. O’Malley KL, Jong YJ, Gonchar Y, Burkhalter A, Romano C (2003) Activation of metabotropic glutamate receptor mGlu5 on nuclear membranes mediates intranuclear Ca2+ changes in heterologous cell types and neurons. J Biol Chem 278:28210–28219PubMedCrossRefGoogle Scholar
  198. Oakes SA, Scorrano L, Opferman JT, Bassik MC, Nishino M, Pozzan T, Korsmeyer SJ (2005) Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA 102:105–110PubMedCrossRefGoogle Scholar
  199. Odom AR, Stahlberg A, Wente SR, York JD (2000) A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287:2026–2029Google Scholar
  200. Oh-hora M (2009) Calcium signaling in the development and function of T-lineage cells. Immunol Rev 231:210–224PubMedCrossRefGoogle Scholar
  201. Oh-Hora M, Yamashita M, Hogan PG, Sharma S, Lamperti E, Chung W, Prakriya M, Feske S, Rao A (2008) Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 9:432–443PubMedCrossRefGoogle Scholar
  202. Ohya Y, Botstein D (1994) Diverse essential functions revealed by complementing yeast calmodulin mutants. Science 263:963–966Google Scholar
  203. Okada M, Fujii M, Yamaga M, Sugimoto H, Sadano H, Osumi T, Kamata H, Hirata H, Yagisawa H (2002) Carboxyl-terminal basic amino acids in the X domain are essential for the nuclear import of phospholipase C delta1. Genes Cells 7:985–996PubMedCrossRefGoogle Scholar
  204. Paraiso KHT, Xiang Y, Rebecca VW, Abel EV, Chen YA, Munko AC, Wood E, Fedorenko IV, Sondak VK, Anderson ARA, Ribas A, Dalla Palma M, Nathanson KL, Koomen JM, Messina JL, Smalley KSM (2011) PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 71:2750–2760PubMedCrossRefGoogle Scholar
  205. Parry H, McDougall A, Whitaker M (2005) Microdomains bounded by endoplasmic reticulum segregate cell cycle calcium transients in syncytial Drosophila embryos. J Cell Biol 171:47–59PubMedCrossRefGoogle Scholar
  206. Parvez S, Beck A, Peinelt C, Soboloff J, Lis A, Monteilh-Zoller M, Gill DL, Fleig A, Penner R (2008) STIM2 protein mediates distinct store-dependent and store-independent modes of CRAC channel activation. FASEB J 22:752–761PubMedCrossRefGoogle Scholar
  207. Parys JB, De Smedt H (2012) Inositol 1,4,5-trisphosphate and its receptors. Adv Exp Med Biol 740:255–279PubMedCrossRefGoogle Scholar
  208. Parys JB, Decuypere JP, Bultynck G (2012) Role of the inositol 1,4,5-trisphosphate receptor/Ca2+-release channel in autophagy. Cell Commun Signal 10:17PubMedCrossRefGoogle Scholar
  209. Patel R, Holt M, Philipova R, Moss S, Schulman H, Hidaka H, Whitaker M (1999) Calcium/calmodulin-dependent phosphorylation and activation of human Cdc25-C at the G2/M phase transition in HeLa cells. J Biol Chem 274:7958–7968PubMedCrossRefGoogle Scholar
  210. Paulin-Levasseur M, Blake DL, Julien M, Rouleau L (1996) The MAN antigens are non-lamin constituents of the nuclear lamina in vertebrate cells. Chromosoma 104:367–379PubMedCrossRefGoogle Scholar
  211. Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJS, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nature Cell Biol 8:771-U231Google Scholar
  212. Pendin D, McNew JA, Daga A (2011) Balancing ER dynamics: shaping, bending, severing, and mending membranes. Curr Opin Cell Biol 23:435–442PubMedCrossRefGoogle Scholar
  213. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161PubMedGoogle Scholar
  214. Peters AA, Simpson PT, Bassett JJ, Lee JM, Da Silva L, Reid LE, Song S, Parat MO, Lakhani SR, Kenny PA, Roberts-Thomson SJ, Monteith GR (2012) Calcium channel TRPV6 as a potential therapeutic target in estrogen receptor negative breast cancer. Mol Cancer Ther 11:2158–2168Google Scholar
  215. Planas-Silva MD, Means AR (1992) Expression of a constitutive form of calcium/calmodulin dependent protein kinase II leads to arrest of the cell cycle in G2. EMBO J 11:507–517PubMedGoogle Scholar
  216. Poenie M, Alderton J, Tsien RY, Steinhardt RA (1985) Changes of free calcium levels with stages of the cell division cycle. Nature 315:147–149PubMedCrossRefGoogle Scholar
  217. Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca(2+) release-activated Ca(2+) channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP(3) receptors. J Physiol 536:3–19PubMedCrossRefGoogle Scholar
  218. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233PubMedCrossRefGoogle Scholar
  219. Prunuske AJ, Liu J, Elgort S, Joseph J, Dasso M, Ullman KS (2006) Nuclear envelope breakdown is coordinated by both Nup358/RanBP2 and Nup153, two nucleoporins with zinc finger modules. Mol Biol Cell 17:760–769PubMedCrossRefGoogle Scholar
  220. Prunuske AJ, Ullman KS (2006) The nuclear envelope: form and reformation. Curr Opin Cell Biol 18:108–116PubMedCrossRefGoogle Scholar
  221. Pulver RA, Rose-Curtis P, Roe MW, Wellman GC, Lounsbury KM (2004) Store-operated Ca2+ entry activates the CREB transcription factor in vascular smooth muscle. Circ Res 94:1351–1358PubMedCrossRefGoogle Scholar
  222. Pusl T, Wu JJ, Zimmerman TL, Zhang L, Ehrlich BE, Berchtold MW, Hoek JB, Karpen SJ, Nathanson MH, Bennett AM (2002) Epidermal growth factor-mediated activation of the ETS domain transcription factor Elk-1 requires nuclear calcium. J Biol Chem 277:27517–27527PubMedCrossRefGoogle Scholar
  223. Putney JW, Poggioli J, Weiss SJ (1981) Receptor regulation of calcium release and calcium permeability in parotid-gland cells. Philos Trans R Soc B 296:37–45CrossRefGoogle Scholar
  224. Putney JW, Bird GS (2008) Cytoplasmic calcium oscillations and store-operated calcium influx. J Physiol 586:3055–3059PubMedCrossRefGoogle Scholar
  225. Queisser G, Wiegert S, Bading H (2011) Structural dynamics of the cell nucleus: basis for morphology modulation of nuclear calcium signaling and gene transcription. Nucleus 2:98–104PubMedCrossRefGoogle Scholar
  226. Ramadan WM, Kashir J, Jones C, Coward K (2012) Oocyte activation and phospholipase C zeta (PLCzeta): diagnostic and therapeutic implications for assisted reproductive technology. Cell Commun Signal 10:12PubMedCrossRefGoogle Scholar
  227. Rasmussen CD, Means AR (1989) Calmodulin is required for cell-cycle progression during G1 and mitosis. EMBO J 8:73–82PubMedGoogle Scholar
  228. Rauh NR, Schmidt A, Bormann J, Nigg EA, Mayer TU (2005) Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437:1048–1052PubMedCrossRefGoogle Scholar
  229. Redmond L, Kashani AH, Ghosh A (2002) Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34:999–1010PubMedCrossRefGoogle Scholar
  230. Resende RR, Alves AS, Britto LRG, Ulrich H (2008a) Role of acetylcholine receptors in proliferation and differentiation of P19 embryonal carcinoma cells. Exp Cell Res 314:1429–1443PubMedCrossRefGoogle Scholar
  231. Resende RR, Britto LRG, Ulrich H (2008b) Pharmacological properties of purinergic receptors and their effects on proliferation and induction of neuronal differentiation of P19 embryonal carcinoma cells. Int J Dev Neurosci 26:763–777PubMedCrossRefGoogle Scholar
  232. Resende RR, Gomes KN, Adhikari A, Britto LRG, Ulrich H (2008c) Mechanism of acetylcholine-induced calcium signaling during neuronal differentiation of P19 embryonal carcinoma cells in vitro. Cell Calcium 43:107–121PubMedCrossRefGoogle Scholar
  233. Resende RR, Adhikari A (2009) Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation. Cell Commun Signal 7:20Google Scholar
  234. Resende RR, Adhikari A, da Costa JL, Lorencon E, Ladeira MS, Guatimosim S, Kihara AH, Ladeira LO (2010a) Influence of spontaneous calcium events on cell-cycle progression in embryonal carcinoma and adult stem cells. Biochim Biophys Acta 1803:246–260PubMedCrossRefGoogle Scholar
  235. Resende RR, da Costa JL, Kihara AH, Adhikari A, Lorencon E (2010b) Intracellular Ca2+ regulation during neuronal differentiation of murine embryonal carcinoma and mesenchymal stem cells. Stem Cells Dev 19:379–393PubMedCrossRefGoogle Scholar
  236. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766Google Scholar
  237. Rodrigues MA, Gomes DA, Leite MF, Grant W, Zhang L, Lam W, Cheng YC, Bennett AM, Nathanson MH (2007) Nucleoplasmic calcium is required for cell proliferation. J Biol Chem 282:17061–17068Google Scholar
  238. Rodrigues MA, Gomes DA, Andrade VA, Leite MF, Nathanson MH (2008) Insulin induces calcium signals in the nucleus of rat hepatocytes. Hepatology 48:1621–1631PubMedCrossRefGoogle Scholar
  239. Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401:86–90PubMedCrossRefGoogle Scholar
  240. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang SY, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445PubMedCrossRefGoogle Scholar
  241. Salomoni P, Calegari F (2010) Cell cycle control of mammalian neural stem cells: putting a speed limit on G1. Trends Cell Biol 20:233–243PubMedCrossRefGoogle Scholar
  242. Salomoni P, Pandolfi PP (2002) The role of PML in tumor suppression. Cell 108:165–170PubMedCrossRefGoogle Scholar
  243. Sammels E, Parys JB, Missiaen L, De Smedt H, Bultynck G (2010) Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium 47:297–314PubMedCrossRefGoogle Scholar
  244. Sanchez-Gonzalez P (2010) Calmodulin-mediated regulation of the epidermal growth factor receptor. FEBS J 277:327–342. Erratum: FEBS J 277:1583PubMedCrossRefGoogle Scholar
  245. Santella L, De Riso L, Gragnaniello G, Kyozuka K (1998) Separate activation of the cytoplasmic and nuclear calcium pools in maturing starfish oocytes. Biochem Biophys Res Commun 252:1–4PubMedCrossRefGoogle Scholar
  246. Santos DM, Xavier JM, Morgado AL, Solá S, Rodrigues CMP (2012) Distinct regulatory functions of calpain 1 and 2 during neural stem cell self-renewal and differentiation. PLoS One 7:e33468PubMedCrossRefGoogle Scholar
  247. Sarma A, Yang W (2011) Calcium regulation of nucleocytoplasmic transport. Protein Cell 2:291–302PubMedCrossRefGoogle Scholar
  248. Schafer A, Wolf DH (2009) Sec61p is part of the endoplasmic reticulum-associated degradation machinery. EMBO J 28:2874–2884PubMedCrossRefGoogle Scholar
  249. Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320:1332–1336Google Scholar
  250. Schirmer EC, Gerace L (2005) The nuclear membrane proteome: extending the envelope. Trends Biochem Sci 30:551–558PubMedCrossRefGoogle Scholar
  251. Schmidt A, Oberle N, Weiss EM, Vobis D, Frischbutter S, Baumgrass R, Falk CS, Haag M, Brugger B, Lin H, Mayr GW, Reichardt P, Gunzer M, Suri-Payer E, Krammer PH (2011) Human regulatory T cells rapidly suppress T cell receptor-induced Ca(2+), NF-kappaB, and NFAT signaling in conventional T cells. Sci Signal 4:ra90Google Scholar
  252. Schmidt A, Duncan PI, Rauh NR, Sauer G, Fry AM, Nigg EA, Mayer TU (2005) Xenopus polo-like kinase Plx1 regulates XErp1, a novel inhibitor of APC/C activity. Genes Dev 19:502–513PubMedCrossRefGoogle Scholar
  253. Schmidt A, Rauh NR, Nigg EA, Mayer TU (2006) Cytostatic factor: an activity that puts the cell cycle on hold. J Cell Sci 119:1213–1218PubMedCrossRefGoogle Scholar
  254. Schneider G, Oswald F, Wahl C, Greten FR, Adler G, Schmid RM (2002) Cyclosporine inhibits growth through the activating transcription factor/cAMP-responsive element-binding protein binding site in the cyclin D1 promoter. J Biol Chem 277:43599–43607PubMedCrossRefGoogle Scholar
  255. Schroder E, Byse M, Satin J (2009) L-type calcium channel C terminus autoregulates transcription. Circ Res 104:1373-U1238Google Scholar
  256. Sen A, De Castro I, Defranco DB, Deng FM, Melamed J, Kapur P, Raj GV, Rossi R, Hammes SR (2012) Paxillin mediates extranuclear and intranuclear signaling in prostate cancer proliferation. J Clin Invest 122:2469–2481PubMedCrossRefGoogle Scholar
  257. Shao Y, Aplin AE (2010) Akt3-mediated resistance to apoptosis in B-RAF-targeted melanoma cells. Cancer Res 70:6670–6681PubMedCrossRefGoogle Scholar
  258. Shapiro PS, Vaisberg E, Hunt AJ, Tolwinski NS, Whalen AM, McIntosh JR, Ahn NG (1998) Activation of the MKK/ERK pathway during somatic cell mitosis: direct interactions of active ERK with kinetochores and regulation of the mitotic 3F3/2 phosphoantigen. J Cell Biol 142:1533–1545PubMedCrossRefGoogle Scholar
  259. Shen X, Xiao H, Ranallo R, Wu WH, Wu C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299:112–114Google Scholar
  260. Simon MI, Strathmann MP, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252:802–808Google Scholar
  261. Singaravelu K, Nelson C, Bakowski D, de Brito OM, Ng SW, Di Capite J, Powell T, Scorrano L, Parekh AB (2011) Mitofusin 2 regulates STIM1 migration from the Ca2+ store to the plasma membrane in cells with depolarized mitochondria. J Biol Chem 286:12189–12201PubMedCrossRefGoogle Scholar
  262. Siu Y-T, Ching Y-P, Jin D-Y (2008) Activation of TORC1 transcriptional coactivator through MEKK1-induced phosphorylation. Mol Biol Cell 19:4750–4761PubMedCrossRefGoogle Scholar
  263. Smith CD, Wells WW (1983) Phosphorylation of rat liver nuclear envelopes. 1. Characterization of in vitro protein phosphorylation. J Biol Chem 258:9360–9367PubMedGoogle Scholar
  264. Smyth JT, Petranka JG, Boyles RR, DeHaven WI, Fukushima M, Johnson KL, Williams JG, Putney JW Jr (2009) Phosphorylation of STIM1 underlies suppression of store-operated calcium entry during mitosis. Nat Cell Biol 11:1465–1472PubMedCrossRefGoogle Scholar
  265. Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW (2010) Activation and regulation of store-operated calcium entry. J Cell Mol Med 14:2337–2349PubMedCrossRefGoogle Scholar
  266. Smyth JT, Putney JW (2012) Regulation of store-operated calcium entry during cell division. Biochem Soc Trans 40:119–123PubMedCrossRefGoogle Scholar
  267. Soboloff J, Spassova MA, Tang XD, Hewavitharana T, Xu W, Gill DL (2006) Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 281:20661–20665PubMedCrossRefGoogle Scholar
  268. Song S, Li J, Zhu L, Cai L, Xu Q, Ling C, Su Y, Hu Q (2012) Irregular Ca2+ oscillations regulate transcription via cumulated spike duration and spike amplitude. J Biol Chem 287:40246–40255Google Scholar
  269. Stallings JD, Tall EG, Pentyala S, Rebecchi MJ (2005) Nuclear translocation of phospholipase C-delta(1) is linked to the cell cycle and nuclear phosphatidylinositol 4,5-bisphosphate. J Biol Chem 280:22060–22069PubMedCrossRefGoogle Scholar
  270. Starr DA, Han M (2002) Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science 298:406–409Google Scholar
  271. Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M (2008) Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135:110–122PubMedCrossRefGoogle Scholar
  272. Steger DJ, Haswell ES, Miller AL, Wente SR, O’Shea EK (2003) Regulation of chromatin remodeling by inositol polyphosphates. Science 299:114–116Google Scholar
  273. Stehno-Bittel L, Luckhoff A, Clapham DE (1995) Calcium release from the nucleus by InsP3 receptor channels. Neuron 14:163–167PubMedCrossRefGoogle Scholar
  274. Strasser C, Grote P, Schauble K, Ganz M, Ferrando-May E (2012) Regulation of nuclear envelope permeability in cell death and survival. Nucleus 3:540–551Google Scholar
  275. Subramanian K, Meyer T (1997) Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores. Cell 89:963–971PubMedCrossRefGoogle Scholar
  276. Sugahara T, Koga T, Ueno-Shuto K, Shuto T, Watanabe E, Maekawa A, Kitamura K, Tomita K, Mizuno A, Sato T, Suico MA, Kai H (2009) Calreticulin positively regulates the expression and function of epithelial sodium channel. Exp Cell Res 315:3294–3300PubMedCrossRefGoogle Scholar
  277. Sugawara H, Kurosaki M, Takata M, Kurosaki T (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J 16:3078–3088PubMedCrossRefGoogle Scholar
  278. Szado T, Vanderheyden V, Parys JB, De Smedt H, Rietdorf K, Kotelevets L, Chastre E, Khan F, Landegren U, Soderberg O, Bootman MD, Roderick HL (2008) Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc Natl Acad Sci USA 105:2427–2432PubMedCrossRefGoogle Scholar
  279. Tadevosyan A, Maguy A, Villeneuve LR, Babin J, Bonnefoy A, Allen BG, Nattel S (2010) Nuclear-delimited angiotensin receptor-mediated signaling regulates cardiomyocyte gene expression. J Biol Chem 285:22338–22349PubMedCrossRefGoogle Scholar
  280. Takahashi A, Camacho P, Lechleiter JD, Herman B (1999) Measurement of intracellular calcium. Physiol Rev 79:1089–1125PubMedGoogle Scholar
  281. Takuwa N, Wei Z, Kumada M, Takuwa Y (1993) Ca2+-dependent stimulation of retinoblastoma gene-product phosphorylation and P34cdc2 kinase activation in serum-stimulated human fibroblasts. J Biol Chem 268:138–145PubMedGoogle Scholar
  282. Terasaki M, Jaffe LA (1991) Organization of the sea urchin egg endoplasmic reticulum and its reorganization at fertilization. J Cell Biol 114:929–940PubMedCrossRefGoogle Scholar
  283. Teruel MN, Chen W, Persechini A, Meyer T (2000) Differential codes for free Ca(2+)-calmodulin signals in nucleus and cytosol. Curr Biol 10:86–94PubMedCrossRefGoogle Scholar
  284. Theatre E, Bours V, Oury C (2009) A P2X ion channel-triggered NF-kappaB pathway enhances TNF-alpha-induced IL-8 expression in airway epithelial cells. Am J Respir Cell Mol Biol 41:705–713PubMedCrossRefGoogle Scholar
  285. Thompson LJ, Fields AP (1996) betaII protein kinase C is required for the G2/M phase transition of cell cycle. J Biol Chem 271:15045–15053PubMedCrossRefGoogle Scholar
  286. Tian G, Tepikin AV, Tengholm A, Gylfe E (2012) cAMP induces stromal interaction molecule 1 (STIM1) puncta but neither Orai1 protein clustering nor store-operated Ca2+ entry (SOCE) in islet cells. J Biol Chem 287:9862–9872PubMedCrossRefGoogle Scholar
  287. Tone M, Greene MI (2011) Cooperative regulatory events and Foxp3 expression. Nat Immunol 12:14–16PubMedCrossRefGoogle Scholar
  288. Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI, Tone M (2008) Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol 9:194–202PubMedCrossRefGoogle Scholar
  289. Tonelli FM, Santos AK, Gomes DA, da Silva SL, Gomes KN, Ladeira LO, Resende RR (2012) Stem cells and calcium signaling. Adv Exp Med Biol 740:891–916PubMedCrossRefGoogle Scholar
  290. Torok K (2007) The regulation of nuclear membrane permeability by Ca2+ signaling: a tightly regulated pore or a floodgate? Sci STKE 2007:pe24Google Scholar
  291. Tunquist BJ, Maller JL (2003) Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev 17:683–710PubMedCrossRefGoogle Scholar
  292. Twigg J, Patel R, Whitaker M (1988) Translational control of InsP3-induced chromatin condensation during the early cell cycles of sea urchin embryos. Nature 332:366–369Google Scholar
  293. Vanden Abeele F, Shuba Y, Roudbaraki M, Lemonnier L, Vanoverberghe K, Mariot P, Skryma R, Prevarskaya N (2003) Store-operated Ca2+ channels in prostate cancer epithelial cells: function, regulation, and role in carcinogenesis. Cell Calcium 33:357–373PubMedCrossRefGoogle Scholar
  294. Vanderheyden V, Devogelaere B, Missiaen L, De Smedt H, Bultynck G, Parys JB (2009) Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. Biochim Biophys Acta Mol Cell Res 1793:959–970CrossRefGoogle Scholar
  295. Vanhoutte P, Bading H (2003) Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr Opin Neurobiol 13:366–371PubMedCrossRefGoogle Scholar
  296. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223Google Scholar
  297. Visnjic D, Banfic H (2007) Nuclear phospholipid signaling: phosphatidylinositol-specific phospholipase C and phosphoinositide 3-kinase. Pflugers Arch 455:19–30PubMedCrossRefGoogle Scholar
  298. Voeltz GK, Rolls MM, Rapoport TA (2002) Structural organization of the endoplasmic reticulum. EMBO Rep 3:944–950PubMedCrossRefGoogle Scholar
  299. Vukcevic M, Zorzato F, Spagnoli G, Treves S (2010) Frequent calcium oscillations lead to NFAT activation in human immature dendritic cells. J Biol Chem 285:16003–16011PubMedCrossRefGoogle Scholar
  300. Wang JQ, Fibuch EE, Mao L (2007) Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem 100:1–11PubMedCrossRefGoogle Scholar
  301. Wang JY, Chen BK, Wang YS, Tsai YT, Chen WC, Chang WC, Hou MF, Wu YC, Chang WC (2012a) Involvement of store-operated calcium signaling in EGF-mediated COX-2 gene activation in cancer cells. Cell Signal 24:162–169PubMedCrossRefGoogle Scholar
  302. Wang SB, Shi Q, Xu Y, Xie WL, Zhang J, Tian C, Guo Y, Wang K, Zhang BY, Chen C, Gao C, Dong XP (2012b) Protein disulfide isomerase regulates endoplasmic reticulum stress and the apoptotic process during prion infection and PrP mutant-induced cytotoxicity. PLoS One 7:e38221PubMedCrossRefGoogle Scholar
  303. Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H (2009) Calcium flickers steer cell migration. Nature 457:901–905PubMedCrossRefGoogle Scholar
  304. Wei C, Wang X, Zheng M, Cheng H (2012) Calcium gradients underlying cell migration. Curr Opin Cell Biol 24:254–261PubMedCrossRefGoogle Scholar
  305. Wells A, Marti U (2002) Signalling shortcuts: cell-surface receptors in the nucleus? Nat Rev Mol Cell Biol 3:697-U691Google Scholar
  306. Wente SR, Rout MP (2010) The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol 2:a000562PubMedCrossRefGoogle Scholar
  307. Westermarck J, Hahn WC (2008) Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol Med 14:152–160PubMedCrossRefGoogle Scholar
  308. Wheeler DG, Barrett CF, Groth RD, Safa P, Tsien RW (2008) CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation-transcription coupling. J Cell Biol 183:849–863PubMedCrossRefGoogle Scholar
  309. Wilhelmsen K, Ketema M, Truong H, Sonnenberg A (2006) KASH-domain proteins in nuclear migration, anchorage and other processes. J Cell Sci 119:5021–5029PubMedCrossRefGoogle Scholar
  310. Wilkie GS, Korfali N, Swanson SK, Malik P, Srsen V, Batrakou DG, de las Heras J, Zuleger N, Kerr AR, Florens L, Schirmer EC (2011) Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations. Mol Cell Proteomics 10:M110.003129Google Scholar
  311. Williams RT, Manji SS, Parker NJ, Hancock MS, Van Stekelenburg L, Eid JP, Senior PV, Kazenwadel JS, Shandala T, Saint R, Smith PJ, Dziadek MA (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357:673–685PubMedCrossRefGoogle Scholar
  312. Wittmann M, Queisser G, Eder A, Wiegert JS, Bengtson CP, Hellwig A, Wittum G, Bading H (2009) Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling. J Neurosci 29:14687–14700PubMedCrossRefGoogle Scholar
  313. Wolniak SM, Hepler PK, Jackson WT (1983) Ionic changes in the mitotic apparatus at the metaphase/anaphase transition. J Cell Biol 96:598–605PubMedCrossRefGoogle Scholar
  314. Wong LL, Chang CF, Koay ESC, Zhang DH (2009) Tyrosine phosphorylation of PP2A is regulated by HER-2 signalling and correlates with breast cancer progression. Int J Oncol 34:1291–1301PubMedGoogle Scholar
  315. Wu G, Xie X, Lu ZH, Ledeen RW (2009) Sodium-calcium exchanger complexed with GM1 ganglioside in nuclear membrane transfers calcium from nucleoplasm to endoplasmic reticulum. Proc Natl Acad Sci USA 106:10829–10834PubMedCrossRefGoogle Scholar
  316. Wu N, Hanson SM, Francis DJ, Vishnivetskiy SA, Thibonnier M, Klug CS, Shoham M, Gurevich VV (2006a) Arrestin binding to calmodulin: a direct interaction between two ubiquitous signaling proteins. J Mol Biol 364:955–963PubMedCrossRefGoogle Scholar
  317. Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH, Bers DM (2006b) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116:675–682Google Scholar
  318. Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han A, Ziegler SF, Mathis D, Benoist C, Chen L, Rao A (2006c) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126:375–387PubMedCrossRefGoogle Scholar
  319. Xie X, Wu G, Ledeen RW (2004) C6 cells express a sodium-calcium exchanger/GM1 complex in the nuclear envelope but have no exchanger in the plasma membrane: comparison to astrocytes. J Neurosci Res 76:363–375PubMedCrossRefGoogle Scholar
  320. Xie X, Wu G, Lu ZH, Ledeen RW (2002) Potentiation of a sodium-calcium exchanger in the nuclear envelope by nuclear GM1 ganglioside. J Neurochem 81:1185–1195PubMedCrossRefGoogle Scholar
  321. Xu AM, Suh PG, Marmy-Conus N, Pearson RB, Seok OY, Cocco L, Gilmour RS (2001) Phosphorylation of nuclear phospholipase C beta 1 by extracellular signal-regulated kinase mediates the mitogenic action of insulin-like growth factor I. Mol Cell Biol 21:2981–2990PubMedCrossRefGoogle Scholar
  322. Yamamoto TM, Iwabuchi M, Ohsumi K, Kishimoto T (2005) APC/C-Cdc20-mediated degradation of cyclin B participates in CSF arrest in unfertilized Xenopus eggs. Dev Biol 279:345–355PubMedCrossRefGoogle Scholar
  323. Yang SY, Zhang JJL, Huang XY (2009) Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15:124–134PubMedCrossRefGoogle Scholar
  324. Yeromin AV, Zhang SYL, Jiang WH, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229PubMedCrossRefGoogle Scholar
  325. Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, Brown MS (1993) SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75:187–197PubMedGoogle Scholar
  326. Yoo SH, Nam SW, Huh SK, Park SY, Huh YH (2005) Presence of a nucleoplasmic complex composed of the inositol 1,4,5-trisphosphate receptor/Ca2+ channel, chromogranin B, and phospholipids. Biochemistry 44:9246–9254PubMedCrossRefGoogle Scholar
  327. York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:96–100Google Scholar
  328. Yu F, Sun L, Machaca K (2010) Constitutive recycling of the store-operated Ca2+ channel Orai1 and its internalization during meiosis. J Cell Biol 191:523–535PubMedCrossRefGoogle Scholar
  329. Yu YY, Dai G, Pan FY, Chen J, Li CJ (2005) Calmodulin regulates the post-anaphase reposition of centrioles during cytokinesis. Cell Res 15:548–552PubMedCrossRefGoogle Scholar
  330. Yue C, Soboloff J, Gamero AM (2012) Control of type I interferon-induced cell death by Orai1-mediated calcium entry in T cells. J Biol Chem 287:3207–3216PubMedCrossRefGoogle Scholar
  331. Zhang SYL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905PubMedCrossRefGoogle Scholar
  332. Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci USA 103:9357–9362PubMedCrossRefGoogle Scholar
  333. Zhou W, Chen KH, Cao W, Zeng J, Liao H, Zhao L, Guo X (2010) Mutation of the protein kinase A phosphorylation site influences the anti-proliferative activity of mitofusin 2. Atherosclerosis 211:216–223PubMedCrossRefGoogle Scholar
  334. Zhou YD, Mancarella S, Wang YY, Yue CY, Ritchie M, Gill DL, Soboloff J (2009) The short N-terminal domains of STIM1 and STIM2 control the activation kinetics of Orai1 channels. J Biol Chem 284:19164–19168. Erratum: J Biol Chem 284:25459PubMedCrossRefGoogle Scholar
  335. Zima AV, Bare DJ, Mignery GA, Blatter LA (2007) IP3-dependent nuclear Ca2+ signalling in the mammalian heart. J Physiol 584:601–611PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Maria Jimena Amaya
    • 1
  • Vânia A. M. Goulart
    • 2
  • Anderson K. Santos
    • 2
  • Alexandre H. Kihara
    • 3
  • Silvia Guatimosim
    • 4
  • Rodrigo R. Resende
    • 2
    Email author
  1. 1.Section of Digestive Diseases, Department of Internal MedicineYale University School of MedicineNew HavenUSA
  2. 2.Cell Signaling and Nanobiotechnology Laboratory, Department of Biochemistry and Immunology, Bloco N4 112 and G3 86Federal University of Minas GeraisBelo HorizonteBrazil
  3. 3.Nucleus of Cognition and Complex Systems, Center for Mathematics, Computation and CognitionUniversidade Federal do ABCSanto AndréBrazil
  4. 4.Cardiomyocyte Intracellular Signaling Laboratory, Department of Physiology and Biophysics, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations