Skip to main content

Are Calcium Channels More Important Than Calcium Influx for Cell Proliferation?

  • Chapter
  • First Online:
Trends in Stem Cell Proliferation and Cancer Research

Abstract

Increases in both the basal cytosolic calcium concentration and cytosolic calcium transients play a major role in cell cycle progression, cell proliferation, and cell division. Calcium influx and calcium release from the endoplasmic reticulum are the major routes involved in the variations in cytosolic calcium concentration, and past studies have clearly shown that calcium influx controls cell growth and proliferation in several cell types. Furthermore, various studies in the past 30 years have demonstrated that cell-specific calcium channel expression levels are determinant in these physiological processes. Cell proliferation is directly linked to cell cycle progression, and it rapidly became evident that calcium channel expression interferes in this physiological process. It is also clear that the relationship between calcium influx and cell proliferation can be uncoupled in transformed and cancer cells, resulting in an external calcium-independent proliferation. Other divalent cations such as iron and zinc involved in cell proliferation permeating some calcium channels may interfere in this cellular process. Finally, we make the assumption that protein expression could be more important rather than channel function to trigger cell proliferation and that additional channel functions may be discovered soon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2008) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103:1289–1299

    Article  PubMed  CAS  Google Scholar 

  • Andrews NC (1999) Disorders of iron metabolism. N Engl J Med 341:1986–1995

    Article  PubMed  CAS  Google Scholar 

  • Antigny F, Girardin N, Frieden M (2012) Transient receptor potential canonical channels are required for in vitro endothelial tube formation. J Biol Chem 287:5917–5927

    Article  PubMed  CAS  Google Scholar 

  • Arredouani A, Yu F, Sun L, Machaca K (2010) Regulation of store-operated calcium entry during the cell cycle. J Cell Sci 123:2155–2162

    Article  PubMed  CAS  Google Scholar 

  • Barbado M, Fablet K, Ronjat M, De Waard M (2009) Gene regulation by voltage-dependent calcium channels. Biochim Biophys Acta 1793:1096–1104

    Article  PubMed  CAS  Google Scholar 

  • Bean BP, McDonough SI (1998) Two for T. Neuron 20:825–828

    Article  PubMed  CAS  Google Scholar 

  • Becchetti A (2011) Ion chennels and cell proliferation in cancer. Am J Physiol Cell Physiol 301:C255–265

    Google Scholar 

  • Beech DJ (2005) TRPC1: store-operated channel and more. Pflugers Arch 451:53–60

    Article  PubMed  CAS  Google Scholar 

  • Bergner A, Huber RM (2008) Regulation of the endoplasmic reticulum Ca(2+)-store in cancer. Anticancer Agents Med Chem 8:705–709

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793:933–940

    Article  PubMed  CAS  Google Scholar 

  • Berthon B, Binet A, Mauger JP, Claret M (1984) Cytosolic free calcium in isolated rat hepatocytes as measured by quin2. Effects of noradrenaline and vasopressin. FEBS Lett 167:19–24

    Article  PubMed  CAS  Google Scholar 

  • Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341

    Article  PubMed  CAS  Google Scholar 

  • Binggeli R, Cameron IL (1980) Cellular potentials of normal and cancerous fibroblasts and hepatocytes. Cancer Res 40:1830–1835

    PubMed  CAS  Google Scholar 

  • Bird GS, Putney JW Jr (2005) Capacitative calcium entry supports calcium oscillations in human embryonic kidney cells. J Physiol 562:697–706

    Article  PubMed  CAS  Google Scholar 

  • Blackiston DJ, McLaughlin KA, Levin M (2009) Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8:3519–3528

    Article  PubMed  Google Scholar 

  • Bodding M (2001) Reduced store-operated Ca(2+) currents in rat basophilic leukaemia cells cultured under serum-free conditions. Cell Calcium 30:141–150

    Article  PubMed  CAS  Google Scholar 

  • Bodding M (2007) TRP proteins and cancer. Cell Signal 19:617–624

    Article  PubMed  CAS  Google Scholar 

  • Bolanz KA, Hediger MA, Landowski CP (2008) The role of TRPV6 in breast carcinogenesis. Mol Cancer Ther 7:271–279

    Article  PubMed  CAS  Google Scholar 

  • Boynton AL, Whitfield JF, Isaacs RJ (1976) The different roles of serum and calcium in the control of proliferation of BALB/c 3T3 mouse cells. In Vitro 12:120–123

    Article  PubMed  CAS  Google Scholar 

  • Boynton AL, Whitfield JF, Isaacs RJ, Tremblay R (1977) The control of human WI-38 cell proliferation by extracellular calcium and its elimination by SV-40 virus-induced proliferative transformation. J Cell Physiol 92:241–247

    Article  PubMed  CAS  Google Scholar 

  • Boynton AL (1988) Calcium and epithelial cell proliferation. Miner Electrolyte Metab 14:86–94

    PubMed  CAS  Google Scholar 

  • Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum calcium levels. Cell 131:1327–1339

    Article  PubMed  CAS  Google Scholar 

  • Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS (2003) Caveolin-1 contributes to assembly of store-operated calcium influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 278:27208–27215

    Article  PubMed  CAS  Google Scholar 

  • Brodie C, Siriwardana G, Lucas J, Schleicher R, Terada N, Szepesi A, Gelfand E, Seligman P (1993) Neuroblastoma sensitivity to growth inhibition by deferrioxamine: evidence for a block in G1 phase of the cell cycle. Cancer Res 53:3968–3975

    PubMed  CAS  Google Scholar 

  • Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2009) Purinergic signalling: past, present and future. Braz J Med Biol Res 42:3–8

    Google Scholar 

  • Burnstock G, Kennedy C (2011) P2X receptors in health and disease. Adv Pharmacol 61:333–372

    Article  PubMed  CAS  Google Scholar 

  • Buss JL, Greene BT, Turner J, Torti FM, Torti SV (2004) Iron chelators in cancer chemotherapy. Curr Top Med Chem 4:1623–1635

    Article  PubMed  CAS  Google Scholar 

  • Cahalan MD, Zhang SL, Yeromin AV, Ohlsen K, Roos J, Stauderman KA (2007) Molecular basis of the CRAC channel. Cell Calcium 42:133–144

    Article  PubMed  CAS  Google Scholar 

  • Cahalan MD (2009) STIMulating store-operated Ca(2+) entry. Nat Cell Biol 11:669–677

    Article  PubMed  CAS  Google Scholar 

  • Cai R, Ding X, Zhou K, Shi Y, Ge R, Ren G, Jin Y, Wang Y (2009) Blockade of TRPC6 channels induced G2/M phase arrest and suppressed growth in human gastric cancer cells. Int J Cancer 125:2281–2287

    Article  PubMed  CAS  Google Scholar 

  • Capiod T (1998) ATP-activated cation currents in single guinea-pig hepatocytes. J Physiol 507(Pt 3):795–805

    Article  PubMed  CAS  Google Scholar 

  • Capiod T (2011) Cell proliferation, calcium influx and calcium channels. Biochimie 93:2075–2079

    Article  PubMed  CAS  Google Scholar 

  • Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci USA 99:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Cazzola M, Bergamaschi G, Dezza L, Arosio P (1990) Manipulations of cellular iron metabolism for modulating normal and malignant cell proliferation: achievements and prospects. Blood 75:1903–1919

    PubMed  CAS  Google Scholar 

  • Chemin J, Monteil A, Briquaire C, Richard S, Perez-Reyes E, Nargeot J, Lory P (2000) Overexpression of T-type calcium channels in HEK-293 cells increases intracellular calcium without affecting cellular proliferation. FEBS Lett 478:166–172

    Article  PubMed  CAS  Google Scholar 

  • Chenoufi N, Baffet G, Drenou B, Cariou S, Desille M, Clement B, Brissot P, Lescoat G, Loreal O (1998a) Deferoxamine arrests in vitro the proliferation of porcine hepatocyte in G1 phase of the cell cycle. Liver 18:60–66

    PubMed  CAS  Google Scholar 

  • Chenoufi N, Drenou B, Loreal O, Pigeon C, Brissot P, Lescoat G (1998b) Antiproliferative effect of deferiprone on the Hep G2 cell line. Biochem Pharmacol 56:431–437

    Article  PubMed  CAS  Google Scholar 

  • Chung SC, McDonald TV, Gardner P (1994) Inhibition by SK&F 96365 of calcium current, IL-2 production and activation in T lymphocytes. Br J Pharmacol 113:861–868

    Article  PubMed  CAS  Google Scholar 

  • Colomer J, Means AR (2007) Physiological roles of the calcium/CaM-dependent protein kinase cascade in health and disease. Subcell Biochem 45:169–214

    Article  PubMed  CAS  Google Scholar 

  • Courjaret R, Machaca K (2012) STIM and Orai in cellular proliferation and division. Front Biosci (Elite Ed) 4:331–341

    Google Scholar 

  • Cribbs LL (2006) T-type calcium channels in vascular smooth muscle: multiple functions. Cell Calcium 40:221–230

    Article  PubMed  CAS  Google Scholar 

  • Crunelli V, Toth TI, Cope DW, Blethyn K, Hughes SW (2005) The ‘window’ T-type calcium current in brain dynamics of different behavioural states. J Physiol 562:121–129

    Article  PubMed  CAS  Google Scholar 

  • Darbellay B, Arnaudeau S, Konig S, Jousset H, Bader C, Demaurex N, Bernheim L (2009) STIM1- and Orai1-dependent store-operated calcium entry regulates human myoblast differentiation. J Biol Chem 284:5370–5380

    Article  PubMed  CAS  Google Scholar 

  • Darbellay B, Arnaudeau S, Ceroni D, Bader CR, Konig S, Bernheim L (2010) Human muscle economy myoblast differentiation and excitation-contraction coupling use the same molecular partners, STIM1 and STIM2. J Biol Chem 285:22437–22447

    Article  PubMed  CAS  Google Scholar 

  • Davis FM, Peters AA, Grice DM, Cabot PJ, Parat MO, Roberts-Thomson SJ, Monteith GR (2012) Non-stimulated, agonist-stimulated and store-operated calcium influx in MDA-MB-468 breast cancer cells and the effect of EGF-induced EMT on calcium entry. PLoS One 7:e36923

    Article  PubMed  CAS  Google Scholar 

  • Ding X, He Z, Shi Y, Wang Q, Wang Y (2010a) Targeting TRPC6 channels in oesophageal carcinoma growth. Expert Opin Ther Targets 14:513–527

    Article  PubMed  CAS  Google Scholar 

  • Ding X, He Z, Zhou K, Cheng J, Yao H, Lu D, Cai R, Jin Y, Dong B, Xu Y, Wang Y (2010b) Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J Natl Cancer Inst 102:1052–1068

    Article  PubMed  CAS  Google Scholar 

  • Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294:333–339

    Article  PubMed  CAS  Google Scholar 

  • Dreosti IE (2001) Zinc and the gene. Mutat Res 475:161–167

    Article  PubMed  CAS  Google Scholar 

  • Duhon D, Bigelow RL, Coleman DT, Steffan JJ, Yu C, Langston W, Kevil CG, Cardelli JA (2010) The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-Met receptor in prostate cancer cells. Mol Carcinog 49:739–749

    PubMed  CAS  Google Scholar 

  • El Boustany C, Bidaux G, Enfissi A, Delcourt P, Prevarskaya N, Capiod T (2008) Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation. Hepatology 47:2068–2077

    Article  PubMed  CAS  Google Scholar 

  • El Boustany C, Katsogiannou M, Delcourt P, Dewailly E, Prevarskaya N, Borowiec AS, Capiod T (2010) Differential roles of STIM1, STIM2 and Orai1 in the control of cell proliferation and SOCE amplitude in HEK293 cells. Cell Calcium 47:350–359

    Article  PubMed  CAS  Google Scholar 

  • El Hiani Y, Lehen’kyi V, Ouadid-Ahidouch H, Ahidouch A (2009) Activation of the calcium-sensing receptor by high calcium induced breast cancer cell proliferation and TRPC1 cation channel over-expression potentially through EGFR pathways. Arch Biochem Biophys 486:58–63

    Article  PubMed  CAS  Google Scholar 

  • Enfissi A, Prigent S, Colosetti P, Capiod T (2004) The blocking of capacitative calcium entry by 2-aminoethyl diphenylborate (2-APB) and carboxyamidotriazole (CAI) inhibits proliferation in Hep G2 and Huh-7 human hepatoma cells. Cell Calcium 36:459–467

    Article  PubMed  CAS  Google Scholar 

  • Faouzi M, Hague F, Potier M, Ahidouch A, Sevestre H, Ouadid-Ahidouch H (2011) Down-regulation of Orai3 arrests cell-cycle progression and induces apoptosis in breast cancer cells but not in normal breast epithelial cells. J Cell Physiol 226:542–551

    Article  PubMed  CAS  Google Scholar 

  • Fasolato C, Hoth M, Penner R (1993) Multiple mechanisms of manganese-induced quenching of fura-2 fluorescence in rat mast cells. Pflugers Arch 423:225–231

    Article  PubMed  CAS  Google Scholar 

  • Feske S (2010) CRAC channelopathies. Pflugers Arch 460:417–435

    Article  PubMed  CAS  Google Scholar 

  • Feske S, Picard C, Fischer A (2010) Immunodeficiency due to mutations in ORAI1 and STIM1. Clin Immunol 135:169–182

    Article  PubMed  CAS  Google Scholar 

  • Fiorio Pla A, Maric D, Brazer SC, Giacobini P, Liu X, Chang YH, Ambudkar IS, Barker JL (2005) Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced calcium entry and embryonic rat neural stem cell proliferation. J Neurosci 25:2687–2701

    Article  PubMed  CAS  Google Scholar 

  • Franzius D, Hoth M, Penner R (1994) Non-specific effects of calcium entry antagonists in mast cells. Pflugers Arch 428:433–438

    Article  PubMed  CAS  Google Scholar 

  • Ge R, Tai Y, Sun Y, Zhou K, Yang S, Cheng T, Zou Q, Shen F, Wang Y (2009) Critical role of TRPC6 channels in VEGF-mediated angiogenesis. Cancer Lett 283:43–51

    Article  PubMed  CAS  Google Scholar 

  • Gibon J, Tu P, Bohic S, Richaud P, Arnaud J, Zhu M, Boulay G, Bouron A (2011) The over-expression of TRPC6 channels in HEK-293 cells favours the intracellular accumulation of zinc. Biochim Biophys Acta 1808:2807–2818

    Article  PubMed  CAS  Google Scholar 

  • Gilabert JA, Parekh AB (2000) Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca(2+) current I(CRAC). EMBO J 19:6401–6407

    Article  PubMed  CAS  Google Scholar 

  • Girard S, Clapham D (1993) Acceleration of intracellular calcium waves in Xenopus oocytes by calcium influx. Science 260:229–232

    Article  PubMed  CAS  Google Scholar 

  • Gkika D, Prevarskaya N (2009) Molecular mechanisms of TRP regulation in tumor growth and metastasis. Biochim Biophys Acta 1793:953–958

    Article  PubMed  CAS  Google Scholar 

  • Glassford J, Soeiro I, Skarell SM, Banerji L, Holman M, Klaus GG, Kadowaki T, Koyasu S, Lam EW (2003) BCR targets cyclin D2 via Btk and the p85alpha subunit of PI3-K to induce cell cycle progression in primary mouse B cells. Oncogene 22:2248–2259

    Article  PubMed  CAS  Google Scholar 

  • Golovina VA, Platoshyn O, Bailey CL, Wang J, Limsuwan A, Sweeney M, Rubin LJ, Yuan JX (2001) Upregulated TRP and enhanced capacitative Ca(2+) entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 280:H746–H755

    PubMed  CAS  Google Scholar 

  • Gomez-Ospina N, Tsuruta F, Barreto-Chang O, Hu L, Dolmetsch R (2006) The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell 127:591–606

    Article  PubMed  CAS  Google Scholar 

  • Gradilone SA, Masyuk TV, Huang BQ, Banales JM, Lehmann GL, Radtke BN, Stroope A, Masyuk AI, Splinter PL, LaRusso NF (2010) Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD. Gastroenterology 139(304–314):e302

    Google Scholar 

  • Gudermann T, Hofmann T, Mederos y Schnitzler M, Dietrich A (2004) Activation, subunit composition and physiological relevance of DAG-sensitive TRPC proteins. Novartis Found Symp 258:103–118; discussion 118–122, 155–109, 263–106

    Google Scholar 

  • Guilbert A, Gautier M, Dhennin-Duthille I, Haren N, Sevestre H, Ouadid-Ahidouch H (2009) Evidence that TRPM7 is required for breast cancer cell proliferation. Am J Physiol Cell Physiol 297:C493–C502

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  • Hanano T, Hara Y, Shi J, Morita H, Umebayashi C, Mori E, Sumimoto H, Ito Y, Mori Y, Inoue R (2004) Involvement of TRPM7 in cell growth as a spontaneously activated calcium entry pathway in human retinoblastoma cells. J Pharmacol Sci 95:403–419

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa H, Ichiyama A (2005) Distinctive iron requirement of tryptophan 5-monooxygenase: TPH1 requires dissociable ferrous iron. Biochem Biophys Res Commun 338:277–284

    Article  PubMed  CAS  Google Scholar 

  • Hatcher HC, Singh RN, Torti FM, Torti SV (2009) Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med Chem 1:1643–1670

    Article  PubMed  CAS  Google Scholar 

  • Haverstick DM, Heady TN, Macdonald TL, Gray LS (2000) Inhibition of human prostate cancer proliferation in vitro and in a mouse model by a compound synthesized to block calcium entry. Cancer Res 60:1002–1008

    PubMed  CAS  Google Scholar 

  • Hazelton B, Mitchell B, Tupper J (1979) Calcium, magnesium, and growth control in the WI-38 human fibroblast cell. J Cell Biol 83:487–498

    Article  PubMed  CAS  Google Scholar 

  • Hershko C (1994) Control of disease by selective iron depletion: a novel therapeutic strategy utilizing iron chelators. Baillieres Clin Haematol 7:965–1000

    Article  PubMed  CAS  Google Scholar 

  • Hickie RA, Wei JW, Blyth LM, Wong DY, Klaassen DJ (1983) Cations and calmodulin in normal and neoplastic cell growth regulation. Can J Biochem Cell Biol 61:934–941

    Article  PubMed  CAS  Google Scholar 

  • Hileti D, Panayiotidis P, Hoffbrand AV (1995) Iron chelators induce apoptosis in proliferating cells. Br J Haematol 89:181–187

    Article  PubMed  CAS  Google Scholar 

  • Hirata Y (2002) Manganese-induced apoptosis in PC12 cells. Neurotoxicol Teratol 24:639–653

    Article  PubMed  CAS  Google Scholar 

  • Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    Article  PubMed  CAS  Google Scholar 

  • Hoth M, Penner R (1993) Calcium release-activated calcium current in rat mast cells. J Physiol 465:359–386

    PubMed  CAS  Google Scholar 

  • Hoth M, Button DC, Lewis RS (2000) Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc Natl Acad Sci USA 97:10607–10612

    Article  PubMed  CAS  Google Scholar 

  • Hou MF, Kuo HC, Li JH, Wang YS, Chang CC, Chen KC, Chen WC, Chiu CC, Yang S, Chang WC (2011) Orai1/CRACM1 overexpression suppresses cell proliferation via attenuation of the store-operated calcium influx-mediated signalling pathway in A549 lung cancer cells. Biochim Biophys Acta 1810:1278–1284

    Article  PubMed  CAS  Google Scholar 

  • Huang CL (2004) The transient receptor potential superfamily of ion channels. J Am Soc Nephrol 15:1690–1699

    Article  PubMed  CAS  Google Scholar 

  • Isshiki M, Anderson RG (2003) Function of caveolae in calcium entry and calcium-dependent signal transduction. Traffic 4:717–723

    Article  PubMed  CAS  Google Scholar 

  • Isshiki M, Ying YS, Fujita T, Anderson RG (2002) A molecular sensor detects signal transduction from caveolae in living cells. J Biol Chem 277:43389–43398

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek LK (2006) Non-conducting functions of voltage-gated ion channels. Nat Rev Neurosci 7:761–771

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski DS, Richardson DR (2005) The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol Rev 57:547–583

    Article  PubMed  CAS  Google Scholar 

  • Kontoghiorghes GJ, Efstathiou A, Ioannou-Loucaides S, Kolnagou A (2008) Chelators controlling metal metabolism and toxicity pathways: applications in cancer prevention, diagnosis and treatment. Hemoglobin 32:217–227

    Article  PubMed  CAS  Google Scholar 

  • Kotturi MF, Hunt SV, Jefferies WA (2006) Roles of CRAC and Cav-like channels in T cells: more than one gatekeeper? Trends Pharmacol Sci 27:360–367

    Article  PubMed  CAS  Google Scholar 

  • Kovacs G, Danko T, Bergeron MJ, Balazs B, Suzuki Y, Zsembery A, Hediger MA (2011) Heavy metal cations permeate the TRPV6 epithelial cation channel. Cell Calcium 49:43–55

    Article  PubMed  CAS  Google Scholar 

  • Kuang CY, Yu Y, Wang K, Qian DH, Den MY, Huang L (2011) Knockdown of transient receptor potential canonical-1 reduces the proliferation and migration of endothelial progenitor cells. Stem Cells Dev 21(3):487–96

    Google Scholar 

  • Kuga T, Kobayashi S, Hirakawa Y, Kanaide H, Takeshita A (1996) Cell cycle–dependent expression of L- and T-type calcium currents in rat aortic smooth muscle cells in primary culture. Circ Res 79:14–19

    Article  PubMed  CAS  Google Scholar 

  • Kwok JC, Richardson DR (2002) The iron metabolism of neoplastic cells: alterations that facilitate proliferation? Crit Rev Oncol Hematol 42:65–78

    Article  PubMed  Google Scholar 

  • Lau YT, Wong CK, Luo J, Leung LH, Tsang PF, Bian ZX, Tsang SY (2011) Effects of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers on the proliferation and cell cycle progression of embryonic stem cells. Pflugers Arch 461:191–202

    Article  PubMed  CAS  Google Scholar 

  • Laude AJ, Simpson AW (2009) Compartmentalized signalling: calcium compartments, microdomains and the many facets of calcium signalling. FEBS J 276:1800–1816

    Article  PubMed  CAS  Google Scholar 

  • Le NT, Richardson DR (2002) The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim Biophys Acta 1603:31–46

    PubMed  CAS  Google Scholar 

  • Lee BC, Chu TK, Dill KA, Zuckermann RN (2008) Biomimetic nanostructures: creating a high-affinity zinc-binding site in a folded nonbiological polymer. J Am Chem Soc 130:8847–8855

    Article  PubMed  CAS  Google Scholar 

  • Legrand G, Humez S, Slomianny C, Dewailly E, Vanden Abeele F, Mariot P, Wuytack F, Prevarskaya N (2001) calcium pools and cell growth. Evidence for sarcoendoplasmic calcium-ATPases 2B involvement in human prostate cancer cell growth control. J Biol Chem 276:47608–47614

    Google Scholar 

  • Leuner K, Kraus M, Woelfle U, Beschmann H, Harteneck C, Boehncke WH, Schempp CM, Muller WE (2011) Reduced TRPC channel expression in psoriatic keratinocytes is associated with impaired differentiation and enhanced proliferation. PLoS One 6:e14716

    Article  PubMed  CAS  Google Scholar 

  • Li J, Sukumar P, Milligan CJ, Kumar B, Ma ZY, Munsch CM, Jiang LH, Porter KE, Beech DJ (2008) Interactions, functions, and independence of plasma membrane STIM1 and TRPC1 in vascular smooth muscle cells. Circ Res 103:e97–e104

    Article  PubMed  CAS  Google Scholar 

  • Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after calcium store depletion. Proc Natl Acad Sci USA 104:9301–9306

    Article  PubMed  CAS  Google Scholar 

  • Lipskaia L, Hulot JS, Lompre AM (2009) Role of sarco/endoplasmic reticulum calcium content and calcium ATPase activity in the control of cell growth and proliferation. Pflugers Arch 457:673–685

    Article  PubMed  CAS  Google Scholar 

  • Lory P, Bidaud I, Chemin J (2006) T-type calcium channels in differentiation and proliferation. Cell Calcium 40:135–146

    Article  PubMed  CAS  Google Scholar 

  • Lucas JJ, Szepesi A, Domenico J, Takase K, Tordai A, Terada N, Gelfand EW (1995) Effects of iron-depletion on cell cycle progression in normal human T lymphocytes: selective inhibition of the appearance of the cyclin A-associated component of the p33cdk2 kinase. Blood 86:2268–2280

    PubMed  CAS  Google Scholar 

  • Luik RM, Wu MM, Buchanan J, Lewis RS (2006) The elementary unit of store-operated calcium entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174:815–825

    Article  PubMed  CAS  Google Scholar 

  • Machaca K, Haun S (2002) Induction of maturation-promoting factor during Xenopus oocyte maturation uncouples Ca(2+) store depletion from store-operated Ca(2+) entry. J Cell Biol 156:75–85

    Article  PubMed  CAS  Google Scholar 

  • Magnier-Gaubil C, Herbert JM, Quarck R, Papp B, Corvazier E, Wuytack F, Levy-Toledano S, Enouf J (1996) Smooth muscle cell cycle and proliferation. Relationship between calcium influx and sarco-endoplasmic reticulum calciumATPase regulation. J Biol Chem 271:27788–27794

    Article  PubMed  CAS  Google Scholar 

  • Malathi K, Li X, Krizanova O, Ondrias K, Sperber K, Ablamunits V, Jayaraman T (2005) Cdc2/cyclin B1 interacts with and modulates inositol 1,4,5-trisphosphate receptor (type 1) functions. J Immunol 175:6205–6210

    PubMed  Google Scholar 

  • Mariot P, Vanoverberghe K, Lalevee N, Rossier MF, Prevarskaya N (2002) Overexpression of an alpha 1H (Cav3.2) T-type calcium channel during neuroendocrine differentiation of human prostate cancer cells. J Biol Chem 277:10824–10833

    Article  PubMed  CAS  Google Scholar 

  • Martineau C, Abed E, Medina G, Jomphe LA, Mantha M, Jumarie C, Moreau R (2011) Involvement of transient receptor potential melastatin-related 7 (TRPM7) channels in cadmium uptake and cytotoxicity in MC3T3-E1 osteoblasts. Toxicol Lett 199:357–363

    Article  CAS  Google Scholar 

  • Means AR (1994) Calcium, calmodulin and cell cycle regulation. FEBS Lett 347:1–4

    Article  PubMed  CAS  Google Scholar 

  • Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L (2011) Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol 3:a004317–a004317

    Google Scholar 

  • Merritt JE, Armstrong WP, Benham CD, Hallam TJ, Jacob R, Jaxa-Chamiec A, Leigh BK, McCarthy SA, Moores KE, Rink TJ (1990) SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J 271:515–522

    PubMed  CAS  Google Scholar 

  • Mignen O, Shuttleworth TJ (2000) I(ARC), a novel arachidonate-regulated, noncapacitative Ca(2+) entry channel. J Biol Chem 275:9114–9119

    Article  PubMed  CAS  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2003) Calcineurin directs the reciprocal regulation of calcium entry pathways in nonexcitable cells. J Biol Chem 278:40088–40096

    Article  PubMed  CAS  Google Scholar 

  • Mignen O, Brink C, Enfissi A, Nadkarni A, Shuttleworth TJ, Giovannucci DR, Capiod T (2005) Carboxyamidotriazole-induced inhibition of mitochondrial calcium import blocks capacitative calcium entry and cell proliferation in HEK-293 cells. J Cell Sci 118:5615–5623

    Article  PubMed  CAS  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2009) The molecular architecture of the arachidonate-regulated calcium-selective ARC channel is a pentameric assembly of Orai1 and Orai3 subunits. J Physiol 587:4181–4197

    Article  PubMed  CAS  Google Scholar 

  • Mineo C, James GL, Smart EJ, Anderson RG (1996) Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J Biol Chem 271:11930–11935

    Article  PubMed  CAS  Google Scholar 

  • Monet M, Lehen’kyi V, Gackiere F, Firlej V, Vandenberghe M, Roudbaraki M, Gkika D, Pourtier A, Bidaux G, Slomianny C, Delcourt P, Rassendren F, Bergerat JP, Ceraline J, Cabon F, Humez S, Prevarskaya N (2010) Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res 70:1225–1235

    Article  PubMed  CAS  Google Scholar 

  • Montell C (2003) Mg2+ homeostasis: the Mg2+nificent TRPM chanzymes. Curr Biol 13:R799–R801

    Article  PubMed  CAS  Google Scholar 

  • Motiani RK, Abdullaev IF, Trebak M (2010) A novel native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells. J Biol Chem 285:19173–19183

    Article  PubMed  CAS  Google Scholar 

  • Murray A, Hunt T (1993) The cell cycle. Oxford University Press, New York

    Google Scholar 

  • Mwanjewe J, Grover AK (2004) Role of transient receptor potential canonical 6 (TRPC6) in non-transferrin-bound iron uptake in neuronal phenotype PC12 cells. Biochem J 378:975–982

    Article  PubMed  CAS  Google Scholar 

  • Nabissi M, Morelli MB, Amantini C, Farfariello V, Ricci-Vitiani L, Caprodossi S, Arcella A, Santoni M, Giangaspero F, De Maria R, Santoni G (2010) TRPV2 channel negatively controls glioma cell proliferation and resistance to Fas-induced apoptosis in ERK-dependent manner. Carcinogenesis 31:794–803

    Article  PubMed  CAS  Google Scholar 

  • Nacher J, McEwen BS (2006) The role of N-methyl-D-asparate receptors in neurogenesis. Hippocampus 16:267–270

    Article  PubMed  CAS  Google Scholar 

  • Nel AE, Dirienzo W, Stefanini GF, Wooten MW, Canonica GW, Lattanze GR, Stevenson HC, Miller P, Fudenberg HH, Galbraith RM (1986) Inhibition of T3 mediated T-cell proliferation by calcium-channel blockers and inhibitors of calcium/phospholipid-dependent kinase. Scand J Immunol 24:283–290

    Article  PubMed  CAS  Google Scholar 

  • Ogawa A, Firth AL, Smith KA, Maliakal MV, Yuan JX (2012) PDGF enhances store-operated calcium entry by upregulating STIM1/Orai1 via activation of Akt/mTOR in human pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 302:C405–C411

    Article  PubMed  CAS  Google Scholar 

  • Oh-Hora M, Yamashita M, Hogan PG, Sharma S, Lamperti E, Chung W, Prakriya M, Feske S, Rao A (2008) Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 9:432–443

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Sawada T, Kubota K (2007) Deferoxamine enhances anti-proliferative effect of interferon-gamma against hepatocellular carcinoma cells. Cancer Lett 248:24–31

    Article  PubMed  CAS  Google Scholar 

  • Pani B, Ong HL, Brazer SC, Liu X, Rauser K, Singh BB, Ambudkar IS (2009) Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1. Proc Natl Acad Sci USA 106:20087–20092

    PubMed  CAS  Google Scholar 

  • Pani B, Singh BB (2009) Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45:625–633

    Article  PubMed  CAS  Google Scholar 

  • Pani B, Bollimuntha S, Singh BB (2012) The TR (i)P to calcium signaling just got STIMy: an update on STIM1 activated TRPC channels. Front Biosci 17:805–823

    Article  CAS  Google Scholar 

  • Parekh AB (2010) Store-operated CRAC channels: function in health and disease. Nat Rev 9:399–410

    Article  CAS  Google Scholar 

  • Panner A, Wurster RD (2006) T-type calcium channels and tumor proliferation. Cell Calcium 40:253–259

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  PubMed  CAS  Google Scholar 

  • Patterson RL, van Rossum DB, Gill DL (1999) Store-operated calcium entry: evidence for a secretion-like coupling model. Cell 98:487–499

    Article  PubMed  CAS  Google Scholar 

  • Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8:771–773

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ (2005) Growth factor receptors, lipid rafts and caveolae: an evolving story. Biochim Biophys Acta 1746:260–273

    Article  PubMed  CAS  Google Scholar 

  • Popescu LM, Diculescu I, Zelck U, Ionescu N (1974) Ultrastructural distribution of calcium in smooth muscle cells of guinea-pig taenia coli. A correlated electron microscopic and quantitative study. Cell Tissue Res 154:357–378

    Article  PubMed  CAS  Google Scholar 

  • Potier M, Gonzalez JC, Motiani RK, Abdullaev IF, Bisaillon JM, Singer HA, Trebak M (2009) Evidence for STIM1- and Orai1-dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells: role in proliferation and migration. FASEB J 23:2425–2437

    Article  PubMed  CAS  Google Scholar 

  • Preston SF, Sha’afi RI, Berlin RD (1991) Regulation of calcium influx during mitosis: calcium influx and depletion of intracellular calcium stores are coupled in interphase but not mitosis. Cell Regul 2:915–925

    PubMed  CAS  Google Scholar 

  • Pulido MD, Parrish AR (2003) Metal-induced apoptosis: mechanisms. Mutat Res 533:227–241

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  PubMed  CAS  Google Scholar 

  • Putney JW (2010) Pharmacology of store-operated calcium channels. Mol Interventions 10:209–218

    Article  CAS  Google Scholar 

  • Putney JW, Bird GS (2008) Cytoplasmic calcium oscillations and store-operated calcium influx. J Physiol 586:3055–3059

    Article  PubMed  CAS  Google Scholar 

  • Reddy GP (1994) Cell cycle: regulatory events in G1-->S transition of mammalian cells. J Cell Biochem 54:379–386

    Article  PubMed  CAS  Google Scholar 

  • Renton FJ, Jeitner TM (1996) Cell cycle-dependent inhibition of the proliferation of human neural tumor cell lines by iron chelators. Biochem Pharmacol 51:1553–1561

    Article  PubMed  CAS  Google Scholar 

  • Roberts-Thomson SJ, Peters AA, Grice DM, Monteith GR (2010) ORAI-mediated calcium entry: mechanism and roles, diseases and pharmacology. Pharmacol Ther 127:121–130

    Article  PubMed  CAS  Google Scholar 

  • Rousset M, Cens T, Charnet P (2005) Alone at last! New functions for calcium channel beta subunits? Sci STKE 2005:pe11

    Google Scholar 

  • Russa AD, Ishikita N, Masu K, Akutsu H, Saino T, Satoh Y (2008) Microtubule remodeling mediates the inhibition of store-operated calcium entry (SOCE) during mitosis in COS-7 cells. Arch Histol Cytol 71:249–263

    Article  PubMed  CAS  Google Scholar 

  • Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K (2001) Immunocyte calcium influx system mediated by LTRPC2. Science 293:1327–1330

    Article  PubMed  CAS  Google Scholar 

  • Santella L (1998) The role of calcium in the cell cycle: facts and hypotheses. Biochem Biophys Res Commun 244:317–324

    Article  PubMed  CAS  Google Scholar 

  • Santoni G, Farfariello V, Amantini C (2011) TRPV channels in tumor growth and progression. Adv Exp Med Biol 704:947–967

    Article  PubMed  CAS  Google Scholar 

  • Schmitz C, Dorovkov MV, Zhao X, Davenport BJ, Ryazanov AG, Perraud AL (2005) The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J Biol Chem 280:37763–37771

    Article  PubMed  CAS  Google Scholar 

  • Schwarz EC, Wissenbach U, Niemeyer BA, Strauss B, Philipp SE, Flockerzi V, Hoth M (2006) TRPV6 potentiates calcium-dependent cell proliferation. Cell Calcium 39:163–173

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Ding X, He ZH, Zhou KC, Wang Q, Wang YZ (2009) Critical role of TRPC6 channels in G2 phase transition and the development of human oesophageal cancer. Gut 58:1443–1450

    Article  PubMed  CAS  Google Scholar 

  • Short AD, Bian J, Ghosh TK, Waldron RT, Rybak SL, Gill DL (1993) Intracellular calcium pool content is linked to control of cell growth. Proc Natl Acad Sci USA 90:4986–4990

    Article  PubMed  CAS  Google Scholar 

  • Shuttleworth TJ, Mignen O (2003) Calcium entry and the control of calcium oscillations. Biochem Soc Trans 31:916–919

    Article  PubMed  CAS  Google Scholar 

  • Shuttleworth TJ, Thompson JL, Mignen O (2007) STIM1 and the noncapacitative ARC channels. Cell Calcium 42:183–191

    Article  PubMed  CAS  Google Scholar 

  • Simonart T, Boelaert JR, Mosselmans R, Andrei G, Noel JC, De Clercq E, Snoeck R (2002) Antiproliferative and apoptotic effects of iron chelators on human cervical carcinoma cells. Gynecol Oncol 85:95–102

    Article  PubMed  CAS  Google Scholar 

  • Smyth JT, Petranka JG, Boyles RR, DeHaven WI, Fukushima M, Johnson KL, Williams JG, Putney JW Jr (2009) Phosphorylation of STIM1 underlies suppression of store-operated calcium entry during mitosis. Nat Cell Biol 11:1465–1472

    Article  PubMed  CAS  Google Scholar 

  • Smyth JT, Putney JW (2012) Regulation of store-operated calcium entry during cell division. Biochem Soc Trans 40:119–123

    Article  PubMed  CAS  Google Scholar 

  • Sneyd J, Tsaneva-Atanasova K, Yule DI, Thompson JL, Shuttleworth TJ (2004) Control of calcium oscillations by membrane fluxes. Proc Natl Acad Sci USA 101:1392–1396

    Article  PubMed  CAS  Google Scholar 

  • Soboloff J, Spassova MA, Tang XD, Hewavitharana T, Xu W, Gill DL (2006) Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 281:20661–20665

    Article  PubMed  CAS  Google Scholar 

  • Stathopulos PB, Li GY, Plevin MJ, Ames JB, Ikura M (2006) Stored calcium depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive calcium entry. J Biol Chem 281:35855–35862

    Article  PubMed  CAS  Google Scholar 

  • Stathopulos PB, Zheng L, Ikura M (2009) Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics. J Biol Chem 284:728–732

    Article  PubMed  CAS  Google Scholar 

  • Steegmann-Olmedillas JL (2011) The role of iron in tumour cell proliferation. Clin Transl Oncol 13:71–76

    Article  PubMed  CAS  Google Scholar 

  • Steinhardt RA, Alderton J (1988) Intracellular free calcium rise triggers nuclear envelope breakdown in the sea urchin embryo. Nature 332:364–366

    Article  PubMed  CAS  Google Scholar 

  • Sternfeld L, Krause E, Schmid A, Anderie I, Latas A, Al-Shaldi H, Kohl A, Evers K, Hofer HW, Schulz I (2005) Tyrosine phosphatase PTP1B interacts with TRPV6 in vivo and plays a role in TRPV6-mediated calcium influx in HEK293 cells. Cell Signal 17:951–960

    Article  PubMed  CAS  Google Scholar 

  • Sweeney M, Yu Y, Platoshyn O, Zhang S, McDaniel SS, Yuan JX (2002) Inhibition of endogenous TRP1 decreases capacitative calcium entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 283:L144–L155

    PubMed  CAS  Google Scholar 

  • Swierenga SH, Whitfield JF, Karasaki S (1978) Loss of proliferative calcium dependence: simple in vitro indicator of tumorigenicity. Proc Natl Acad Sci USA 75:6069–6072

    Article  PubMed  CAS  Google Scholar 

  • Tajeddine N, Gailly P (2012) TRPC1 protein channel is major regulator of epidermal growth factor receptor signaling. J Biol Chem 287:16146–16157

    Article  PubMed  CAS  Google Scholar 

  • Takuwa N, Zhou W, Kumada M, Takuwa Y (1992) calcium/calmodulin is involved in growth factor-induced retinoblastoma gene product phosphorylation in human vascular endothelial cells. FEBS Lett 306:173–175

    Article  PubMed  CAS  Google Scholar 

  • Takuwa N, Zhou W, Kumada M, Takuwa Y (1993) Ca(2+)-dependent stimulation of retinoblastoma gene product phosphorylation and p34cdc2 kinase activation in serum-stimulated human fibroblasts. J Biol Chem 268:138–145

    PubMed  CAS  Google Scholar 

  • Takuwa N, Zhou W, Takuwa Y (1995) Calcium, calmodulin and cell cycle progression. Cell Signal 7:93–104

    Article  PubMed  CAS  Google Scholar 

  • Tani D, Monteilh-Zoller MK, Fleig A, Penner R (2007) Cell cycle-dependent regulation of store-operated I(CRAC) and Mg2+-nucleotide-regulated MagNuM (TRPM7) currents. Cell Calcium 41:249–260

    Article  PubMed  CAS  Google Scholar 

  • Taylor JM, Simpson RU (1992) Inhibition of cancer cell growth by calcium channel antagonists in the athymic mouse. Cancer Res 52:2413–2418

    PubMed  CAS  Google Scholar 

  • Taylor JT, Huang L, Pottle JE, Liu K, Yang Y, Zeng X, Keyser BM, Agrawal KC, Hansen JB, Li M (2008) Selective blockade of T-type calcium channels suppresses human breast cancer cell proliferation. Cancer Lett 267:116–124

    Article  PubMed  CAS  Google Scholar 

  • Templeton DM, Liu Y (2003) Genetic regulation of cell function in response to iron overload or chelation. Biochim Biophys Acta 1619:113–124

    Article  PubMed  CAS  Google Scholar 

  • Thebault S, Flourakis M, Vanoverberghe K, Vandermoere F, Roudbaraki M, Lehen’kyi V, Slomianny C, Beck B, Mariot P, Bonnal JL, Mauroy B, Shuba Y, Capiod T, Skryma R, Prevarskaya N (2006) Differential role of transient receptor potential channels in calcium entry and proliferation of prostate cancer epithelial cells. Cancer Res 66:2038–2047

    Article  PubMed  CAS  Google Scholar 

  • Thompson JL, Shuttleworth TJ (2011) Orai channel-dependent activation of phospholipase C-delta: a novel mechanism for the effects of calcium entry on calcium oscillations. J Physiol 589:5057–5069

    Article  PubMed  CAS  Google Scholar 

  • Tokuoka S, Morioka H (1957) The membrane potential of the human cancer and related cells. I Gan 48:353–354

    CAS  Google Scholar 

  • Tomono M, Toyoshima K, Ito M, Amano H, Kiss Z (1998) Inhibitors of calcineurin block expression of cyclins A and E induced by fibroblast growth factor in Swiss 3T3 fibroblasts. Arch Biochem Biophys 353:374–378

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Shikano M, Kamiya T, Joh T, Ugawa S (2011) The TRPV4 channel is a novel regulator of intracellular calcium in human esophageal epithelial cells. Am J Physiol Gastrointest Liver Physiol 301:G138–G147

    Article  PubMed  CAS  Google Scholar 

  • Van Breemen C, Farinas BR, Gerba P, McNaughton ED (1972) Excitation-contraction coupling in rabbit aorta studied by the lanthanum method for measuring cellular calcium influx. Circ Res 30:44–54

    Article  PubMed  Google Scholar 

  • Varnai P, Hunyady L, Balla T (2009) STIM and Orai: the long-awaited constituents of store-operated calcium entry. Trends Pharmacol Sci 30:118–128

    Article  PubMed  CAS  Google Scholar 

  • Vassilev LT, Tovar C, Chen S, Knezevic D, Zhao X, Sun H, Heimbrook DC, Chen L (2006) Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci USA 103:10660–10665

    Article  PubMed  CAS  Google Scholar 

  • Vennekens R, Hoenderop JG, Prenen J, Stuiver M, Willems PH, Droogmans G, Nilius B, Bindels RJ (2000) Permeation and gating properties of the novel epithelial Ca(2+) channel. J Biol Chem 275:3963–3969

    Article  PubMed  CAS  Google Scholar 

  • Volpi M, Berlin RD (1988) Intracellular elevations of free calcium induced by activation of histamine H1 receptors in interphase and mitotic HeLa cells: hormone signal transduction is altered during mitosis. J Cell Biol 107:2533–2539

    Article  PubMed  CAS  Google Scholar 

  • Wagner TF, Drews A, Loch S, Mohr F, Philipp SE, Lambert S, Oberwinkler J (2010) TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch 460:755–765

    Article  PubMed  CAS  Google Scholar 

  • Waldron RT, Short AD, Meadows JJ, Ghosh TK, Gill DL (1994) Endoplasmic reticulum calcium pump expression and control of cell growth. J Biol Chem 269:11927–11933

    PubMed  CAS  Google Scholar 

  • Wang Y, Yue D, Li K, Liu YL, Ren CS, Wang P (2010) The role of TRPC6 in HGF-induced cell proliferation of human prostate cancer DU145 and PC3 cells. Asian J Androl 12:841–852

    Article  PubMed  CAS  Google Scholar 

  • Wedel B, Boyles RR, Putney JW Jr, Bird GS (2007) Role of the store-operated calcium entry proteins Stim1 and Orai1 in muscarinic cholinergic receptor-stimulated calcium oscillations in human embryonic kidney cells. J Physiol 579:679–689

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DG, Barrett CF, Groth RD, Safa P, Tsien RW (2008) CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation-transcription coupling. J Cell Biol 183:849–863

    Article  PubMed  CAS  Google Scholar 

  • Whitfield JF (1992) Calcium signals and cancer. Crit Rev Oncog 3:55–90

    PubMed  CAS  Google Scholar 

  • Whitfield JF, Boynton AL, MacManus JP, Sikorska M, Tsang BK (1979) The regulation of cell proliferation by calcium and cyclic AMP. Mol Cell Biochem 27:155–179

    Article  PubMed  CAS  Google Scholar 

  • Wissenbach U, Niemeyer B, Himmerkus N, Fixemer T, Bonkhoff H, Flockerzi V (2004) TRPV6 and prostate cancer: cancer growth beyond the prostate correlates with increased TRPV6 calcium channel expression. Biochem Biophys Res Commun 322:1359–1363

    Article  PubMed  CAS  Google Scholar 

  • Woo JS, Cho CH, Kim do H, Lee EH (2010) TRPC3 cation channel plays an important role in proliferation and differentiation of skeletal muscle myoblasts. Exp Mol Med 42:614–627

    Google Scholar 

  • Wu X, Zagranichnaya TK, Gurda GT, Eves EM, Villereal ML (2004) A TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19-7 hippocampal neuronal cells. J Biol Chem 279:43392–43402

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Lu J, Li Z, Yu X, Chen L, Xu T (2006) Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. Biochem Biophys Res Commun 350:969–976

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Mergler S, Sun X, Wang Z, Lu L, Bonanno JA, Pleyer U, Reinach PS (2005) TRPC4 knockdown suppresses epidermal growth factor-induced store-operated channel activation and growth in human corneal epithelial cells. J Biol Chem 280:32230–32237

    Article  PubMed  CAS  Google Scholar 

  • Yang SL, Cao Q, Zhou KC, Feng YJ, Wang YZ (2009a) Transient receptor potential channel C3 contributes to the progression of human ovarian cancer. Oncogene 28:1320–1328

    Article  PubMed  CAS  Google Scholar 

  • Yang ZH, Wang XH, Wang HP, Hu LQ (2009b) Effects of TRPM8 on the proliferation and motility of prostate cancer PC-3 cells. Asian J Androl 11:157–165

    Article  PubMed  CAS  Google Scholar 

  • Yee NS, Zhou W, Lee M (2010) Transient receptor potential channel TRPM8 is over-expressed and required for cellular proliferation in pancreatic adenocarcinoma. Cancer Lett 297:49–55

    Article  PubMed  CAS  Google Scholar 

  • Yee NS, Zhou W, Liang IC (2011) Transient receptor potential ion channel Trpm7 regulates exocrine pancreatic epithelial proliferation by Mg2+-sensitive Socs3a signaling in development and cancer. Dis Models Mech 4:240–254

    Article  CAS  Google Scholar 

  • Yu Y, Sweeney M, Zhang S, Platoshyn O, Landsberg J, Rothman A, Yuan JX (2003) PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Physiol Cell Physiol 284:C316–C330

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Kovacevic Z, Richardson DR (2007) Tuning cell cycle regulation with an iron key. Cell Cycle 6:1982–1994

    Article  PubMed  CAS  Google Scholar 

  • Yu F, Sun L, Machaca K (2009) Orai1 internalization and STIM1 clustering inhibition modulate SOCE inactivation during meiosis. Proc Natl Acad Sci USA 106:17401–17406

    Article  PubMed  CAS  Google Scholar 

  • Yu F, Sun L, Machaca K (2010) Constitutive recycling of the store-operated calcium channel Orai1 and its internalization during meiosis. J Cell Biol 191:523–535

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Hirschler-Laszkiewicz I, Tong Q, Conrad K, Sun SC, Penn L, Barber DL, Stahl R, Carey DJ, Cheung JY, Miller BA (2006) TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage. Am J Physiol Cell Physiol 290:C1146–C1159

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Stathopulos PB, Li GY, Ikura M (2008) Biophysical characterization of the EF-hand and SAM domain containing calcium sensory region of STIM1 and STIM2. Biochem Biophys Res Commun 369:240–246

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Capiod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Borowiec, AS., Bidaux, G., Capiod, T. (2013). Are Calcium Channels More Important Than Calcium Influx for Cell Proliferation?. In: Resende, R., Ulrich, H. (eds) Trends in Stem Cell Proliferation and Cancer Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6211-4_4

Download citation

Publish with us

Policies and ethics