Advertisement

Modulating Apoptosis in Cancer Therapy with Ultrasound and High-Intensity Nanosecond Electric Pulses

  • Tinghe YuEmail author
  • Minghe Wu
  • Ping Huang
  • Lina Hu
Chapter

Abstract

Ultrasound can induce apoptosis and enhance apoptosis attributable to anticancer drugs, in which cavitation plays the leading role. Cavitation leads to the production of reactive radicals and shear forces, which insult DNA and mitochondria, initiating apoptosis via the cytochrome c–caspase 3 pathway. Cavitation permeabilizes the cell membrane, thereby increasing the intracellular drug level and enhancing the efficacy of the cytotoxic drug. Ultrasonically chemotherapeutic sensitization is effective in both chemosensitive and chemoresistant cancer cells. The biological responses to high-intensity electric pulses are dependent on the voltage applied and the pulse length. Nanosecond electric pulses can pass through plasma and nuclear membranes to create sufficiently high voltages in the cytoplasm and in the nucleus with intact plasma and nuclear membranes, thereby impacting mitochondria or DNA, resulting in apoptosis. Nanosecond electric pulses may induce apoptosis via the intrinsic or the extrinsic pathway, and electrical and mechanical mechanisms may be involved. Both ultrasound and electric pulses can be delivered precisely into preselected tissues, so these two techniques can be developed for targeted cancer therapy.

Keywords

Ultrasound Apoptosis  Electric pulses Cancer therapy Cancer Nanosecond electric pulses  

Notes

Acknowledgments

The work in our laboratory was supported by grants from the Natural Science Foundation of China (11174376, 30972830) and the Natural Science Foundation of Chongqing (CSTC 2009BA5049).

References

  1. Abdollahi A, Domhan S, Jenne JW, Hallaj M, Dell’Aqua G, Mueckenthaler M, Richter A, Martin H, Debus J, Ansorge W, Hynynen K, Huber PE (2004) Apoptosis signals in lymphoblasts induced by focused ultrasound. FASEB J 18:1413–1414PubMedGoogle Scholar
  2. Aoi A, Watanabe Y, Mori S, Takahashi M, Vassaux G, Kodama T (2008) Herpes simplex virus thymidine kinase-mediated suicide gene therapy using nano/microbubbles and ultrasound. Ultrasound Med Biol 34:425–434PubMedCrossRefGoogle Scholar
  3. Ashush H, Rozenszajn LA, Blass M, Barda-Saad M, Azimov D, Radnay J, Zipori D, Rosenschein U (2000) Apoptosis induction of human myeloid leukemic cells by ultrasound exposure. Cancer Res 60:1014–1020PubMedGoogle Scholar
  4. Beebe SJ, Fox PM, Rec LJ, Somers K, Stark RH, Schoenbach KH (2002) Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. IEEE Trans Plasma Sci 30:286–292CrossRefGoogle Scholar
  5. Beebe SJ, Fox PM, Rec LJ, Willis EL, Schoenbach KH (2003) Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J 17:1493–1495PubMedGoogle Scholar
  6. Daigeler A, Chromik AM, Haendschke K, Emmelmann S, Siepmann M, Hensel K, Schmitz G, Klein-Hitpass L, Steinau HU, Lehnhardt M, Hauserz J (2010) Synergistic effects of sonoporation and taurolidin/TRAIL on apoptosis in human pibrosarcoma. Ultrasound Med Biol 36:1893–1906PubMedCrossRefGoogle Scholar
  7. Danno D, Kanno M, Fujimoto S, Feril LB, Kondo T, Nakamura S (2008) Effects of ultrasound on apoptosis induced by anti-CD20 antibody in CD20-positive B lymphoma cells. Ultrason Sonochem 15:463–471PubMedCrossRefGoogle Scholar
  8. Dev SB, Rabussay DP, Widera G, Hofmann GA (2000) Medical applications of electroporation. IEEE Trans Plasma Sci 28:206–223CrossRefGoogle Scholar
  9. Ermolina I, Polevaya Y, Feldman Y (2001) Study of normal and malignant white blood cells by time domain dielectric spectroscopy. IEEE Trans Dielectr Electr Insul 8:253–261CrossRefGoogle Scholar
  10. Escoffre JM, Piron J, Novell A, Bouakaz A (2011) Doxorubicin delivery into tumor cells with ultrasound and microbubbles. Mol Pharm 8:799–806PubMedCrossRefGoogle Scholar
  11. Feril LB, Kondo T, Zhao QL, Ogawa R (2002) Enhancement of hyperthermia-induced apoptosis by non-thermal effects of ultrasound. Cancer Lett 178:63–70PubMedCrossRefGoogle Scholar
  12. Feril LB, Kondo T, Zhao QL, Ogawa R, Tachibana K, Kudo N, Fujimoto S, Nakamura S (2003) Enhancement of ultrasound-induced apoptosis and cell lysis by echo-contrast agents. Ultrasound Med Biol 29:331–337PubMedCrossRefGoogle Scholar
  13. Firestein F, Rozenszajn LA, Shemesh-Darvish L, Elimelech R, Radnay J, Rosenschein U (2003) Induction of apoptosis by ultrasound application in human malignant lymphoid cells: role of mitochondria-caspase pathway activation. Ann N Y Acad Sci 1010:163–166PubMedCrossRefGoogle Scholar
  14. Ford WE, Ren W, Blackmore PF, Schoenbach KH, Beebe SJ (2010) Nanosecond pulsed electric fields stimulate apoptosis without release of pro-apoptotic factors from mitochondria in B16f10 melanoma. Arch Biochem Biophys 497:82–89PubMedCrossRefGoogle Scholar
  15. Fry FJ (1993) Intense focused ultrasound in medicine. Some practical guiding physical principles from sound source to focal site in tissue. Eur Urol 23(Suppl 1):2–7Google Scholar
  16. Furusawa Y, Zhao QL, Hassan MA, Tabuchi Y, Takasaki I, Wada S, Kondo T (2010) Ultrasound-induced apoptosis in the presence of Sonazoid and associated alterations in gene expression levels: a possible therapeutic application. Cancer Lett 288:107–115CrossRefGoogle Scholar
  17. Furusawa Y, Fujiwara Y, Campbell P, Zhao QL, Ogawa R, Hassan MA, Tabuchi Y, Takasaki I, Takahashi A, Kondo T (2012) DNA double-strand breaks induced by cavitational mechanical effects of ultrasound in cancer cell lines. PLoS One 7:e29012PubMedCrossRefGoogle Scholar
  18. Girdhani S, Bhosle SM, Thulsidas SA, Kumar A, Mishra KP (2005) Potential of radiosensitizing agents in cancer chemo-radiotherapy. J Can Res Ther 1:129–131CrossRefGoogle Scholar
  19. Gowrishankar TR, Esser AT, Vasilkoski Z, Smith KC, Weaver JC (2006) Microdosimetry for conventional and supra-electroporation in cells with organelles. Biochem Biophys Res Commun 341:1266–1276PubMedCrossRefGoogle Scholar
  20. Hall EH, Schoenbach KH, Beebe SJ (2007) Nanosecond pulsed electric fields induce apoptosis in p53-wildtype and p53-null HCT116 colon carcinoma cells. Apoptosis 12:1721–1731PubMedCrossRefGoogle Scholar
  21. He H, Yu T, Zhang Y (2012) The interaction between a drug and ultrasound in sonochemotherapy against ovarian cancers. Ultraschall Med 33:275–282PubMedCrossRefGoogle Scholar
  22. Honda H, Kondo T, Zhao QL, Feril LB, Kitagawa H (2004) Role of intracellular calcium ions and reactive oxygen species in apoptosis induced by ultrasound. Ultrasound Med Biol 30:683–692PubMedCrossRefGoogle Scholar
  23. Hu Q, Viswanadham S, Joshi RP, Schoenbach KH, Beebe SJ, Blackmore PF (2005) Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. Phys Rev E 71:031914CrossRefGoogle Scholar
  24. Isambert H (1998) Understanding the electroporation of cells and artificial bilayer membranes. Phys Rev Lett 80:3404–3407CrossRefGoogle Scholar
  25. Jarm T, Cemazar M, Miklavcic D, Sersa G (2010) Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases. Expert Rev Anticancer 10:729–746CrossRefGoogle Scholar
  26. Jiang X, Wang X (2004) Cytochrome C-mediated apoptosis. Annu Rev Biochem 73:87–106PubMedCrossRefGoogle Scholar
  27. Joshi RP, Mishra A, Hu Q, Schoenbach KH, Pakhomov A (2007) Self-consistent analyses for potential conduction block in nerves by an ultrashort high-intensity electric pulse. Phys Rev E 75:061906CrossRefGoogle Scholar
  28. Joshi RP, Schoenbach KH (2010) Bioelectric effects of intense ultrashort pulses. Crit Rev Biomed Eng 38:255–304PubMedCrossRefGoogle Scholar
  29. Kardos N, Luche JL (2001) Sonochemistry of carbohydrate compounds. Carbohydr Res 332:115–131PubMedCrossRefGoogle Scholar
  30. Kotnik T, Miklavcic D (2006) Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys J 90:480–491PubMedCrossRefGoogle Scholar
  31. Lagneaux L, de Meulenaer EC, Delforge A, Dejeneffe M, Massy M, Moerman C, Hannecart B, Canivet Y, Lepeltier MF, Bron D (2002) Ultrasonic low-energy treatment: a novel approach to induce apoptosis in human leukemic cells. Exp Hematol 30:1293–1301PubMedCrossRefGoogle Scholar
  32. Limtrakul P (2007) Curcumin as chemosensitizer. Adv Exp Med Biol 595:269–300PubMedCrossRefGoogle Scholar
  33. Lou Y, Zhang Y, He H, Liu Y, Huang P, Yu T (2011) Ultrasound sensitizes chemotherapy in chemoresistant ovarian cancers. Afr J Biotechnol 10:12047–12053Google Scholar
  34. Meiler J, Schuler M (2006) Therapeutic targeting of apoptotic pathways in cancer. Curr Drug Targets 7:1361–1369PubMedCrossRefGoogle Scholar
  35. Nuccitelli R, Chen X, Pakhomov AG, Baldwin WH, Sheikh S, Pomicter JL, Ren W, Osgood C, Swanson RJ, Kolb JF, Beebe SJ, Schoenbach KH (2009) A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int J Cancer 125:438–445PubMedCrossRefGoogle Scholar
  36. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 99:1259–1263PubMedCrossRefGoogle Scholar
  37. Pakhomov AG, Bowman AM, Ibey BL, Andre FM, Pakhomova ON, Schoenbach KH (2009) Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem Biophys Res Commun 385:181–186PubMedCrossRefGoogle Scholar
  38. Paliwal S, Mitragotri S (2006) Ultrasound-induced cavitation: applications in drug and gene delivery. Expert Opin Drug Deliv 3:713–726PubMedCrossRefGoogle Scholar
  39. Plati J, Bucur O, Khosravi-Far R (2008) Dysregulation of apoptotic signaling in cancer: molecular mechanisms and therapeutic opportunities. J Cell Biochem 104:1124–1149PubMedCrossRefGoogle Scholar
  40. Poff JA, Allen CT, Traughber B, Colunga A, Xie J, Chen Z, Wood BJ, Van Waes C, Li KC, Frenkel V (2008) Pulsed high-intensity focused ultrasound enhances apoptosis and growth inhibition of squamous cell carcinoma xenografts with proteasome inhibitor bortezomib. Radiology 248:485–491PubMedCrossRefGoogle Scholar
  41. Ren W, Beebe SJ (2011) An apoptosis targeted stimulus with nanosecond pulsed electric fields (nsPEFs) in E4 squamous cell carcinoma. Apoptosis 16:382–393PubMedCrossRefGoogle Scholar
  42. Schoenbach K, Joshi R, Beebe S, Baum C (2009) A scaling law for membrane permeabilization with nanopulses. IEEE Trans Dielectr Electr Insul 16:1224–1235CrossRefGoogle Scholar
  43. Schoenbach KH, Hargrave B, Joshi RP, Kolb JF, Nuccitelli R, Osgood C, Pakhomov A, Stacey M, Swanson RJ, White JA, Shu X, Jue Z, Beebe SJ, Blackmore PF, Buescher ES (2007) Bioelectric effects of intense nanosecond pulses. IEEE Trans Dielectr Electr Insul 14:1088–1109CrossRefGoogle Scholar
  44. Stride EP, Coussios CC (2010) Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy. Proc Inst Mech Eng Part H 224:171–191CrossRefGoogle Scholar
  45. Tabuchi Y, Kondo T, Ogawa R, Mori H (2002) DNA microarray analyses of genes elicited by ultrasound in human U937 cells. Biochem Biophys Res Commun 290:498–503 PubMedCrossRefGoogle Scholar
  46. Tabuchi Y, Ando H, Takasaki I, Feril LB, Zhao QL, Ogawa R, Kudo N, Tachibana K, Kondo T (2007) Identification of genes responsive to low intensity pulsed ultrasound in a human leukemia cell line Molt-4. Cancer Lett 246:149–156PubMedCrossRefGoogle Scholar
  47. Tang W, Liu Q, Wang X, Wang P, Cao B, Mi N, Zhang J (2008) Involvement of caspase 8 in apoptosis induced by ultrasound-activated hematoporphyrin in sarcoma 180 cells in vitro. J Ultrasound Med 27:645–656PubMedGoogle Scholar
  48. ter Haar G (2007) Therapeutic applications of ultrasound. Prog Biophys Mol Biol 93:111–129PubMedCrossRefGoogle Scholar
  49. ter Haar G (2001) Acoustic surgery. Phys Today 54:29–34CrossRefGoogle Scholar
  50. Vernier PT, Sun Y, Marcu L, Craft CM, Gundersen MA (2004) Nanosecond pulsed electric fields perturb membrane phospholipids in T lymphoblasts. FEBS Lett 572:103–108PubMedCrossRefGoogle Scholar
  51. Walker K, Pakhomova ON, Kolb J, Schoenbach KS, Stuck BE, Murphy MR, Pakhomov AG (2006) Oxygen enhances lethal effect of high-intensity, ultrashort electrical pulses. Bioelectromagnetics 27:221–225PubMedCrossRefGoogle Scholar
  52. Wang JJ, Zheng Y, Yang F, Zhao P, Li HF (2010) Survivin small interfering RNA transfected with a microbubble and ultrasound exposure inducing apoptosis in ovarian carcinoma cells. Int J Gynecol Cancer 20:500–506PubMedCrossRefGoogle Scholar
  53. Watanabe Y, Aoi A, Horie S, Tomita N, Mori S, Morikawa H, Matsumura Y, Vassaux G, Kodama T (2008) Low-intensity ultrasound and microbubbles enhance the antitumor effect of cisplatin. Cancer Sci 99:2525–2531PubMedCrossRefGoogle Scholar
  54. Wu MH, Zheng XM, Ruan CL, Yang HC, Sun YQ, Wang S, Zhang KD, Liu H (2009) Photoresistances of semi-insulating GaAs photoconductive switch illuminated by 1.064 μ m laser pulse. J Appl Phys 106:023101CrossRefGoogle Scholar
  55. Xiang J, Xia X, Jiang Y, Leung AW, Wang X, Xu J, Wang P, Yu H, Bai D, Xu C (2011) Apoptosis of ovarian cancer cells induced by methylene blue-mediated sonodynamic action. Ultrasonics 51:390–395PubMedCrossRefGoogle Scholar
  56. Yoshida T, Kondo T, Ogawa R, Feril LB, Zhao QL, Watanabe A, Tsukada K (2008) Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells. Cancer Chemother Pharmacol 61:559–567PubMedCrossRefGoogle Scholar
  57. Yu T, Huang X, Hu K, Bai J, Wang Z (2004) Mechanisms of reversal of adriamycin resistance in human ovarian carcinoma cell line by ultrasound. Int J Gynecol Cancer 14:76–81PubMedCrossRefGoogle Scholar
  58. Yu T, Huang X, Jiang S, Hu K, Kong B, Wang Z (2005a) Ultrastructure alterations in adriamycin-resistant and cisplatin-resistant human ovarian cancer cell lines exposed to nonlethal ultrasound. Int J Gynecol Cancer 15:462–467PubMedCrossRefGoogle Scholar
  59. Yu T, Xiong Z, Chen S, Tu G (2005b) The use of models in "target" theory to evaluate the survival curves of human ovarian carcinoma cell line exposure to adriamycin combined with ultrasound. Ultrason Sonochem 12:345–348PubMedCrossRefGoogle Scholar
  60. Yu T, Li S, Zhao J, Mason TJ (2006) Ultrasound: a chemotherapy sensitizer. Technol Cancer Res Treat 5:51–60PubMedGoogle Scholar
  61. Yu T, Zhang Y (2010) Sonochemotherapy against cancers. In: Nowak FM (eds) Sonochemistry: theory, reactions, syntheses, and applications. Nova, Hauppauge, pp 189–200Google Scholar
  62. Yu TH, Huang P (2011) Extracorporeal ultrasound-guided high intensity focused ultrasound therapy: present limitations. Afr J Pharm Pharmacol 5:1501–1507Google Scholar
  63. Yu T, Zhang Y, He H, Zhou S, Liu Y, Huang P (2011) Anticancer potency of cytotoxic drugs after exposure to high-intensity focused ultrasound in the presence of microbubbles and hematoporphyrin. Mol Pharm 8:1408–1415PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Laboratory of Obstetrics and Gynecology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
  2. 2.Key Laboratory of Obstetrics and GynecologyChongqing Bureau of HealthChongqingChina
  3. 3.Physical Electronics SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
  4. 4.Department of General Surgery, The First Affiliated HospitalChongqing Medical UniversityChongqingChina

Personalised recommendations