Advertisement

Cancer Cell Dormancy: Potential Therapeutic Targets To Eradicate Cancer Cells Within the Niche

  • Jessian L. Munoz
  • Jacqueline M. Park
  • Sarah A. Bliss
  • Pranela RameshwarEmail author
Chapter

Abstract

Breast cancer is one of the leading causes of cancer-related death in the USA. Metastasis and maintenance of breast cancer in the adult bone marrow could result in quiescence with resistance to chemotherapy. These changes are partly due to the interactions between cancer cells and the resident bone marrow cells, especially the cells residing close to the endosteum. Although the literature on cancer stem cells has exploded over the past few years, there is no clear indication that dormancy is exclusive to the stem cell subset of cancers. We discuss a role for the tissue microenvironment in cancer dormancy and also expand on the role of other stem cells. The information on cancer dormancy now has another significant role in medicine—specifically, in the field of stem cell therapy, in which cancer dormancy could be a potential confounder for safe treatment. This chapter discusses the interaction between cancer cells and mesenchymal stem cells. This area of discussion is particularly important considering the ongoing clinical trials with mesenchymal stem cells in which the treatments might be administered to individuals with undiagnosed cancers.

Keywords

Breast cancer Metastasis Bone marrow cells Mesenchymal stem cells Cancer cells Dormancy 

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988Google Scholar
  2. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846Google Scholar
  3. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, Brooks M, Reinhardt F, Su Y, Polyak K, Arendt LM, Kuperwasser C, Bierie B, Weinberg RA (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci USA 108:7950–7955Google Scholar
  4. Chan JL, Tang KC, Patel AP, Bonilla LM, Pierobon N, Ponzio NM, Rameshwar P (2006) Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood 107:4817–4824Google Scholar
  5. Cher ML, Towler DA, Rafii S, Rowley D, Donahue HJ, Keller E, Herlyn M, Cho EA, Chung LWK (2006) Cancer Interaction with the bone microenvironment: a workshop of the National Institutes of Health tumor microenvironment study section. Am J Pathol 168:1405–1412Google Scholar
  6. Chow DC, Wenning LA, Miller WM, Papoutsakis ET (2001a) Modeling pO2 distributions in the bone marrow hematopoietic compartment. I. Krogh’s model. Biophys J 81:675–684Google Scholar
  7. Chow DC, Wenning LA, Miller WM, Papoutsakis ET (2001b) Modeling pO2 distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophys J 81:685–696Google Scholar
  8. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CHM, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells-perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344Google Scholar
  9. Coombe DR (1996) The role of stromal cell heparan sulphate in regulating haemopoiesis. Leuk Lymphoma 21:399–406Google Scholar
  10. Corcoran KE, Fernandes H, Bryan M, Taborga M, Srinivas V, Packman K, Rameshwar P (2008) Mesenchymal stem cells in early entry of breast cancer into bone marrow. PLoS One 3:e2563Google Scholar
  11. De BA, Narine K, De NW, Mareel M, Bracke M, De WO (2010) Resident and bone marrow-derived mesenchymal stem cells in head and neck squamous cell carcinoma. Oral Oncol 46:336–342Google Scholar
  12. Democheli R, Tereziani M, Valagussa P, Moliterni A, Zambetti M, Bonadonna G (1994) Local recurrences following mastectomy: support for the concept of tumor dormancy. J Natl Cancer Inst 86:45–48Google Scholar
  13. Dorshkind K (1990) Regulation of hemopoiesis by bone marrow stromal cells and their products. Annu Rev Immunol 8:111–137Google Scholar
  14. English K, Mahon BP (2011) Allogeneic mesenchymal stem cells: agents of immune modulation. J Cell Biochem 112:1963–1968Google Scholar
  15. Feng B, Chen L (2009) Review of mesenchymal stem cells and tumors: executioner or coconspirator? Cancer Biother Radiopharm 24:717–721Google Scholar
  16. Feng J, Mantesso A, Sharpe PT (2010) Perivascular cells as mesenchymal stem cells. Expert Opin Biol Ther 10:1441–1451Google Scholar
  17. Folkman J, Kalluri R (2004) Cancer without disease. Nature 427:787Google Scholar
  18. Francois M, Romieu-Mourez R, Stock-Martineau S, Boivin MN, Bramson JL, Galipeau J (2009) Mesenchymal stromal cells cross-present soluble exogenous antigens as part of their antigen-presenting cell properties. Blood 114:2632–2638Google Scholar
  19. Ghaedi M, Soleimani M, Taghvaie NM, Sheikhfatollahi M, Azadmanesh K, Lotfi AS, Wu J (2011) Mesenchymal stem cells as vehicles for targeted delivery of anti-angiogenic protein to solid tumors. J Gene Med 13:171–180Google Scholar
  20. Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D, Guan JL, Dontu G, Wicha MS (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120:485–497Google Scholar
  21. Giuliano AE, Hunt KK, Ballman KV, Beitsch PD, Whitworth PW, Blumencranz PW, Leitch AM, Saha S, McCall LM, Morrow M (2011) Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis. JAMA 305:569–575Google Scholar
  22. Greco SJ, Rameshwar P (2008) Microenvironmental considerations in the application of human mesenchymal stem cells in regenerative therapies. Biologics 2:699–705Google Scholar
  23. Greco SJ, Patel SA, Bryan M, Pliner LF, Banerjee D, Rameshwar P (2011) AMD3100-mediated production of interleukin-1 from mesenchymal stem cells is key to chemosensitivity of breast cancer cells. Am J Cancer Res 1:701–715Google Scholar
  24. Green BB, Taplin SH (2003) Breast cancer screening controversies. J Am Board Fam Pract 16:233–241Google Scholar
  25. Gregory LA, Ricart RA, Patel SA, Lim PK, Rameshwar P (2011) microRNAs, gap junctional intercellular communication and mesenchymal stem cells in breast cancer metastasis. Curr Cancer Ther Rev 7:176–183Google Scholar
  26. Grisendi G, Bussolari R, Veronesi E, Piccinno S, Burns JS, De SG, Loschi P, Pignatti M, Di BF, Ballarin R, Di GC, Guarneri V, Piccinini L, Horwitz EM, Paolucci P, Conte P, Dominici M (2011) Understanding tumor-stroma interplays for targeted therapies by armed mesenchymal stromal progenitors: the mesenkillers. Am J Cancer Res 1:787–805Google Scholar
  27. Habeck M (2000) Bone-marrow analysis predicts breast-cancer recurrence. Mol Med Today 6:256–257Google Scholar
  28. Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110:3056–3063Google Scholar
  29. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300Google Scholar
  30. Kang H, Mansel RE, Jiang WG (2005) Genetic manipulation of stromal cell-derived factor-1 attests the pivotal role of the autocrine SDF-1-CXCR4 pathway in the aggressiveness of breast cancer cells. Int J Oncol 26:1429–1434Google Scholar
  31. Kawada K, Taketo MM (2011) Significance and mechanism of lymph node metastasis in cancer progression. Cancer Res 71:1214–1218Google Scholar
  32. Kiel MJ, Morrison SJ (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8:290–301Google Scholar
  33. Korkaya H, Wicha MS (2010) Cancer stem cells: nature versus nurture. Nat Cell Biol 12:419–421Google Scholar
  34. Krause M, Yaromina A, Eicheler W, Koch U, Baumann M (2011) Cancer stem cells: targets and potential biomarkers for radiotherapy. Clin Cancer Res 17:7224–7229Google Scholar
  35. Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA, Greco SJ, Bryan M, Patel PS, Rameshwar P (2011) Gap junction-mediated import of microrna from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71:1550–1560Google Scholar
  36. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17:211–215Google Scholar
  37. Mansi JL, Berger U, McDonnell T, Pople A, Rayter Z, Gazet JC, Coombes RC (1989) The fate of bone marrow micrometastases in patients with primary breast cancer. J Clin Oncol 7:445–449Google Scholar
  38. Matuskova M, Hlubinova K, Pastorakova A, Hunakova L, Altanerova V, Altaner C, Kucerova L (2010) HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett 290:58–67Google Scholar
  39. Meyerrose T, Olson S, Pontow S, Kalomoiris S, Jung Y, Annett G, Bauer G, Nolta JA (2010) Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv Drug Deliv Rev 62:1167–1174 Google Scholar
  40. Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68:4331–4339Google Scholar
  41. Moharita AL, Taborga M, Corcoran KE, Bryan M, Patel PS, Rameshwar P (2006) SDF-1{alpha} regulation in breast cancer cells contacting bone marrow stroma is critical for normal hematopoiesis. Blood 108:3245–3252Google Scholar
  42. Momin EN, Vela G, Zaidi HA, Quinones-Hinojosa A (2010) The oncogenic potential of mesenchymal stem cells in the treatment of cancer: directions for future research. Curr Immunol Rev 6:137–148Google Scholar
  43. Muller-Sieburg CE, Deryugina E (1995) The stromal cells’ guide to the stem cell universe. Stem Cells 13:477–486Google Scholar
  44. Naume B, Zhao X, Synnestvedt M, Borgen E, Russnes HG, Lingjaerde OC, Stromberg M, Wiedswang G, Kvalheim G, Karesen R, Nesland JM, Borresen-Dale AL, Sorlie T (2007) Presence of bone marrow micrometastasis is associated with different recurrence risk within molecular subtypes of breast cancer. Mol Oncol 1:160–171Google Scholar
  45. Nava A (2010) Molecular mechanisms underlying tumor dormancy. Cancer Lett 294:139–146Google Scholar
  46. Oh HS, Moharita A, Potian JG, Whitehead IP, Livingston JC, Castro TA, Patel PS, Rameshwar P (2004) Bone marrow stroma influences transforming growth factor-beta production in breast cancer cells to regulate c-myc activation of the preprotachykinin-I gene in breast cancer cells. Cancer Res 64:6327–6336Google Scholar
  47. Pantel K, Alix-PanabiFres C (2010) Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med 16:398–406Google Scholar
  48. Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P (2010) Mesenchymal stem cells protect breast cancer cells through regulatory T Cells: role of mesenchymal stem cell-derived TGF-{beta}. J Immunol 184:5885–5894Google Scholar
  49. Porada CD, Almeida-Porada G (2010) Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Adv Drug Deliv Rev 62:1156–1166Google Scholar
  50. Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P (2003) Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol 171:3426–3434Google Scholar
  51. Rameshwar P (2010) Breast cancer cell dormancy in bone marrow: potential therapeutic targets within the marrow microenvironment. Expert Rev Anticancer Ther 10:129–132Google Scholar
  52. Rao G, Patel PS, Idler SP, Maloof P, Gascon P, Potian JA, Rameshwar P (2004) Facilitating role of preprotachykinin-I gene in the integration of breast cancer cells within the stromal compartment of the bone marrow: a model of early cancer progression. Cancer Res 64:2874–2881Google Scholar
  53. Riethdorf S, Wikman H, Pantel K (2008) Review: biological relevance of disseminated tumor cells in cancer patients. Int J Cancer 123:1991–2006Google Scholar
  54. Riggi N, Suva ML, De VC, Provero P, Stehle JC, Baumer K, Cironi L, Janiszewska M, Petricevic T, Suva D, Tercier S, Joseph JM, Guillou L, Stamenkovic I (2010) EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells. Genes Dev 24:916–932Google Scholar
  55. Romieu-Mourez R, Francois M, Boivin MN, Stagg J, Galipeau J (2007) Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-g, TGF-b, and cell density. J Immunol 179:1549–1558Google Scholar
  56. Saito S, Nakayama T, Hashimoto N, Miyata Y, Egashira K, Nakao N, Nishiwaki S, Hasegawa M, Hasegawa Y, Naoe T (2011) Mesenchymal stem cells stably transduced with a dominant-negative inhibitor of CCL2 greatly attenuate bleomycin-induced lung damage. Am J Pathol 179:1088–1094Google Scholar
  57. Song C, Xiang J, Tang J, Hirst DG, Zhou J, Chan KM, Li G (2010) Thymidine kinase gene modified bone marrow mesenchymal stem cells as vehicles for antitumor therapy. Human Gene Ther 22:439–449Google Scholar
  58. Taichman RS, Emerson SG (1994) Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 179:1677–1682Google Scholar
  59. Taichman RS, Emerson SG (1998) The role of osteoblasts in the hematopoietic microenvironment. Stem Cells 16:7–15Google Scholar
  60. Talmadge JE (2007) Clonal selection of metastasis within the life history of a tumor. Cancer Res 67:11471–11475Google Scholar
  61. Zhao D, Najbauer J, Garcia E, Metz MZ, Gutova M, Glackin CA, Kim SU, Aboody KS (2008) Neural stem cell tropism to glioma: critical role of tumor hypoxia. Mol Cancer Res 6:1819–1829Google Scholar
  62. Zhao D, Najbauer J, Annala AJ, Garcia E, Metz MZ, Gutova M, Polewski MD, Gilchrist M, Glackin CA, Kim SU, Aboody KS (2012) Human neural stem cell tropism to metastatic breast cancer. Stem Cells 30:314–325Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jessian L. Munoz
    • 1
  • Jacqueline M. Park
    • 1
  • Sarah A. Bliss
    • 1
  • Pranela Rameshwar
    • 1
    Email author
  1. 1.UMDNJ-New Jersey Medical SchoolNewarkUSA

Personalised recommendations