Skip to main content

Tumor-Associated Neutrophils

  • Chapter
  • First Online:
Trends in Stem Cell Proliferation and Cancer Research

Abstract

Neutrophils constitute an important component of the innate immune response and are classically involved in the defense against microorganisms due to their ability to produce several antimicrobial mediators. However, neutrophils can also be found in different sterile inflammatory responses foci, including in tumor adjacencies. Recent studies provided evidences that tumor-associated neutrophils (TAN) constitute a distinct population of neutrophils that can be polarized into an antitumoral phenotype (N1) or into a protumoral phenotype (N2). The fate and action of TAN will lastly depend on the factors present within the tumor microenvironment and will have profound implications in tumor biology, including tumor cell growth and survival, as well as invasiveness. In this chapter, we review the basic aspects of neutrophils and describe their function in tumor development in the light of their different phenotypes. Finally we address the manipulation of N1 and N2 phenotypes as a putative alternative approach for tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Fas-L:

Fas ligand

FPR:

Formyl peptide receptor

G-CSF:

Granulocyte colony stimulating factor

ICAM:

Intercellular adhesion molecule

IFN:

Interferon

Mac-1:

Macrophage 1 antigen

MMP:

Matrix metalloproteinase

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

NK:

Natural killer

ROS:

Reactive oxygen species

TGF-β:

Transforming growth factor β

TLR:

Toll-like receptor

VEGF:

Vascular endothelial growth factor

References

  • Abi Abdallah DS, Egan CE, Butcher BA, Denkers EY (2011) Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int Immunol 23:317–326

    PubMed  CAS  Google Scholar 

  • Aivaliotis IL, Pateras IS, Papaioannou M, Glytsou C, Kontzoglou K, Johnson EO, Zoumpourlis V (2012) How do cytokines trigger genomic instability? J Biomed Biotechnol 2012:536761

    PubMed  Google Scholar 

  • Ambruso DR, Knall C, Abell AN, Panepinto J, Kurkchubasche A, Thurman G, Gonzalez-Aller C, Hiester A, deBoer M, Harbeck RJ, Oyer R, Johnson GL, Roos D (2000) Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci USA 97:4654–4659

    Google Scholar 

  • Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489

    PubMed  CAS  Google Scholar 

  • Arancibia SA, Beltran CJ, Aguirre IM, Silva P, Peralta AL, Malinarich F, Hermoso MA (2007) Toll-like receptors are key participants in innate immune responses. Biol Res 40:97–112

    PubMed  CAS  Google Scholar 

  • Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397:342–344

    PubMed  CAS  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    PubMed  CAS  Google Scholar 

  • Bekes EM, Schweighofer B, Kupriyanova TA, Zajac E, Ardi VC, Quigley JP, Deryugina EI (2011) Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am J Pathol 179:1455–1470

    PubMed  CAS  Google Scholar 

  • Bennouna S, Denkers EY (2005) Microbial antigen triggers rapid mobilization of TNF-alpha to the surface of mouse neutrophils transforming them into inducers of high-level dendritic cell TNF-alpha production. J Immunol 174:4845–4851

    PubMed  CAS  Google Scholar 

  • Borregaard N, Kjeldsen L, Rygaard K, Bastholm L, Nielsen MH, Sengelov H, Bjerrum OW, Johnsen AH (1992) Stimulus-dependent secretion of plasma proteins from human neutrophils. J Clin Invest 90:86–96

    PubMed  CAS  Google Scholar 

  • Borregaard N, Tauber AI (1984) Subcellular localization of the human neutrophil NADPH oxidase. b-cytochrome and associated flavoprotein. J Biol Chem 259:47–52

    PubMed  CAS  Google Scholar 

  • Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89:3503–3521

    PubMed  CAS  Google Scholar 

  • Borregaard N (2010) Neutrophils, from marrow to microbes. Immunity 33:657–670

    PubMed  CAS  Google Scholar 

  • Boueiz A, Hassoun PM (2009) Regulation of endothelial barrier function by reactive oxygen and nitrogen species. Microvasc Res 77:26–34

    PubMed  CAS  Google Scholar 

  • Brandau S, Jakob M, Hemeda H, Bruderek K, Janeschik S, Bootz F, Lang S (2010) Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge. J Leukoc Biol 88:1005–1015

    PubMed  CAS  Google Scholar 

  • Bruehl RE, Moore KL, Lorant DE, Borregaard N, Zimmerman GA, McEver RP, Bainton DF (1997) Leukocyte activation induces surface redistribution of P-selectin glycoprotein ligand-1. J Leukoc Biol 61:489–499

    PubMed  CAS  Google Scholar 

  • Buscher K, Riese SB, Shakibaei M, Reich C, Dernedde J, Tauber R, Ley K (2010) The transmembrane domains of L-selectin and CD44 regulate receptor cell surface positioning and leukocyte adhesion under flow. J Biol Chem 285:13490–13497

    PubMed  CAS  Google Scholar 

  • Cassatella MA (1999) Neutrophil-derived proteins: selling cytokines by the pound. Adv Immunol 73:369–509

    PubMed  CAS  Google Scholar 

  • Cassatella MA, Mosna F, Micheletti A, Lisi V, Tamassia N, Cont C, Calzetti F, Pelletier M, Pizzolo G, Krampera M (2011) Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells 29:1001–1011

    PubMed  CAS  Google Scholar 

  • Cavallo F, Giovarelli M, Gulino A, Vacca A, Stoppacciaro A, Modesti A, Forni G (1992) Role of neutrophils and CD4+ T lymphocytes in the primary and memory response to nonimmunogenic murine mammary adenocarcinoma made immunogenic by IL-2 gene. J Immunol 149:3627–3635

    PubMed  CAS  Google Scholar 

  • Chakravarti A, Raquil MA, Tessier P, Poubelle PE (2009) Surface RANKL of Toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption. Blood 114:1633–1644

    PubMed  CAS  Google Scholar 

  • Clark RA, Malech HL, Gallin JI, Nunoi H, Volpp BD, Pearson DW, Nauseef WM, Curnutte JT (1989) Genetic variants of chronic granulomatous disease: prevalence of deficiencies of two cytosolic components of the NADPH oxidase system. N Engl J Med 321:647–652

    PubMed  CAS  Google Scholar 

  • Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A (1992) Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80:2012–2020

    PubMed  CAS  Google Scholar 

  • Costantini C, Calzetti F, Perbellini O, Micheletti A, Scarponi C, Lonardi S, Pelletier M, Schakel K, Pizzolo G, Facchetti F, Vermi W, Albanesi C, Cassatella MA (2011) Human neutrophils interact with both 6-sulfo LacNAc+ DC and NK cells to amplify NK-derived IFNγ: role of CD18, ICAM-1, and ICAM-3. Blood 117:1677–1686

    PubMed  CAS  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    PubMed  CAS  Google Scholar 

  • Cross AR, Rae J, Curnutte JT (1995) Cytochrome b-245 of the neutrophil superoxide-generating system contains two nonidentical hemes. Potentiometric studies of a mutant form of gp91phox. J Biol Chem 270:17075–17077

    PubMed  CAS  Google Scholar 

  • Dallegri F, Ottonello L, Ballestrero A, Dapino P, Ferrando F, Patrone F, Sacchetti C (1991) Tumor cell lysis by activated human neutrophils: analysis of neutrophil-delivered oxidative attack and role of leukocyte function-associated antigen 1. Inflammation 15:15–30

    PubMed  CAS  Google Scholar 

  • Di Carlo E, Forni G, Musiani P (2003) Neutrophils in the antitumoral immune response. Chem Immunol Allergy 83:182–203

    PubMed  Google Scholar 

  • Dumitru CA, Moses K, Trellakis S, Lang S, Brandau S (2012) Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother 61:1155–1167

    PubMed  CAS  Google Scholar 

  • Eash KJ, Means JM, White DW, Link DC (2009) CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood 113:4711–4719

    PubMed  CAS  Google Scholar 

  • Eash KJ, Greenbaum AM, Gopalan PK, Link DC (2010) CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest 120:2423–2431

    PubMed  CAS  Google Scholar 

  • Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194

    PubMed  CAS  Google Scholar 

  • Fridlender ZG, Albelda SM (2012) Tumor-associated neutrophils: friend or foe? Carcinogenesis 33:949–955

    PubMed  CAS  Google Scholar 

  • Fridlender ZG, Sun J, Mishalian I, Singhal S, Cheng G, Kapoor V, Horng W, Fridlender G, Bayuh R, Worthen GS, Albelda SM (2012) Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PLoS One 7:e31524

    PubMed  CAS  Google Scholar 

  • Gabay C, Krenn V, Bosshard C, Seemayer CA, Chizzolini C, Huard B (2009) Synovial tissues concentrate secreted APRIL. Arthritis Res Ther 11:R144

    PubMed  Google Scholar 

  • Galli SJ, Borregaard N, Wynn TA (2011) Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12:1035–1044

    PubMed  CAS  Google Scholar 

  • Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R (2011) Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20:300–314

    PubMed  CAS  Google Scholar 

  • Gregory AD, Houghton AM (2011) Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res 71:2411–2416

    PubMed  CAS  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    PubMed  CAS  Google Scholar 

  • Hayashi F, Means TK, Luster AD (2003) Toll-like receptors stimulate human neutrophil function. Blood 102:2660–2669

    PubMed  CAS  Google Scholar 

  • Heissig B, Nishida C, Tashiro Y, Sato Y, Ishihara M, Ohki M, Gritli I, Rosenkvist J, Hattori K (2010) Role of neutrophil-derived matrix metalloproteinase-9 in tissue regeneration. Histol Histopathol 25:765–770

    PubMed  CAS  Google Scholar 

  • Hickey MJ, Kubes P (2009) Intravascular immunity: the host-pathogen encounter in blood vessels. Nat Rev Immunol 9:364–375

    PubMed  CAS  Google Scholar 

  • Hirose K, Hakozaki M, Nyunoya Y, Kobayashi Y, Matsushita K, Takenouchi T, Mikata A, Mukaida N, Matsushima K (1995) Chemokine gene transfection into tumour cells reduced tumorigenicity in nude mice in association with neutrophilic infiltration. Br J Cancer 72:708–714

    PubMed  CAS  Google Scholar 

  • Houghton AM (2010) The paradox of tumor-associated neutrophils: fueling tumor growth with cytotoxic substances. Cell Cycle 9:1732–1737

    PubMed  CAS  Google Scholar 

  • Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE, Metz HE, Stolz DB, Land SR, Marconcini LA, Kliment CR, Jenkins KM, Beaulieu KA, Mouded M, Frank SJ, Wong KK, Shapiro SD (2010) Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 16:219–223

    PubMed  CAS  Google Scholar 

  • Huh SJ, Liang S, Sharma A, Dong C, Robertson GP (2010) Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res 70:6071–6082

    PubMed  CAS  Google Scholar 

  • Imaeda AB, Watanabe A, Sohail MA, Mahmood S, Mohamadnejad M, Sutterwala FS, Flavell RA, Mehal WZ (2009) Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest 119:305–314

    PubMed  CAS  Google Scholar 

  • Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S (2010) Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest 120:1151–1164

    PubMed  CAS  Google Scholar 

  • Johnson Z, Proudfoot AE, Handel TM (2005) Interaction of chemokines and glycosaminoglycans: a new twist in the regulation of chemokine function with opportunities for therapeutic intervention. Cytokine Growth Factor Rev 16:625–636

    PubMed  CAS  Google Scholar 

  • Kang T, Yi J, Guo A, Wang X, Overall CM, Jiang W, Elde R, Borregaard N, Pei D (2001) Subcellular distribution and cytokine- and chemokine-regulated secretion of leukolysin/MT6-MMP/MMP-25 in neutrophils. J Biol Chem 276:21960–21968

    PubMed  CAS  Google Scholar 

  • Kerrigan AM, Dennehy KM, Mourao-Sa D, Faro-Trindade I, Willment JA, Taylor PR, Eble JA, Reis e Sousa C, Brown GD (2009) CLEC-2 is a phagocytic activation receptor expressed on murine peripheral blood neutrophils. J Immunol 182:4150–4157

    PubMed  CAS  Google Scholar 

  • Kwong CH, Malech HL, Rotrosen D, Leto TL (1993) Regulation of the human neutrophil NADPH oxidase by rho-related G-proteins. Biochemistry 32:5711–5717

    PubMed  CAS  Google Scholar 

  • Lapidot T, Kollet O (2002) The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2mnull mice. Leukemia 16:1992–2003

    PubMed  CAS  Google Scholar 

  • Lechner MG, Liebertz DJ, Epstein AL (2010) Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 185:2273–2284

    PubMed  CAS  Google Scholar 

  • Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689

    PubMed  CAS  Google Scholar 

  • Lichtenstein A, Seelig M, Berek J, Zighelboim J (1989) Human neutrophil-mediated lysis of ovarian cancer cells. Blood 74:805–809

    PubMed  CAS  Google Scholar 

  • Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E, Cheers C, Fowler KJ, Basu S, Zhan YF, Dunn AR (1994) Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84:1737–1746

    PubMed  CAS  Google Scholar 

  • Lopez-Lago MA, Posner S, Thodima VJ, Molina AM, Motzer RJ, Chaganti RS (2013) Neutrophil chemokines secreted by tumor cells mount a lung antimetastatic response during renal cell carcinoma progression. Oncogene 32:1752–1760

    Google Scholar 

  • Lou O, Alcaide P, Luscinskas FW, Muller WA (2007) CD99 is a key mediator of the transendothelial migration of neutrophils. J Immunol 178:1136–1143

    PubMed  CAS  Google Scholar 

  • Loukinova E, Dong G, Enamorado-Ayalya I, Thomas GR, Chen Z, Schreiber H, Van Waes C (2000) Growth regulated oncogene-alpha expression by murine squamous cell carcinoma promotes tumor growth, metastasis, leukocyte infiltration and angiogenesis by a host CXC receptor-2 dependent mechanism. Oncogene 19:3477–3486

    PubMed  CAS  Google Scholar 

  • Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531

    PubMed  CAS  Google Scholar 

  • Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM, Freire Lima BH, Oliveira Lopes GA, Russo RC, Avila TV, Melgaco JG, Oliveira AG, Pinto MA, Lima CX, de Paula AM, Cara DC, Leite MF, Teixeira MM, Menezes GB (2012) Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 56:1971–1982

    Google Scholar 

  • Mary JY (1984) Normal human granulopoiesis revisited. I. Blood data. Biomed Pharmacother 38:33–43

    PubMed  CAS  Google Scholar 

  • Mary JY (1985) Normal human granulopoiesis revisited. II. Bone marrow data. Biomed Pharmacother 39:66–77

    PubMed  CAS  Google Scholar 

  • McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC, Beck PL, Muruve DA, Kubes P (2010) Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330:362–366

    PubMed  CAS  Google Scholar 

  • McGary CT, Miele ME, Welch DR (1995) Highly metastatic 13762NF rat mammary adenocarcinoma cell clones stimulate bone marrow by secretion of granulocyte-macrophage colony-stimulating factor/interleukin-3 activity. Am J Pathol 147:1668–1681

    PubMed  CAS  Google Scholar 

  • Megiovanni AM, Sanchez F, Robledo-Sarmiento M, Morel C, Gluckman JC, Boudaly S (2006) Polymorphonuclear neutrophils deliver activation signals and antigenic molecules to dendritic cells: a new link between leukocytes upstream of T lymphocytes. J Leukoc Biol 79:977–988

    PubMed  CAS  Google Scholar 

  • Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6:173–182

    PubMed  CAS  Google Scholar 

  • Nauseef WM (2007) How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev 219:88–102

    PubMed  CAS  Google Scholar 

  • Pattison DI, Davies MJ (2006) Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr Med Chem 13:3271–3290

    PubMed  CAS  Google Scholar 

  • Pelletier M, Maggi L, Micheletti A, Lazzeri E, Tamassia N, Costantini C, Cosmi L, Lunardi C, Annunziato F, Romagnani S, Cassatella MA (2010) Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 115:335–343

    PubMed  CAS  Google Scholar 

  • Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, Kamhawi S, Lawyer P, Fay MP, Germain RN, Sacks D (2008) In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321:970–974

    PubMed  CAS  Google Scholar 

  • Phillipson M, Kaur J, Colarusso P, Ballantyne CM, Kubes P (2008) Endothelial domes encapsulate adherent neutrophils and minimize increases in vascular permeability in paracellular and transcellular emigration. PLoS One 3:e1649

    PubMed  Google Scholar 

  • Piccard H, Muschel RJ, Opdenakker G (2012) On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit Rev Oncol Hematol 82:296–309

    PubMed  CAS  Google Scholar 

  • Pospieszalska MK, Zarbock A, Pickard JE, Ley K (2009) Event-tracking model of adhesion identifies load-bearing bonds in rolling leukocytes. Microcirculation 16:115–130

    PubMed  CAS  Google Scholar 

  • Pun PB, Lu J, Moochhala S (2009) Involvement of ROS in BBB dysfunction. Free Radic Res 43:348–364

    PubMed  CAS  Google Scholar 

  • Queen MM, Ryan RE, Holzer RG, Keller-Peck CR, Jorcyk CL (2005) Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res 65:8896–8904

    PubMed  CAS  Google Scholar 

  • Rock KL, Latz E, Ontiveros F, Kono H (2010) The sterile inflammatory response. Annu Rev Immunol 28:321–342

    PubMed  CAS  Google Scholar 

  • Roosnek E, Burjanadze M, Dietrich PY, Matthes T, Passweg J, Huard B (2009) Tumors that look for their springtime in APRIL. Crit Rev Oncol Hematol 72:91–97

    PubMed  CAS  Google Scholar 

  • Rotondo R, Barisione G, Mastracci L, Grossi F, Orengo AM, Costa R, Truini M, Fabbi M, Ferrini S, Barbieri O (2009) IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. Int J Cancer 125:887–893

    PubMed  CAS  Google Scholar 

  • Sadik CD, Kim ND, Luster AD (2011) Neutrophils cascading their way to inflammation. Trends Immunol 32:452–460

    PubMed  CAS  Google Scholar 

  • Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203

    PubMed  CAS  Google Scholar 

  • Scapini P, Carletto A, Nardelli B, Calzetti F, Roschke V, Merigo F, Tamassia N, Pieropan S, Biasi D, Sbarbati A, Sozzani S, Bambara L, Cassatella MA (2005) Proinflammatory mediators elicit secretion of the intracellular B-lymphocyte stimulator pool (BLyS) that is stored in activated neutrophils: implications for inflammatory diseases. Blood 105:830–837

    PubMed  CAS  Google Scholar 

  • Scapini P, Bazzoni F, Cassatella MA (2008) Regulation of B-cell-activating factor (BAFF)/B lymphocyte stimulator (BLyS) expression in human neutrophils. Immunol Lett 116:1–6

    PubMed  CAS  Google Scholar 

  • Schmidt H, Suciu S, Punt CJ, Gore M, Kruit W, Patel P, Lienard D, von der Maase H, Eggermont AM, Keilholz U (2007) Pretreatment levels of peripheral neutrophils and leukocytes as independent predictors of overall survival in patients with American Joint Committee on Cancer stage IV melanoma: results of the EORTC 18951 biochemotherapy trial. J Clin Oncol 25:1562–1569

    Google Scholar 

  • Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC (2002) G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 17:413–423

    PubMed  CAS  Google Scholar 

  • Sengelov H, Follin P, Kjeldsen L, Lollike K, Dahlgren C, Borregaard N (1995) Mobilization of granules and secretory vesicles during in vivo exudation of human neutrophils. J Immunol 154:4157–4165

    PubMed  CAS  Google Scholar 

  • Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10:427–439

    PubMed  CAS  Google Scholar 

  • Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86:1065–1073

    PubMed  CAS  Google Scholar 

  • Sorensen J, Fugleholm K, Moldovan M, Schmalbruch H, Krarup C (2001) Axonal elongation through long acellular nerve segments depends on recruitment of phagocytic cells from the near-nerve environment. Electrophysiological and morphological studies in the cat. Brain Res 903:185–197

    PubMed  CAS  Google Scholar 

  • Spicer JD, McDonald B, Cools-Lartigue JJ, Chow SC, Giannias B, Kubes P, Ferri LE (2012) Neutrophils promote liver metastasis via Mac-1 mediated interactions with circulating tumor cells. Cancer Res 72:3919–3927

    Google Scholar 

  • Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER (2010) Neutrophil kinetics in health and disease. Trends Immunol 31:318–324

    PubMed  CAS  Google Scholar 

  • Tamassia N, Le Moigne V, Rossato M, Donini M, McCartney S, Calzetti F, Colonna M, Bazzoni F, Cassatella MA (2008) Activation of an immunoregulatory and antiviral gene expression program in poly(I:C)-transfected human neutrophils. J Immunol 181:6563–6573

    PubMed  CAS  Google Scholar 

  • Tavares-Murta BM, Mendonca MA, Duarte NL, da Silva JA, Mutao TS, Garcia CB, Murta EF (2010) Systemic leukocyte alterations are associated with invasive uterine cervical cancer. Int J Gynecol Cancer 20:1154–1159

    PubMed  Google Scholar 

  • Teramukai S, Kitano T, Kishida Y, Kawahara M, Kubota K, Komuta K, Minato K, Mio T, Fujita Y, Yonei T, Nakano K, Tsuboi M, Shibata K, Furuse K, Fukushima M (2009) Pretreatment neutrophil count as an independent prognostic factor in advanced non-small-cell lung cancer: an analysis of Japan Multinational Trial Organisation LC00-03. Eur J Cancer 45:1950–1958

    PubMed  Google Scholar 

  • Theilgaard-Monch K, Porse BT, Borregaard N (2006) Systems biology of neutrophil differentiation and immune response. Curr Opin Immunol 18:54–60

    PubMed  Google Scholar 

  • Van Coillie E, Van Aelst I, Wuyts A, Vercauteren R, Devos R, De Wolf-Peeters C, Van Damme J, Opdenakker G (2001) Tumor angiogenesis induced by granulocyte chemotactic protein-2 as a countercurrent principle. Am J Pathol 159:1405–1414

    PubMed  Google Scholar 

  • Volpp BD, Nauseef WM, Clark RA (1988) Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Science 242:1295–1297

    PubMed  CAS  Google Scholar 

  • Weiss SJ, Lampert MB, Test ST (1983) Long-lived oxidants generated by human neutrophils: characterization and bioactivity. Science 222:625–628

    PubMed  CAS  Google Scholar 

  • Welch DR, Schissel DJ, Howrey RP, Aeed PA (1989) Tumor-elicited polymorphonuclear cells, in contrast to “normal” circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells. Proc Natl Acad Sci USA 86:5859–5863

    PubMed  CAS  Google Scholar 

  • WHO (2012) Cancer. Fact sheet 297. World Health Organization, Geneva

    Google Scholar 

  • Williams MR, Azcutia V, Newton G, Alcaide P, Luscinskas FW (2011) Emerging mechanisms of neutrophil recruitment across endothelium. Trends Immunol 32:461–469

    PubMed  CAS  Google Scholar 

  • Woodfin A, Voisin MB, Nourshargh S (2010) Recent developments and complexities in neutrophil transmigration. Curr Opin Hematol 17:9–17

    PubMed  Google Scholar 

  • Wu QD, Wang JH, Condron C, Bouchier-Hayes D, Redmond HP (2001) Human neutrophils facilitate tumor cell transendothelial migration. Am J Physiol Cell Physiol 280:C814–C822

    PubMed  CAS  Google Scholar 

  • Young RE, Voisin MB, Wang S, Dangerfield J, Nourshargh S (2007) Role of neutrophil elastase in LTB4-induced neutrophil transmigration in vivo assessed with a specific inhibitor and neutrophil elastase deficient mice. Br J Pharmacol 151:628–637

    PubMed  CAS  Google Scholar 

  • Zeytun A, Chaudhary A, Pardington P, Cary R, Gupta G (2010) Induction of cytokines and chemokines by Toll-like receptor signaling: strategies for control of inflammation. Crit Rev Immunol 30:53–67

    PubMed  CAS  Google Scholar 

  • Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107

    PubMed  CAS  Google Scholar 

  • Zivkovic M, Poljak-Blazi M, Egger G, Sunjic SB, Schaur RJ, Zarkovic N (2005) Oxidative burst and anticancer activities of rat neutrophils. Biofactors 24:305–312

    PubMed  CAS  Google Scholar 

  • Zivkovic M, Poljak-Blazi M, Zarkovic K, Mihaljevic D, Schaur RJ, Zarkovic N (2007) Oxidative burst of neutrophils against melanoma B16-F10. Cancer Lett 246:100–108

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Batista Menezes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oliveira, A.G., Guabiraba, R., Teixeira, M.M., Menezes, G.B. (2013). Tumor-Associated Neutrophils . In: Resende, R., Ulrich, H. (eds) Trends in Stem Cell Proliferation and Cancer Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6211-4_18

Download citation

Publish with us

Policies and ethics