Skip to main content

The Tumor Microenvironment as a Transient Niche: A Modulator of Epigenetic States and Stem Cell Functions

  • Chapter
  • First Online:
Trends in Stem Cell Proliferation and Cancer Research

Abstract

For the cancer stem cell hypothesis to exist, a complimentary “niche” or tumor microenvironment must be present to provide a proper context for the malignant cell to flourish. There are a myriad of factors produced by the tumor microenvironment to regulate tumor initiation, growth, and survival. These signals undoubtedly alter and are altered by epigenetic regulation of gene expression programs that are also tightly linked to both stem cell pluripotency and malignancy. Yet little work has been done to interrogate this interaction. As our understanding of the interplay between malignant cells, their niche microenvironments, and the change of epigenetic states develops, we will gain better ability to generate relevant systems to model these interactions as well as potentially providing rational novel entry points for drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6:17–32

    Article  PubMed  CAS  Google Scholar 

  • Aprelikova O, Yu X, Palla J, Wei BR, John S, Yi M, Stephens R, Simpson RM, Risinger JI, Jazaeri A, Niederhuber J (2010) The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle 9:4387–4398

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, D’Urso L, Pagliuca A, Biffoni M, Labbaye C, Bartucci M, Muto G, Peschle C, De Maria R (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14:1271–1277

    Article  PubMed  CAS  Google Scholar 

  • Booth BW, Mack DL, Androutsellis-Theotokis A, McKay RD, Boulanger CA, Smith GH (2008a) The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proc Natl Acad Sci USA 105(39):14891–14896

    Article  PubMed  CAS  Google Scholar 

  • Booth BW, Mack DL, Androutsellis-Theotokis A, McKay RD, Boulanger CA, Smith GH (2008b) The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proc Natl Acad Sci USA 105:14891–14896

    Article  PubMed  CAS  Google Scholar 

  • Boulanger CA, Mack DL, Booth BW, Smith GH (2007) Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proc Natl Acad Sci USA 104:3871–3876

    Article  PubMed  CAS  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    Article  PubMed  CAS  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  PubMed  CAS  Google Scholar 

  • Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    Article  PubMed  CAS  Google Scholar 

  • Cooke VG, LeBleu VS, Keskin D, Khan Z, O’Connell JT, Teng Y, Duncan MB, Xie L, Maeda G, Vong S, Sugimoto H, Rocha RM, Damascena A, Brentani RR, Kalluri R (2012) Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21:66–81

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  • Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE, Gallegos M, Petcherski AG, Moulder G, Barstead R, Wickens M, Kimble J (2002) A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417:660–663

    Article  PubMed  CAS  Google Scholar 

  • Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18:884–901

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M (2009) DNA hypomethylation in cancer cells. Epigenomics 1:239–259

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  PubMed  CAS  Google Scholar 

  • Fiegl H, Millinger S, Goebel G, Muller-Holzner E, Marth C, Laird PW, Widschwendter M (2006) Breast cancer DNA methylation profiles in cancer cells and tumor stroma: association with HER-2/neu status in primary breast cancer. Cancer Res 66:29–33

    Article  PubMed  CAS  Google Scholar 

  • Flaim CJ, Chien S, Bhatia SN (2005) An extracellular matrix microarray for probing cellular differentiation. Nat Methods 2:119–125

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, Itzkovitz S, Noske A, Zurrer-Hardi U, Bell G, Tam WL, Mani SA, van Oudenaarden A, Weinberg RA (2012) Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148:1015–1028

    Article  PubMed  CAS  Google Scholar 

  • Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146:633–644

    Article  PubMed  CAS  Google Scholar 

  • Hanson JA, Gillespie JW, Grover A, Tangrea MA, Chuaqui RF, Emmert-Buck MR, Tangrea JA, Libutti SK, Linehan WM, Woodson KG (2006) Gene promoter methylation in prostate tumor-associated stromal cells. J Natl Cancer Inst 98:255–261

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21:396–420

    Article  PubMed  CAS  Google Scholar 

  • Hauschka TS, Levan A (1958) Cytologic and functional characterization of single cell clones isolated from the Krebs-2 and Ehrlich ascites tumors. J Natl Cancer Inst 21:77–135

    PubMed  CAS  Google Scholar 

  • Hu M, Yao J, Cai L, Bachman KE, van den Brule F, Velculescu V, Polyak K (2005) Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 37:899–905

    Article  PubMed  CAS  Google Scholar 

  • Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J, Susky E, Pereira K, Karamboulas C, Moghal N, Rajeshkumar NV, Hidalgo M, Tsao M, Ailles L, Waddell TK, Maitra A, Neel BG, Matsui W (2010) Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 7:279–282

    Article  PubMed  CAS  Google Scholar 

  • Joffe B, Leonhardt H, Solovei I (2010) Differentiation and large scale spatial organization of the genome. Curr Opin Genet Dev 20:562–569

    Article  PubMed  CAS  Google Scholar 

  • Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  PubMed  CAS  Google Scholar 

  • Kerbel RS (2009) Issues regarding improving the impact of antiangiogenic drugs for the treatment of breast cancer. Breast 18(Suppl 3):S41–S47

    Article  PubMed  Google Scholar 

  • Kiger AA, White-Cooper H, Fuller MT (2000) Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 407:750–754

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Villadsen R, Sorlie T, Fogh L, Gronlund SZ, Fridriksdottir AJ, Kuhn I, Rank F, Wielenga VT, Solvang H, Edwards PA, Borresen-Dale AL, Ronnov-Jessen L, Bissell MJ, Petersen OW (2012) Tumor initiating but differentiated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity. Proc Natl Acad Sci USA 109:6124–6129

    Article  PubMed  CAS  Google Scholar 

  • Kirkland SC (2009) Type I collagen inhibits differentiation and promotes a stem cell-like phenotype in human colorectal carcinoma cells. Br J Cancer 101:320–326

    Article  PubMed  CAS  Google Scholar 

  • Kirschmann DA, Seftor EA, Fong SF, Nieva DR, Sullivan CM, Edwards EM, Sommer P, Csiszar K, Hendrix MJ (2002) A molecular role for lysyl oxidase in breast cancer invasion. Cancer Res 62:4478–4483

    PubMed  CAS  Google Scholar 

  • Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ (2010) Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol 30:344–353

    Article  PubMed  CAS  Google Scholar 

  • Krosl J, Mamo A, Chagraoui J, Wilhelm BT, Girard S, Louis I, Lessard J, Perreault C, Sauvageau G (2010) A mutant allele of the Swi/Snf member BAF250a determines the pool size of fetal liver hemopoietic stem cell populations. Blood 116:1678–1684

    Article  PubMed  CAS  Google Scholar 

  • Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, Calin GA, Ivan M (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867

    Article  PubMed  CAS  Google Scholar 

  • LaBarge MA, Petersen OW, Bissell MJ (2007) Of microenvironments and mammary stem cells. Stem Cell Rev 3:137–146

    Article  PubMed  CAS  Google Scholar 

  • LaBarge MA, Nelson CM, Villadsen R, Fridriksdottir A, Ruth JR, Stampfer M, Petersen OW, Bissell MJ (2009) Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integr Biol 1:70–79

    Article  CAS  Google Scholar 

  • LaBarge MA (2010) The difficulty of targeting cancer stem cell niches. Clin Cancer Res 16:3121–3129

    Article  PubMed  CAS  Google Scholar 

  • Le Beyec J, Xu R, Lee SY, Nelson CM, Rizki A, Alcaraz J, Bissell MJ (2007) Cell shape regulates global histone acetylation in human mammary epithelial cells. Exp Cell Res 313:3066–3075

    Article  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Dutta A (2009) MicroRNAs in cancer. Ann Rev Pathol 4:199–227

    Article  CAS  Google Scholar 

  • Lessard JA, Crabtree GR (2010) Chromatin regulatory mechanisms in pluripotency. Annu Rev Cell Dev Biol 26:503–532

    Article  PubMed  CAS  Google Scholar 

  • Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  PubMed  CAS  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  PubMed  CAS  Google Scholar 

  • Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631

    Article  PubMed  CAS  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A, Akiyama T, Kuroda H, Kawano Y, Kobune M, Kato J, Hirayama Y, Sakamaki S, Kohda K, Miyake K, Niitsu Y (2003) Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 9:1158–1165

    Article  PubMed  CAS  Google Scholar 

  • Mendell JT, Olson EN (2012) MicroRNAs in stress signaling and human disease. Cell 148:1172–1187

    Article  PubMed  CAS  Google Scholar 

  • Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L, Colarossi C, Francescangeli F, Biffoni M, Collura D, Giacobbe A, D’Urso L, Falchi M, Venneri MA, Muto G, De Maria R, Bonci D (2011) Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 30:4231–4242

    Article  PubMed  CAS  Google Scholar 

  • Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, Jackson IJ, Barrandon Y, Miyachi Y, Nishikawa S (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416:854–860

    Article  PubMed  CAS  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  PubMed  CAS  Google Scholar 

  • Oyer JA, Chu A, Brar S, Turker MS (2009) Aberrant epigenetic silencing is triggered by a transient reduction in gene expression. PLoS One 4:e4832

    Article  PubMed  Google Scholar 

  • Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  PubMed  CAS  Google Scholar 

  • Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, Schofield CJ, Ratcliffe PJ (2008) Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J 416:387–394

    Article  PubMed  CAS  Google Scholar 

  • Quintana E, Shackleton M, Foster HR, Fullen DR, Sabel MS, Johnson TM, Morrison SJ (2010) Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18:510–523

    Article  PubMed  CAS  Google Scholar 

  • Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598

    Article  PubMed  CAS  Google Scholar 

  • Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127

    Article  PubMed  CAS  Google Scholar 

  • Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, Reichert M, Beatty GL, Rustgi AK, Vonderheide RH, Leach SD, Stanger BZ (2012) EMT and dissemination precede pancreatic tumor formation. Cell 148:349–361

    Article  PubMed  CAS  Google Scholar 

  • Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T, Herlyn M (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141:583–594

    Article  PubMed  CAS  Google Scholar 

  • Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science 324:1670–1673

    Article  PubMed  CAS  Google Scholar 

  • Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456:502–506

    Article  PubMed  CAS  Google Scholar 

  • Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Scheel C, Weinberg RA (2011) Phenotypic plasticity and epithelial-mesenchymal transitions in cancer and normal stem cells? Int J Cancer 129:2310–2314

    Article  PubMed  CAS  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood cells 4:7–25

    PubMed  CAS  Google Scholar 

  • Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138:822–829

    Article  PubMed  CAS  Google Scholar 

  • Shahrzad S, Bertrand K, Minhas K, Coomber BL (2007) Induction of DNA hypomethylation by tumor hypoxia. Epigenetics 2:119–125

    Article  PubMed  Google Scholar 

  • Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, Fischbach MA, Wong KK, Brandstetter K, Wittner B, Ramaswamy S, Classon M, Settleman J (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Wu J (2009) Epigenetic regulation in mammalian preimplantation embryo development. Reproductive Biol Endocrinol RB&E 7:59

    Article  Google Scholar 

  • Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, St Clair R, Baljevic M, White I, Jin DK, Chadburn A, Murphy AJ, Valenzuela DM, Gale NW, Thurston G, Yancopoulos GD, D’Angelica M, Kemeny N, Lyden D, Rafii S (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. The Journal of clinical investigation 118:2111–2120

    Google Scholar 

  • Sicklick JK, Choi SS, Bustamante M, McCall SJ, Perez EH, Huang J, Li YX, Rojkind M, Diehl AM (2006) Evidence for epithelial-mesenchymal transitions in adult liver cells. Am J Physiol Gastrointest Liver Physiol 291:G575–G583

    Article  PubMed  CAS  Google Scholar 

  • Soen Y, Mori A, Palmer TD, Brown PO (2006) Exploring the regulation of human neural precursor cell differentiation using arrays of signaling microenvironments. Mol Syst Biol 2:37

    Article  PubMed  Google Scholar 

  • Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ, Werb Z (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98:137–146

    Article  PubMed  CAS  Google Scholar 

  • Sternlicht MD, Bissell MJ, Werb Z (2000) The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter. Oncogene 19:1102–1113

    Article  PubMed  CAS  Google Scholar 

  • Storci G, Sansone P, Mari S, D’Uva G, Tavolari S, Guarnieri T, Taffurelli M, Ceccarelli C, Santini D, Chieco P, Marcu KB, Bonafe M (2010) TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. J Cell Physiol 225:682–691

    Article  PubMed  CAS  Google Scholar 

  • Thaler R, Karlic H, Spitzer S, Klaushofer K, Varga F (2010) Extra-cellular matrix suppresses expression of the apoptosis mediator Fas by epigenetic DNA methylation. Apoptosis Int J Program Cell Death 15:728–737

    Article  CAS  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  PubMed  CAS  Google Scholar 

  • Thomson S, Petti F, Sujka-Kwok I, Mercado P, Bean J, Monaghan M, Seymour SL, Argast GM, Epstein DM, Haley JD (2011) A systems view of epithelial-mesenchymal transition signaling states. Clin Exp Metastasis 28:137–155

    Article  PubMed  CAS  Google Scholar 

  • Turker MS (2002) Gene silencing in mammalian cells and the spread of DNA methylation. Oncogene 21:5388–5393

    Article  PubMed  CAS  Google Scholar 

  • Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H, Sprick MR, Kemper K, Richel DJ, Stassi G, Medema JP (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12:468–476

    Article  PubMed  CAS  Google Scholar 

  • Wendt MK, Allington TM, Schiemann WP (2009) Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol 5:1145–1168

    Article  PubMed  CAS  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  PubMed  CAS  Google Scholar 

  • Wilson BG, Roberts CW (2011) SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 11:481–492

    Article  PubMed  CAS  Google Scholar 

  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15:416–428

    Article  PubMed  CAS  Google Scholar 

  • Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290:328–330

    Article  PubMed  CAS  Google Scholar 

  • Xu R, Spencer VA, Bissell MJ (2007) Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors. J Biol Chem 282:14992–14999

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939

    Article  PubMed  CAS  Google Scholar 

  • Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC, Wu KJ (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10:295–305

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Willmarth NE, Zhou J, Katiyar S, Wang M, Liu Y, McCue PA, Quong AA, Lisanti MP, Pestell RG (2010) MicroRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci USA 107:8231–8236

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. LaBarge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mora-Blanco, L.E., Lorens, J.B., LaBarge, M.A. (2013). The Tumor Microenvironment as a Transient Niche: A Modulator of Epigenetic States and Stem Cell Functions. In: Resende, R., Ulrich, H. (eds) Trends in Stem Cell Proliferation and Cancer Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6211-4_17

Download citation

Publish with us

Policies and ethics