Conclusion and Perspectives: Sea Ice Drift, Deformation and Fracturing in a Changing Arctic

  • Jérôme Weiss
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)


This concluding chapter briefly reviews the recently evidenced modifications in Arctic sea ice drift, deformation and rheology that occurred during the last decades. For more than 30 years now, increasing average drift velocities and deformation rates, in both summer and winter, not only accompanied but most likely strengthened the Arctic sea ice decline through a modification of the albedo feedback. Indeed, a thinner ice cover means more fracturing, which in turns can have two consequences. First, more lead opening means a decreasing albedo. Second, increasing fracturing facilitates sea ice mobility and export out of the Arctic basin, i.e. means a negative contribution to mass balance. An average mechanical weakening of the Arctic sea ice cover has been highlighted from a strengthening of inertial oscillations. This interweaving of the sea ice state (thickness, concentration) in the one hand, and mechanical/dynamical processes on the other hand, calls for a continuing effort on the analysis of sea ice drift, deformation and fracturing.


Albedo Feedback Mechanical Weaken Transpolar Drift Brittle Rheology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Cavalieri, D. J., & Parkinson, C. L. (2012). Arctic sea ice variability and trends, 1979–2010. Cryosphere, 6(4), 881–889.CrossRefGoogle Scholar
  2. Comiso, J. C., Parkinson, C. L., Gersten, R., & Stock, L. (2008). Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35, L01703.CrossRefGoogle Scholar
  3. Eisenman, I., Untersteiner, N., & Wettlaufer, J. S. (2007). On the reliability of simulated Arctic sea ice in global climate models. Geophysical Research Letters, 34(10), L10501.CrossRefGoogle Scholar
  4. Fetterer, F., Knowles, K., Meier, W., & Savoie, M. (2002). updated 2012). National Snow and Ice Data Center, Boulder, Colorado, USA: Sea ice index.Google Scholar
  5. Feltham, D. (2008). Sea ice rheology. Annual Review of Fluid Mechanics, 40, 91–112.CrossRefGoogle Scholar
  6. Flocco, D., Feltham, D.L. & Turner A.K. (2010). Incorporation of a physically based melt pond scheme into the sea ice component of a climate model, Journal of Geophysical Research-Oceans, 115, C08012.Google Scholar
  7. Gascard, J. C., et al. (2008). Exploring Arctic transpolar drift during dramatic sea ice retreat. EOS, 89(3), 21–22.CrossRefGoogle Scholar
  8. Gimbert, F., N. C. Jourdain, D. Marsan, J. Weiss, and B. Barnier (2012b), Recent mechanical weakening of the Arctic sea ice cover as revealed from larger inertial oscillations, Journal of Geophysical Research, 117, C00J12.Google Scholar
  9. Gimbert, F., Marsan, D., Weiss, J., Jourdain, N. C., & Barnier, B. (2012a). Sea ice inertial oscillation magnitudes in the Arctic basin. The Cryosphere, 6, 1187–1201.CrossRefGoogle Scholar
  10. Girard, L., Weiss, J., Molines, J. M., Barnier, B., & Boullion, S. (2009). Evaluation of two sea ice models on the basis of statistical and scaling properties of Arctic sea ice deformation. Journal of Geophysical Research, 114, C08015.CrossRefGoogle Scholar
  11. Girard, L., Bouillon, S., Weiss, J., Amitrano, D., Fichefet, T., & Legat, V. (2011). A new modelling framework for sea-ice mechanics based on elasto-brittle rheology. Annals of Glaciology, 52(57), 123–132.CrossRefGoogle Scholar
  12. Haas, C., Pfaffling, A., Hendricks, S., Rabenstein, L., Etienne, J. L., & Rigor, I. (2008). Reduced ice thickness in Arctic transpolar drift favors rapid ice retreat. Geophysical Research Letters, 35, L17501.CrossRefGoogle Scholar
  13. Hibler, W. D. I. (1979). A dynamic thermodynamics sea ice model. Journal of Physical Oceanography, 9, 815–846.CrossRefGoogle Scholar
  14. Hopkins, M. A., Frankenstein, S., & Thorndike, A. S. (2004). Formation of an aggregate scale in Arctic sea ice. Journal of Geophysical Research, 109, C01032.CrossRefGoogle Scholar
  15. Kwok, R., & Rothrock, D. A. (2009). Decline in Arctic sea ice thickness from submarine and ICES at records: 1958–2008. Geophysical Research Letters, 36, L15501.CrossRefGoogle Scholar
  16. Kwok, R., Pedersen, L. T., Gudmandsen, P., & Pang, S. S. (2010). Large sea ice outflow into the Nares Strait in 2007. Geophysical Research Letters, 37, L03502.Google Scholar
  17. Kwok, R., Cunningham, G. F., & Pang, S. S. (2004). Fram Strait sea ice outflow. Journal of Geophysical Research, 109, C01009.CrossRefGoogle Scholar
  18. Kwok, R., Cunningham, G. F., Wensnahan, M., Rigor I., H. J. Zwally & Yi D. (2009). Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008, Journal of Geophysical Research Oceans, 114.Google Scholar
  19. Lemke, P., et al. (2007). Observations: Changes in snow, ice and frozen ground, in Climate Change 2007: The physical basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, (S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, M. Averyt, M. Tignor and H. L. Miller eds.), Cambridge: Cambridge University Press.Google Scholar
  20. Lindsay, R. W., Zhang, J., Schweiger, A., Steele, M., & Stern, H. (2009). Arctic sea ice retreat in 2007 follows thinning trend, J. Journal of Climate, 22, 165–175.CrossRefGoogle Scholar
  21. Nansen, F. (1902). Oceanography of the north polar basin: The Norwegian north polar expedition 1893–1896, Scientific Results, 3(9).Google Scholar
  22. Nghiem, S. V., Rigor, I. G., Perovich, D. K., Clemente-Colon, P., Weatherly, J. W., & Neumann, G. (2007). Rapid reduction of Arctic perennial sea ice. Geophysical Research Letters, 34, L19504.CrossRefGoogle Scholar
  23. Parkinson, C. L., & Cavalieri, D. J. (2012). Antarctic sea ice variability and trends, 1979–2010. The Cryosphere, 6(4), 871–880.CrossRefGoogle Scholar
  24. Polyakov, I. V., Walsh, J. E., & Kwok, R. (2012). Recent Changes of Arctic Multiyear Sea Ice Coverage and the Likely Causes. Bulletin of the American Meteorological Society, 93(2), 145–151.CrossRefGoogle Scholar
  25. Polyakov, I. V., et al. (2010). Arctic Ocean Warming Contributes to Reduced Polar Ice Cap. Journal of Physical Oceanography, 40(12), 2743–2756.CrossRefGoogle Scholar
  26. Powell, D. C., T. Markus, & A. Stossel. (2005). Effects of snow depth forcing on Southern Ocean sea ice simulations, Journal of Geophysical Research-Oceans, 110(C6).Google Scholar
  27. Rampal, P., Weiss, J., & Marsan, D. (2009). Positive trend in the mean speed and deformation rate of Arctic sea ice: 1979–2007. Journal of Geophysical Research, 114, C05013.CrossRefGoogle Scholar
  28. Rampal, P., J. Weiss, C. Dubois, & J. M. Campin. (2011). IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline, Journal of Geophysical Research, 116, C00D07.Google Scholar
  29. Rothrock, D. A., Percival, D. B., & Wensnahan, M. (2008). The decline in arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data. Journal of Geophysical Research, 113, C05003.CrossRefGoogle Scholar
  30. Rothrock, D. A. (1975). The energetics of the plastic deformation of pack ice by ridging. Journal of Geophysical Research, 80(33), 4514–4519.CrossRefGoogle Scholar
  31. Serreze, M. C., Holland, M. M., & Stroeve, J. (2007). Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 1533–1536.CrossRefGoogle Scholar
  32. Serreze, M. C. (2009). Arctic climate change: Where reality exceeds expectations. Arctic, 13(1), 1–4.Google Scholar
  33. Smedsrud, L. H., Sirevaag, S., Kloster, K., Sorteberg, A., & Sandven, S. (2011). Recent wind driven high sea ice area export in the Fram Strait contributes to Arctic sea ice decline. The Cryosphere, 5, 821–829.CrossRefGoogle Scholar
  34. Screen, J. A., & Simmonds, I. (2010). The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334–1337.CrossRefGoogle Scholar
  35. Screen, J. A., Deser, C., & Simmonds, I. (2012). Local and remote controls on observed Arctic warming. Geophysical Research Letters, 39, L10709.CrossRefGoogle Scholar
  36. Serreze, M. C., & Francis, J. A. (2006). The arctic amplification debate. Climate Change, 76(3–4), 241–264.CrossRefGoogle Scholar
  37. Spreen, G., Kwok, R., & Menemenlis, D. (2011). Trends in Arctic sea ice drift and role of wind forcing: 1992–2009. Geophysical Research Letters, 38, L19501.CrossRefGoogle Scholar
  38. Stroeve, J., Holland, M. M., Meier, W., Scambos, T., & Serreze, M. (2007). Arctic sea ice decline: Faster than forecast. Geophysical Research Letters, 34, L09501.CrossRefGoogle Scholar
  39. Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., & Barrett, A. P. (2012a). The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climate Change, 110(3–4), 1005–1027.CrossRefGoogle Scholar
  40. Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., et al. (2012b). Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39, L16502.CrossRefGoogle Scholar
  41. Skyllingstad, E. D., Paulson C. A., & Perovich D. K. (2009). Simulation of melt pond evolution on level ice, Journal of Geophysical Research-Oceans, 114, C12019.Google Scholar
  42. Vavrus, S., Waliser, D., Schweiger, A., & Francis, J. (2009). Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4. Climate Dynamics, 33(7–8), 1099–1115.CrossRefGoogle Scholar
  43. Vihma, T., Tisler, P., & Uotila, P. (2012). Atmospheric forcing on the drift of Arctic sea ice in 1989–2009. Geophysical Research Letters, 39, L02501.CrossRefGoogle Scholar
  44. Wang, J., Zhang, J., Watanabe, E., Ikeda, M., Mizobata, K., Walsh, J. E., et al. (2009). Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent ? Geophysical Research Letters, 36, L05706.CrossRefGoogle Scholar
  45. Weiss, J., Schulson, E. M., & Stern, H. L. (2007). Sea ice rheology from in situ, satellite and laboratory observations: Fracture and friction, Earth Planet. Earth and Planetary Science Letters, 255, 1–8.CrossRefGoogle Scholar
  46. Wilchinsky, A. V., D. L. Feltham, and M. A. Hopkins (2010), Effect of shear rupture on aggregate scale formation in sea ice, Journal of Geophysical Research-Oceans, 115.Google Scholar
  47. Winton, M. (2008). Sea ice-albedo feedback and Nonlinear arctic climate change. In E. T. DeWeaver, C. M. Bitz, & L. B. Tremblay (Eds.), Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications (pp. 111–131). Washington: American Geophysical Union.CrossRefGoogle Scholar
  48. Woodgate, R. A., Weingartner, T., & Lindsay, R. (2010). The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophysical Research Letters, 37, L01602.CrossRefGoogle Scholar
  49. Zhang, J., Rothrock, D., & Steele, M. (2000). Recent changes in arctic sea ice: the interplay between ice dynamics and thermodynamics. Journal of Climate, 13(17), 3099–3114.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Géophysique de l’EnvironnementLaboratoire de Glaciologie etSaint-Martin d’Hères cedexFrance

Personalised recommendations