Sea Ice Fracturing

Chapter
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)

Abstract

Two very different types of data are reviewed in this chapter: in-situ internal stress measurements in the one hand, and fracture, fault and fragmentation patterns as seen in aerial or satellite images on the other hand. In-situ stress records show that sea ice internal stress states lie within a Coulombic envelope whose shape and the associated internal friction coefficient are very similar to that obtained from brittle compressive failure tests on saline ice in the laboratory. This argues for a brittle rheology of sea ice involving faulting and friction. However, the sea ice shear strength, which can be unambiguously estimated around 30 kPa, is significantly lower than laboratory measurements, thus implying a scale effect on strength. In-situ stress records are also highly intermittent, either in terms of intensity or principal stress directions. This intermittency cannot be explained by wind forcing characteristics, but is instead the signature of short and transient fracturing/faulting episodes. In the spatial domain, these fracturing events generate scale invariant fracture networks. From these observations, a multiscale statistical model based on the superposition of numerous discrete displacements associated to fracturing/faulting episodes can be built to explain the characteristics of sea ice deformation.

Keywords

Fracture Network Brittle Deformation Principal Stress Direction Crustal Seismicity Internal Friction Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alam, A., & Curry, J. A. (1997). Determination of surface turbulent fluxes over leads in Arctic sea ice. Journal of Geophysical Research, 102(C2), 3331–3343.Google Scholar
  2. Andreas, E. L., & Cash, B. A. (1999). Convective heat transfer over wintertime leads and polynyas. Journal of Geophysical Research, 104(C11), 25721–25734.Google Scholar
  3. Andreas, E. L., & Murphy, B. (1986). Bulk transfer-coefficients for heat and momentum over leads and polynyas. Journal of Physical Oceanography, 16(11), 1875–1883.CrossRefGoogle Scholar
  4. Biegel, R. L., Sammis, C. G., & Dieterich, J. H. (1989). The frictional-properties of a simulated gouge having a fractal particle distribution. Journal of Structural Geology, 11(7), 827–846.CrossRefGoogle Scholar
  5. Chester, J. S., Chester, F. M., & Kronenberg, A. K. (2005). Fracture surface energy of the Punchbowl fault, San Andreas system. Nature, 437(7055), 133–136.Google Scholar
  6. Comiso, J. C., Parkinson, C. L., Gersten, R., & Stock, L. (2008). Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35, L01703.CrossRefGoogle Scholar
  7. Coon, M., Kwok, R., Levy,G., Pruis, M., Schreyer, H. & Sulsky, D. (2007). Arctic ice dynamics joint experiment (AIDJEX) assumptions revisited and found inadequate. Journal of Geophysical Research, 112, C11S90.Google Scholar
  8. Cox, G. F. N., & Johnson, J. B. (1983). Stress measurements in ice, Rep. (83–23), CRREL, Hanover.Google Scholar
  9. Dumont, D., Kohout, A., & Bertino, L. (2011) A wave-based model for the marginal ice zone including a floe breaking parameterization. Journal of Geophysical.Research-Oceans, 116. Google Scholar
  10. Erlingsson, B. (1988). Two-dimensional deformation patterns in sea ice. Journal of Glaciology, 34, 301–308.Google Scholar
  11. Fichelet, T., & Morales Maqueda, M. A. (1995). On modelling the sea-ice-ocean system. Modélisations couplées en climatologie, 76, 343–420.Google Scholar
  12. Fortt, A. L., & Schulson, E. M. (2009). Velocity-dependent friction on Coulombic shear faults in ice. Acta Materialia, 57(15), 4382–4390.CrossRefGoogle Scholar
  13. Gutenberg, B., & Richter, C. F. (1954). Seismicity of the Earth and associated phenomenon. Princeton: Princeton University Press.Google Scholar
  14. Heil, P., & Hibler, W. D. I. (2002). Modeling the high frequency component of arctic sea ice drift and deformation, Journal of Physical Oceanography, 32, 3039–3057.CrossRefGoogle Scholar
  15. Herman, A. (2011). Molecular-dynamics simulation of clustering processes in sea-ice floes. Physical Review E, 84(5).Google Scholar
  16. Hutchings, J. K., Geiger, C. A., Roberts, A., Richter-Menge, J. A., & Elder, B. (2010). On the Spatial and Temporal Characterization of Motion Induced Sea Ice Internal Stress, paper presented at ICETECH10 (pp. 20–23). Alaska: Anchorage.Google Scholar
  17. Jaeger, J. C., & Cook, N. G. W. (1979). Fundamentals of Rock Mechanics. London: Chapman and Hall.Google Scholar
  18. Kagan, Y. Y. (1991). Fractal dimension of brittle fracture. Journal Nonlinear Science, 1, 1–16.CrossRefGoogle Scholar
  19. Kagan, Y. Y., & Jackson, D. D. (1991). Long-term earthquake clustering. Geophysical Journal International, 104, 117–133.CrossRefGoogle Scholar
  20. Kagan, Y. Y., & Knopoff, L. (1980). Spatial distribution of earthquakes: the two point correlation function. Geophysical Journal Research Astron Socity, 62, 303–320.CrossRefGoogle Scholar
  21. Kergomard, C. (1989). Analyse morphométrique de la zone marginale de la banquise polaire au nord-ouest du spitsberg à partir de l’imagerie SPOT panchromatique, Bull. Secure File Transfer Protocol, 115, 17–20.Google Scholar
  22. Keulen, N., Heilbronner, R., Stuenitz, H., Boullier, A. M., & Ito, H. (2007). Grain size distributions of fault rocks: A comparison between experimentally and naturally deformed granitoids. Journal of Structural Geology, 29(8), 1282–1300.Google Scholar
  23. Korvin, G. (1992). Fractal models in the Earth Sciences. Amsterdam: Elsevier.Google Scholar
  24. Kwok, R. (2001). Deformation of the arctic ocean sea ice cover between November 1996 and april 1997: A survey, paper presented at IUTAM scaling laws in Iie mechanics and Iie dynamics. Fairbanks: Kluwer Academic Publishers.Google Scholar
  25. Lemke, P., and others (2007). Observations: Changes in snow, ice and frozen ground, in Climate Change 2007: In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, M. Averyt, M. Tignor and H. L. Miller. (Eds.)The physical basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change.Cambridge: Cambridge University Press.Google Scholar
  26. Lensu, M. (1990). The fractality of sea ice cover. Paper presented at IAHR Ice Symposium. Finland: Espoo.Google Scholar
  27. Lewis, J. K. (1998). Thermomechanics of pack ice. Journal of Geophysical Reserach, 103(C10), 21869–21882.Google Scholar
  28. Lewis, J. K., & Richter-Menge, J. A. (1998). Motion-induced stresses in pack ice. Journal of Geophysical Research, 103(C10), 21831–21843.Google Scholar
  29. Lindsay, R. W., & Rothrock, D. A. (1995). Arctic sea ice leads from advanced very high resolution radiometer images. Journal of Geophysical Research, 100(C3), 4533–4544.Google Scholar
  30. Lu, P., Li, Z. J., Zhang, Z. H., & Dong, X. L. (2008). Aerial observations of floe size distribution in the marginal ice zone of summer Prydz Bay. Journal of Geophysical Research-Oceans, 113(C2).Google Scholar
  31. Marcq, S., & Weiss, J. (2012). Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere. The Cryosphere, 6(1), 143–156.CrossRefGoogle Scholar
  32. Marsan, D., & Weiss, J. (2010). Space/time coupling in brittle deformation at geophysical scales. Earth and Planetary Science Letters, 296(3–4), 353–359.CrossRefGoogle Scholar
  33. Marsan, D., Weiss, J., Metaxian, J. P., Grangeon, J., Roux, P. F., & Haapala, J. (2011). Low-frequency bursts of horizontally polarized waves in the Arctic sea-ice cover. Journal of Glaciology, 57(202), 231–237.CrossRefGoogle Scholar
  34. Matsushita, M. (1985). Fractal viewpoint of fracture and accretion. Journal Physical Society Japan, 54(3), 857–860.CrossRefGoogle Scholar
  35. Maykut, G. A. (1982). Large scale heat exchange and ice production in the central Arctic Journal Geophysical Research, 87(C10), 7971–7984.Google Scholar
  36. Maykut, G. A. (1986). The surface heat and mass balance. In N. Untersteiner (Ed.), The geophysics of sea ice (pp. 395–464). New York: Plenum Press.Google Scholar
  37. Nye, J. F. (1973). Is there any physical basis for assuming linear viscous behavior for sea ice. AIDJEX Bulletin, 21, 18–19.Google Scholar
  38. Nye, J. F. (1975). The use of ERTS photographs to measure the movement and deformation of sea ice. Journal of Glaciology, 15(73), 429–436.Google Scholar
  39. Omori, F. (1894). On the aftershocks of earthquakes. Journal of the College of Science Imperial University of Tokyo, 7, 111–120.Google Scholar
  40. Persson, P. O. G., Fairrall, C. W., Andreas, E. L., Guest, P. S., & Perovich, D. K. (2002). Measurements near the atmospheric surface flux group tower at SHEBA: Near-surface conditions and surface energy budget. Journal of Geophysical Research, 107(C10), C000705.Google Scholar
  41. Rampal, P., Weiss, J., Marsan, D., Lindsay, R., & Stern, H. (2008). Scaling properties of sea ice deformation from buoy dispersion analyses. Journal of Geophysical Research, 113, C03002.CrossRefGoogle Scholar
  42. Richter-Menge, J. A., & Elder, B. C.(1998). Characteristics of pack ice stress in the Alaskan Beaufort Sea. Journal of Geophysical Research, 103(C10), 21817–21829.Google Scholar
  43. Richter-Menge, J. A., McNutt, S. L., Overland, J. E., & Kwok, R. (2002). Relating arctic pack ice stress and deformation under winter conditions. Journal of Geophysical Research, 107(C10), C000477.Google Scholar
  44. Röhrs, J., Kaleschke, L., Bröhan, D., & Siligam, P. K. (2012). An algorithm to detect sea ice leads using AMSR-E passive microwave imagery. The Cryosphere, 6, 343–352.CrossRefGoogle Scholar
  45. Rothrock, D. A., & Thorndike, A. S. (1984) Measuring the sea ice floe size distribution. Journal of Geophysical Research, 89(C4), 6477–6486.Google Scholar
  46. Sammis, C. G., & Biegel, R. (1989). Fractals, fault gouge, and friction, PAGEOPH, 131, 255–271.Google Scholar
  47. Sammis, C. G., King, G., & Biegel, R. (1987). The kinematics of gouge deformation, PAGEOPH, 125(5), 777–812.Google Scholar
  48. Scholz, C. H., & Cowie, P. A. (1990). Determination of total strain from faulting using slip measurements. Nature, 346, 837–839.CrossRefGoogle Scholar
  49. Schulson, E. M. (1990). The brittle compressive fracture of ice. Acta Metallurgica et Materiali, 38(10), 1963–1976.CrossRefGoogle Scholar
  50. Schulson, E. M. (2001). Brittle failure of ice. Engineering Fracture Mechanics, 68(17–18), 1839–1887.CrossRefGoogle Scholar
  51. Schulson, E. M. (2004). Compressive shear faults within the arctic sea ice: Fracture on scales large and small. Journal of Geophysical Research, 109, C07016, C002108.Google Scholar
  52. Schulson, E. M., & Duval, P. (2009). Creep and fracture of ice. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  53. Schulson, E. M., Fortt, A. L., Iliescu, D., & Renshaw, C. E. (2006a). On the role of frictional sliding in the compressive fracture of ice and granite: Terminal vs post-terminal failure. Acta Materialia, 54, 3923–3932.CrossRefGoogle Scholar
  54. Schulson, E. M., Fortt, A. L., Iliescu, D., & Renshaw, C. E. (2006b) Failure envelope of first-year arctic sea ice: the role of friction in compressive failure. Journal of Geophysical Research, 111, C11S25.Google Scholar
  55. Schulson, E. M., & Hibler, W. D. (1991). The fracture of ice on scales large and small: Arctic leads and wing cracks. Journal of Glaciology, 37, 319–322.Google Scholar
  56. Schulson, E. M., & Hibler, W. D. I. (2004). Fracture of the winter sea ice cover on the Arctic ocean, C.R. Physique, 5, 753–767.CrossRefGoogle Scholar
  57. Serreze, M. C., & Francis, J. A. (2006). The arctic amplification debate. Climate Change, 76(3–4), 241–264.CrossRefGoogle Scholar
  58. Steacy, S. J., & Sammis, C. G. (1991). An automaton for fractal patterns of fragmentation. Nature, 353, 250–252.CrossRefGoogle Scholar
  59. Thorndike, A. S. (1986a). Diffusion of sea ice. Journal of Geophysical Research, 91(C6), 7691–7696.Google Scholar
  60. Toyota, T., Takatsuji, S., & Nakayama, M. (2006). Characteristics of sea ice floe size distribution in the seasonal ice zone. Geophysical Research Letters, 33, L02616.CrossRefGoogle Scholar
  61. Tucker, W. B., & Perovich, D. K. (1992). Stress measurements in drifting pack ice. Cold Regions Science and Technology, 20(2), 119–139.CrossRefGoogle Scholar
  62. Turcotte, D. L. (1986). Fractals and fragmentation. Journal of Geophysical Research, 91(B2), 1921–1926.Google Scholar
  63. Turcotte, D. L. (1992). Fractals and chaos in geology and geophysics. Cambridge: Cambridge University Press.Google Scholar
  64. Utsu, T. (2002). Statistical features of seismicity. In Lee, W. H. K., Kanamori, H., Jennings, P. C., & Kisslinger, C. (Eds.), International Handbook of Earthquake and Engineering Seismology (pp. 719–732). New York: Academic Press.Google Scholar
  65. van Doorn, E., Dhruva, B., & Sreenivasan, R. (2000). Statistics of wind direction and its increments. Physics of Fluids, 12(6), 1529–1534.CrossRefGoogle Scholar
  66. Weiss, J. (2003). Scaling of fracture and faulting in ice on Earth. Surveys of Geophysics, 24, 185–227.CrossRefGoogle Scholar
  67. Weiss, J. (2008). Intermittency of principal stress directions within Arctic Sea ice. Physical Review E, 77, 056106.CrossRefGoogle Scholar
  68. Weiss, J., & Marsan, D. (2004) Scale properties of sea ice deformation and fracturing. Comptes Rendus Physique, 5(7), 683–685.Google Scholar
  69. Weiss, J., Marsan, D., & Rampal, P. (2009) Space and time scaling laws induced by the multiscale fracturing of the Arctic sea ice cover. In F. Borodich (Ed.), IUTAM Symposium on scaling in solid mechanics. (pp. 101–109), Springer.Google Scholar
  70. Weiss, J., & Schulson, E. M. (2009). Coulombic faulting from the grain scale to the geophysical scale: Lessons from ice. Journal of Physics. D. Applied Physics, 42, 214017.CrossRefGoogle Scholar
  71. Weiss, J., Schulson, E. M., & Stern, H. L. (2007). Sea ice rheology from in situ, satellite and laboratory observations: Fracture and friction, Earth Planet. Science Letters, 255, 1–8.Google Scholar
  72. Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Géophysique de l’EnvironnementLaboratoire de Glaciologie etSaint-Martin d’Hères cedexFrance

Personalised recommendations