Financial Forecasting Using the Kolmogorov–Feller Equation

  • Jonathan Blackledge
  • Marc Lamphiere
  • Kieran Murphy
  • Shaun Overton
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 229)

Abstract

An approach to analysing a financial time series using the Kolmogorov-Feller Equation is considered, in particular, the Generalised Kolmogorov-Feller Equation (GKFE), subject to variations in the Stochastic Volatility. Using the Mittag-Leffler memory function, we derive an expression for the Impulse Response Function associated with a short time window of data which is then used to derive an algorithm for computing a new index using a standard moving window process. It is shown that application of this index to financial time series, subject to a low volatility condition, correlates with the start, direction and end of a trend depending on the sampling rate of the time series and the look-back window or ‘period’ that is used. An example of this is provided in the chapter using MetaTrader4.

Keywords

Generalised Kolmogorov-Feller equation Impulse response function MetaTrader4 Mittag-Leffler memory function Time series analysis Trend analysis Stochastic volatility 

Notes

Acknowledgments

The authors acknowledges the support of the Science Foundation Ireland and Enterprise Ireland.

References

  1. 1.
    Blackledge JM, Lamphiere M, Murphy K, Overton S, Panahi A (2012) Stochastic volatility analysis using the generalised Kolmogorov-Feller equation. In: Lecture notes in engineering and computer science. Proceedings of the world congress on engineering 2012, WCE 2012, UK, London, 4–6 July, 2012, pp 453–458Google Scholar
  2. 2.
    Blackledge JM (2010) The fractal market hypothesis: applications to financial forecasting. Centre for Advanced Studies, Warsaw University of Technology, Poland, ISBN: 978-83-61993-01-83Google Scholar
  3. 3.
    Lamoureux CG, Lastrapes WD (1993) Forecasting stock-return variance: toward an understanding of stochastic implied volatilities. Rev Financ Stud 6:293–326CrossRefGoogle Scholar
  4. 4.
    Wiggins JB (1987) Option values under stochastic volatilities. J Financ Econ 19:351–372CrossRefGoogle Scholar
  5. 5.
    Melino A, Turnbull S (1990) The pricing of foreign currency options with stochastic volatility. J Econ 45:239–265Google Scholar
  6. 6.
    Stein EM, Stein JC (1991) Stock price distributions with stochastic volatility: an analytic approach. Rev Financ Stud 4:727–752CrossRefGoogle Scholar
  7. 7.
    Einstein A (1905) On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Annalen der Physik (German) 17:549–560MATHCrossRefGoogle Scholar
  8. 8.
    Kolmogorov AN (1992) On analytic methods in probability theory, selected works of A. N. Kolmogorov. In: Shiryaev AN (ed) Probability theory and mathematical statistics, vol II. Kluwer, Dordrecht, p 61–108 (From the original: Kolmogorov AN (1931) Uber die Analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math Ann 104:415–458)Google Scholar
  9. 9.
    Feller W (1957) On boundaries and lateral conditions for the Kolmogorov differential equations. Ann Math 2nd series 65(3):527–570MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Olver FW, Maximon LC (2010) Mittag-Leffler function. In: Frank WJ et al (eds) Handbook of mathematical functions in Olver. NIST, Cambridge University Press, CambridgeGoogle Scholar
  11. 11.
    Alpari (2012) Limited is a broker headquartered in London for forex, spread betting, precious metals, futures and energy commodities markets and provides a range of trading platforms including MetaTrader 4. http://www.alpari.co.uk/
  12. 12.
    Gorenflo R, Mainardi F, Raberto M, Scalas E (2000) Fractional diffusion in finance: basic theory, a review paper based on a talk given by F. Mainardi at MDEF2000—Workshop ‘Modelli Dinamici in Economia e Finanza’, Urbino (Italy), September 28–30, 2000. http://www.econ.uniurb.it/bischi/MDEF2000/MainardiMDEF.pdf
  13. 13.
    MT4 Indicators URL (2012) The MetaTrader4 indicators used to generates the results given in this paper are available from http://eleceng.dit.ie/jblackledge/Indicators.zipwhich provides the.mq4 modules requires to compute the Stochastic Volatility, the \(\alpha \)-index and the Lyapunov exponent

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jonathan Blackledge
    • 1
  • Marc Lamphiere
    • 1
  • Kieran Murphy
    • 2
  • Shaun Overton
    • 3
  1. 1.Dublin Institute of TechnologyDublinIreland
  2. 2.TradersNow LimitedCabinteely, DublinIreland
  3. 3.DallaUSA

Personalised recommendations