Convergence Speed of Generalized Longest-Edge-Based Refinement

  • José P. Suárez
  • Tania Moreno
  • Pilar Abad
  • Ángel Plaza
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 229)


In the refinement of meshes, one wishes to iteratively subdivide a domain following geometrical partition rules. The aim is to obtain a new discretized domain with adapted regions. We prove that the Longest Edge \(n\)-section of triangles for \(n\geqslant 4\) produces a finite sequence of triangle meshes with guaranteed convergence of diameters and review previous result when \(n\) equals 2 and 3. We give upper and lower bounds for the convergence speed in terms of diameter reduction. Then we fill the gap in the analysis of the diameters convergence for generalized Longest Edge based refinement. In addition, we give a numerical study for the case of \(n=4\), the so-called LE quatersection, evidencing its utility in adaptive mesh refinement.


Diameter Longest-edge Mesh refinement \(n\)-section Refinement Triangulation Triangle partition 


  1. 1.
    Carey GF (1997) Computational grids: generation, adaptation, and solution strategies. Taylor & Francis, BristolGoogle Scholar
  2. 2.
    Rosenberg I, Stenger F (1975) A lower bound on the angles of triangles constructed by bisecting the longest side. Math Comput 29:390–395MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Plaza A, Suárez JP, Padrón MA, Falcón S, Amieiro D (2004) Mesh quality improvement and other properties in the four-triangles longest-edge partition. Comput Aided Geomet Des 21(4):353–369MATHCrossRefGoogle Scholar
  4. 4.
    Márquez A, Moreno-González A, Plaza A, Suárez JP (2008) The 7-triangle longest-side partition of triangles and mesh quality improvement. Finit Elem Anal Design 44:748–758CrossRefGoogle Scholar
  5. 5.
    Plaza A, Suárez JP, Padrón MA (2010) On the non-degeneracy property of the longest-edge trisection of triangles. Appl Math Comput 216(3):862–869MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Perdomo F, Plaza A, Quevedo E, Suárez JP (2011) A lower bound on the angles of triangles constructed by LE-trisection. In: Proceedings of XIV Spanish meeting on computational geometry, pp 201–204Google Scholar
  7. 7.
    Kearfott B (1978) A proof of convergence and error bound for the method of bisection in \(R^n\). Math Comp 32(144):1147–1153MathSciNetMATHGoogle Scholar
  8. 8.
    Stynes M (1979) On faster convergence of the bisection method for certain triangles. Math Comp 33(146):717–721MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Stynes M (1980) On faster convergence of the bisection method for all triangles. Math Comp 35(152):1195–1201MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Adler A (1983) On the bisection method for triangles. Math Comp 40(162):571–574MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Hannukainen A, Korotov S, Krizek M (2010) On global and local mesh refinements by a generalized conforming bisection algorithm. J Comput Appl Math 235(2):419–436MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Perdomo F, Plaza A, Quevedo E, Suárez JP (2012) A mathematical proof of how fast the diameters of a triangle mesh tend to zero after repeated trisection. Math Comput Simulat (in review)Google Scholar
  13. 13.
    Suárez JP, Moreno T, Abad P, Plaza A (2012) Convergence speed of longest edge n-section of triangles. Lecture notes in engineering and computer science: proceedings of world congress on engineering, WCE 2012, London, UK, 4–6 July 2012, pp 869–873Google Scholar
  14. 14.
    Plaza A, Suárez JP, Carey GF (2007) A geometric diagram and hybrid scheme for triangle subdivision. Comp Aided Geom Des 24(1):19–27MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • José P. Suárez
    • 1
  • Tania Moreno
    • 2
  • Pilar Abad
    • 1
  • Ángel Plaza
    • 1
  1. 1.Division of Mathematics, Graphics and Computation (MAGiC), IUMA, Information and Communication SystemsUniversity of Las Palmas de Gran CanariaCanary Islands, Las Palmas de Gran CanariaSpain
  2. 2.Faculty of Mathematics and InformaticsUniversity of HolguinHolguinCuba

Personalised recommendations