Different Detection Schemes Using Enhanced Double Weight Code for OCDMA Systems

  • Feras N. Hasoon
  • Mohammed H. Al-Mansoori
  • Sahbudin Shaari
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 229)

Abstract

This chapter investigates the performance of enhanced double weight (EDW) code for spectral-amplitude-coding optical code division multiple access (SAC-OCDMA) system using different detection techniques. EDW code possess ideal cross-correlation properties such as the maximum cross correlation of one that are important characteristics in the optical CDMA systems since these can eliminate multiple access interference and reduce noise. The EDW code has numerous advantages including the efficient and easy code construction, simple encoder/decoder design, existence for every natural number \(n\), and weight, which can be any odd number greater than one. The experimental simulation results as well as the transmission performances are presented in this chapter.

Keywords

Cross-correlation Detection technique Enhanced double weight Multiple access techniques OCDMA Optical coding 

References

  1. 1.
    Salehi JA (1989) Code division multiple access techniques in optical fiber network-Part I: fundamental principles. IEEE Trans Commun 37(8):824–833CrossRefGoogle Scholar
  2. 2.
    Salehi JA, Brackett CA (1989) Code division multiple access techniques in optical fiber network-Part II: system performance analysis. IEEE Trans Commun 37(8):834–842CrossRefGoogle Scholar
  3. 3.
    Pearce MB, Aazhang B (1994) Multiuser detection for optical code division multiple access systems. IEEE Trans Commun 42:1801–1810CrossRefGoogle Scholar
  4. 4.
    Maric SV, Kostic ZI, Titlebaum EL (1993) A new family of optical code sequences for use in spread-spectrum fiber-optic local area networks. IEEE Trans Commun 41:1217–1221MATHCrossRefGoogle Scholar
  5. 5.
    Prucnal P, Santoro M, Ting F (1986) Spread spectrum fiber optic local area network using optical processing. J Lightwave Technol 4(5):547–554CrossRefGoogle Scholar
  6. 6.
    Lam CF, Tong DTK, Wu MC (1998) Experimental demonstration of bipolar optical CDMA system using a balanced transmitter and complementary spectral encoding. IEEE Photon Technol Lett 10(10):1504–1506CrossRefGoogle Scholar
  7. 7.
    Wei Z, Shalaby HM, Ghafouri-Shiraz H (2001) New code families for fiber-brag-grating-based spectral-amplitude-coding optical CDMA Systems. IEEE Photon Technol Lett 13(8):890–892CrossRefGoogle Scholar
  8. 8.
    Wei Z, Ghafouri-Shiraz H, Shalaby HM (2001) Performance analysis of optical spectral-amplitude-coding CDMA systems using a super-fluorescent fiber source. IEEE Photon Technol Lett 13(8):887–889Google Scholar
  9. 9.
    Weng C-S, Wu J (2001) Optical orthogonal codes with non-ideal cross-correlation. J Ligthwave Technol 19(12):1856–1863CrossRefGoogle Scholar
  10. 10.
    Kwong WC, Yang G-C (2002) Design of multilength optical orthogonal codes for optical CDMA multimedia networks. IEEE Trans Commun 50:1258–1265CrossRefGoogle Scholar
  11. 11.
    Wen J-H, Lin J-Y, Liu C-Y (2003) Modified prime-hop codes for optical CDMA systems. IEE Proc Commun 150(5):404–411CrossRefGoogle Scholar
  12. 12.
    Wei Z, Ghafouri-Shiraz H (2002) Proposal of a novel code for spectral amplitude-coding optical CDMA systems. IEEE Photon Technol Lett 14(3):414–416CrossRefGoogle Scholar
  13. 13.
    Wei Z, Ghafouri-Shiraz H (2002) Unipolar codes with ideal in-phase cross-correlation for spectral amplitude-coding optical CDMA systems. IEEE Trans Commun 50(8):1209–1212CrossRefGoogle Scholar
  14. 14.
    Wei Z, Ghafouri-Shiraz H (2002) Codes for spectral-amplitude-coding optical CDMA systems. J Ligthwave Technol 20(8):1284–1291CrossRefGoogle Scholar
  15. 15.
    Aljunid SA, Ismail M, Ramli AR, Borhanuddin MA, Abdullah MK (2004) A new family of optical code sequences for spectral-amplitude-coding optical CDMA systems. IEEE Photon Technol Lett 16(10):2383–2385CrossRefGoogle Scholar
  16. 16.
    Hasoon FN, Aljunid SA, Abdullah MK, Shaari S (2007) New code structure for spectral amplitude coding in OCDMA system. IEICE Electron Express 4(23):738–744CrossRefGoogle Scholar
  17. 17.
    Fadhil HA, Aljunid SA, Ahmad RB (2009) Performance of random diagonal code for OCDMA systems using new spectral direct detection technique. J Opt Fiber Technol 15(3):283–289CrossRefGoogle Scholar
  18. 18.
    Lei X, Glesk I, Baby V, Prucnal PR (2004) Multiple access interference (MAI) noise reduction in A 2D optical CDMA system using ultrafast optical thresholding, lasers and electro-optics society 2004, LEOS 2004, the 17th annual meeting of the IEEE, vol 2, pp 591–592Google Scholar
  19. 19.
    Jen-Fa H, Chao-Chin Y (2002) Reductions of multiple-access interference in fiber-grating-based optical CDMA network. IEEE Trans Commun 50(10):1680–1687CrossRefGoogle Scholar
  20. 20.
    Nguyen L, Aazhang B, Young JF (1995) All-optical CDMA with bipolar codes. Electron Lett 31:469–470CrossRefGoogle Scholar
  21. 21.
    Smith EDJ, Blaikie RJ, Taylor DP (1998) Performance enhancement of spectral- amplitude-coding optical CDMA using pulse-position modulation. IEEE Trans Commun 46:1176–1185CrossRefGoogle Scholar
  22. 22.
    Yim RMH, Bajcsy J, Chen LR (2003) A new family of 2-D wavelength-time codes for optical CDMA with differential detection. IEEE Photon Technol Lett 15:165–167CrossRefGoogle Scholar
  23. 23.
    Djordjevic IB, Vasic B (2003) Novel combinatorial constructions of optical orthogonal codes for incoherent optical CDMA systems. J Lightwave Technol 21:1869–1875CrossRefGoogle Scholar
  24. 24.
    Zaccarin D, Kavehrad M (1994) Performance evaluation of optical CDMA systems using non-coherent detection and bipolar codes. J Lightwave Technol 12:96–105CrossRefGoogle Scholar
  25. 25.
    Hasoon FN, Abdullah MK, Aljunid SA, Shaari S (2007) Performance of OCDMA systems using complementary subtraction technique. Opt Netw 6:854–859Google Scholar
  26. 26.
    Hasoon FN, Aljunid SA, Abdullah MK, Shaari S (2008) Spectral amplitude coding OCDMA using and subtraction technique. J Appl Opt 47(9):1263–1268CrossRefGoogle Scholar
  27. 27.
    Abdullah MK, Hasoon FN, Aljunid SA, Shaari S (2008) Performance of OCDMA systems with new detection schemes using enhanced double weight (EDW) code. J Opt Commun 281(18):4658–4662CrossRefGoogle Scholar
  28. 28.
    Hassan YA, Ibrahima F, Naufal MS, Aljunid SA (2010) OCDMA system: new detection scheme and encoder-decoder structure based on fiber bragg gratings (FBGS) for vcc code. Int J Comput Appl 32(4):461–468Google Scholar
  29. 29.
    Hasoon FN, Aljunid SA, Abdullah MK, Shaari S (2007) Construction of a new code for spectral amplitude coding in optical code-division multiple-access systems. Opt Eng J 46(7):75004–75008CrossRefGoogle Scholar
  30. 30.
    Perrier PA, Kwong WC, Prucnal PR (1991) Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks. IEEE Trans Commun 39(11):1625–1634CrossRefGoogle Scholar
  31. 31.
    Walle H, Killat U (1995) Combinatorial BER analysis of synchronous optical CDMA with prime sequences. IEEE Trans Commun 43(12):2894–2895CrossRefGoogle Scholar
  32. 32.
    Park E, Mendez AJ, Galiardi RM, Dale MR (1993) Fiber-optic digital video multiplexing using optical CDMA. J Lightwave Technol 11(1):20–26CrossRefGoogle Scholar
  33. 33.
    Park E, Mendez AJ, Garmire EM (1992) Temporal/spatial optical CDMA network design, demonstration and comparison with temporal networks. IEEE Photon Technol Lett 4(10):1160–1162CrossRefGoogle Scholar
  34. 34.
    Griffin RA, Sampson DD, Jackson DA (1992) Optical phase coding for code division multiple access networks. IEEE Photon Technol Lett 4(12):1401–1404CrossRefGoogle Scholar
  35. 35.
    Griffin RA, Sampson DD, Jackson DA (1994) Photonic CDMA by coherent matched filtering using time-addressing coding in optical ladder networks. J Lightwave Technol 12(11):2001–2010CrossRefGoogle Scholar
  36. 36.
    Griffin RA, Sampson DD, Jackson DA (1995) Coherence coding for photonic code-division multiple access networks. J Lightwave Technol 13(9):1826–1837CrossRefGoogle Scholar
  37. 37.
    Yang GC, Kwong WC (1995) Performance analysis of optical CDMA with prime Codes. Electron Lett 10(7):569–570CrossRefGoogle Scholar
  38. 38.
    Yang GC, Jaw J-Y (1994) Performance analysis and sequence designs of synchronous code-division multiple access systems with multimedia services. IEE Proc Commun 141(6):371–378CrossRefGoogle Scholar
  39. 39.
    Meghavoryan DM, Baghdasaryan HV (2001) Code-division multiple access: novel multiplexing strategy in optical fiber networks. In: Proceedings of 3rd international conference on transparent optical, nNetworks, pp 299–303Google Scholar
  40. 40.
    Aljunid AS, Maisara O, Hasnurolhaya S, Abdullah MK (2003) A new code structure for optical code division multiple access systems. The 3rd international conference on advances in strategic technologies (ICAST’03), knowledge-based technologies for sustainable development, vol 1, pp 553–558Google Scholar
  41. 41.
    Hasoon FN, Aljunid SA, Abdullah MK, Shaari S (2007) New code structure for spectral amplitude coding in OCDMA system. IEICE Electron Express 4(23):738–744CrossRefGoogle Scholar
  42. 42.
    Hasoon FN, Al-Mansoori MH, Kazem HA, Ghazi Zahid AZ, Saini DK, Shaari S (2012) Performance of OCDMA systems with different detection schemes using enhanced double weight (EDW) code, lecture notes in engineering and computer science: proceedings of the world congress on engineering , WCE 2012, London, UK, vol 2198(1), pp 979–981Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Feras N. Hasoon
    • 1
  • Mohammed H. Al-Mansoori
    • 2
  • Sahbudin Shaari
    • 3
  1. 1.Faculty of Computing and ITSohar UniversitySoharSultanate of Oman
  2. 2.Faculty of EngineeringSohar UniversitySoharSultanate of Oman
  3. 3.Institute of Micro Engineering and NanoelectronicsUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations