Skip to main content

Common Ash (Fraxinus excelsior L.)

  • Chapter
  • First Online:
Forest Tree Breeding in Europe

Abstract

Common ash (Fraxinus excelsior L.) has an extensive natural distribution across Europe and extends as far east as the Volga river and south into northern Iran. Country statistics and national programmes show that common ash has major economic and ecological importance in many countries. Genetic improvement has concentrated on tree quality and adaptive traits and more recently on developing resistance to the pathogen Chalara fraxinea which is a severe threat to this species. Data is presented from provenance / progeny trials in Lithuania, France, Belgium, The Netherlands and Romania on genetic variation for adaptive traits, growth and tree quality. There is large variation among and within ash genetic sources for important characters. Estimates for genetic heritability were high for height growth, and stem form and strong site effects were noted for these traits and for stem diameter. The breeding system with regard to genetic diversity, gene flow, hybridisation and inbreeding is reviewed. For breeding, various methodologies regarding mating, testing and selection are discussed. A review on vegetative propagation, including in vitro culture and cryopreservation is presented as useful tools in breeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott JIE (2005) Micropropagation of ash (Fraxinus excelsior L.). Ph.D. thesis, University of Dublin Trinity College, Dublin

    Google Scholar 

  • Arrillaga I, Lerma V, Segura J (1992) Micropropagation of juvenile and adult flowering ash. J Am Soc Hortic Sci 117(2):346–350

    CAS  Google Scholar 

  • Bacles CFE, Ennos RA (2008) Paternity analysis of pollen-mediated gene flow for Fraxinus excelsior L. in a chronically fragmented landscape. Heredity 101:368–380

    PubMed  CAS  Google Scholar 

  • Bacles CFE, Burczyk J, Lowe AJ, Ennos RA (2005) Historical and contemporary mating patterns in remnant populations of the forest tree Fraxinus excelsior L. Evolution 59:979–990

    PubMed  Google Scholar 

  • Bakys R, Vasaitis R, Barklund P, Thomsen IM, Stenlid J (2009) Occurrence and pathogenicity of fungi in necrotic and non-symptomatic shoots of declining common ash (Fraxinus excelsior) in Sweden. Eur J For Res 128:51–60. doi:10.1007/s10342-008-0238-2

    Google Scholar 

  • Baliuckas V, Ekberg I, Eriksson G, Norell L (1999) Genetic variation among and within populations of four Swedish hardwoods species assessed in a nursery trial. Silvae Genetica 48:17–25

    Google Scholar 

  • Baliuckas V, Lagerström T, Eriksson G (2000) Within and among population variation in juvenile growth rhythm and growth in Fraxinus excelsior and Prunus avium. For Genet 7(3):193–202

    Google Scholar 

  • Ballian D, Monteleone I, Ferrazzini D, Kajba D, Belletti P (2008) Genetic characterization of common ash (Fraxinus excelsior L.) populations in Bosnia and Herzegovina. Periodicum Biologorum 110:323–328

    Google Scholar 

  • Barnes RD (1995) The breeding seedling orchard in the multiple population breeding strategy. Silvae Genetica 44:1–88

    Google Scholar 

  • Bates S, Preece JE, Navarrete NE, Van Sambeek JW, Gaffney GR (1992) Thidiazuron stimulates shoot organogenesis and somatic embryogenesis in white ash (Fraxinus americana L.). Plant Cell Tissue Org Cult 31:21–29

    CAS  Google Scholar 

  • Brachet S, Jubier MF, Richard M, Jung-Muller B, Frascaria-Lacoste N (1999) Rapid identification of microsatellite loci using 5′ anchored PCR in the common ash Fraxinus excelsior. Mol Ecol 8:160–163

    CAS  Google Scholar 

  • Brearley J, Henshaw GG, Davey C, Taylor NJ, Blakesley D (1995) Cryopreservation of Fraxinus excelsior L. zygotic embryos. Cryo Lett 16:215–218

    Google Scholar 

  • Bresnan DF, Geyer WA, Rink G (1996) Variation among green ash of differing geographic origins outplanted in Kansas. J Arboric 22:113–116

    Google Scholar 

  • Broadmeadow MSJ, Ray D, Samuel CJA (2005) Climate change and the future for broadleaved tree species in Britain. Forestry 78:145–161

    Google Scholar 

  • Buiteveld J, Kranenborg KG, de Vries SMG (2004) Herkomst- en nakomelingschaponderzoek van es (Fraxinus excelsior) in Nederland. Alterra-rapport 929, Alterra, Wageningen, 37 pp

    Google Scholar 

  • Burdon RD (1986) Clonal forestry and breeding strategies – a perspective. In: Proceedings IUFRO meeting of working parties on breeding theory, progeny testing, seed orchards, Williamsburg. North Corolina State University – Industry cooperative tree improvement program, 13–17 Oct 1986, pp 645–659

    Google Scholar 

  • Cahalan CM, Jiinks RL (1992) Vegetative propagation of ash (Fraxinus excelsior L.) Sycamore (Acer pseudoplatanus L.) and Sweet Chestnut (Castanea sativa Mill.) in Britain. In: Mass production technology for genetically improved fast growing forest tree species, AFOCEL proceedings Tome II, Bordeaux 14–18 Sept 1992, pp 371–378

    Google Scholar 

  • Capuana M, Petrini G, Di Marco A, Giannini R (2007) Plant regeneration of common ash (Fraxinus excelsior L.) by somatic embryogenesis. In Vitro Cell Dev Biol Plant 43:101–110

    Google Scholar 

  • Chalupa V (1990) Micropropagation of Hornbeam (Carpinus betulus L.) and ash (Fraxinus excelsior L.). Biol Plant 32:332–338

    Google Scholar 

  • Chandelier A, Andre F, Laurent F (2010) Detection of Chalara fraxinea in common ash (Fraxinus excelsior) using real time PCR. For Pathol 40:87–95

    Google Scholar 

  • Contescu L (1980) Comportarea unor provenienţe de frasin în testul de pepinieră. În: Studii şi Cercetări de Silvicultură, pp 47–60, ICAS Bucureşti (Studies concerning some ash provenances in the nursery test. In: Silviculture Studies and Researces, ICAS Bucureşti, pp 47–60)

    Google Scholar 

  • Contescu L (1984) Testarea unor descendenţe materne (half sib) de frasin în Câmpia Română. În: Revista Pădurilor nr. 3/1984(99), pp 128–134 (The testing of ash half sib progenies in Câmpia Româna (Southern Romanian Plain). In: The forest magazine no. 3/1984(99), pp 128–134)

    Google Scholar 

  • Cundall EP, Cahalan CM, Connolly T (2003) Early results of ash (Fraxinus excelsior L.) provenance trials at sites in England and Wales. Forestry 76:385–400

    Google Scholar 

  • Danusevicius D, Lindgren D (2001) Efficiency of selection based on phenotype, clone and progeny testing in long-term tree breeding. Silvae Genetica 50:19–26

    Google Scholar 

  • Danusevicius D, Lindgren D (2002) Two-stage selection strategies in tree breeding considering gain, diversity, time and cost. For Genet 9:145–157

    Google Scholar 

  • Donnarumma F, Capuana M, Vettori C, Petrini G, Giannini R, Indorato C, Mastromei G (2011) Isolation and characterisation of bacterial colonies from seeds and in vitro cultures of Fraxinus spp. from Italian sites. Plant Biol 13:169–176

    PubMed  CAS  Google Scholar 

  • Douglas G (2001) Vegetative propagation of selected reproductive stocks of ash and sycamore. In: Thompson D, Harrington F, Douglas GC, Hennerty MJ, Nakhshab N, Long R (eds) Vegetative propagation techniques for oak, ash, sycamore and spruce. COFORD, Dublin, pp 16–28. ISBN 1 902696 19 0

    Google Scholar 

  • Driver JA, Kuniyuki AH (1984) In vitro propagation of paradox walnut rootstock. Hortscience 19:507–509

    Google Scholar 

  • EPPO (2008) Chalara fraxinea: Ash dieback. European and Mediterranean Plant Protection Organization (EPPO). http://www.eppo.org/QUARANTINE/Alert_List/fungi/Chalara_fraxinea.htm. Last accessed 6 Jan 2009

  • Eriksson G (2001) Conservation of noble hardwoods in Europe. Can J For Res 31:577–587

    Google Scholar 

  • Eriksson G, Ekberg I (2001) An introduction to forest genetics. SLU Repro, Uppsala, 144 p

    Google Scholar 

  • Eriksson G, Namkoong G, Roberds J (1993) Dynamic gene conservation for uncertain futures. For Ecol Manage 62:15–37

    Google Scholar 

  • Fernandez J, Toro MA (2001) Controlling genetic variability by mathematical programming in a selection scheme on an open-pollinated populations in Eucalyptus globulus. Theor Appl Genet 102:1056–1064

    Google Scholar 

  • Fernandez-Manjarres JF, Gerard PR, Dufour J, Raquin C, Frascaria-Lacoste N (2006) Differential patterns of morphological and molecular hybridization between Fraxinus excelsior L. and Fraxinus angustifolia Vahl (Oleaceae) in eastern and western France. Mol Ecol 15:3245–3257

    PubMed  CAS  Google Scholar 

  • Ferrazzini D, Monteleone I, Belletti P (2007) Genetic variability and divergence among Italian populations of common ash (Fraxinus excelsior L.). Ann For Sci 64:159–168

    Google Scholar 

  • FRAXIGEN (2005) Ash species in Europe: biological characteristics and practical guidelines for sustainable use. Oxford Forestry Institute, University of Oxford, Oxford, UK, 128 pp

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean roots cells. Exp Cell Res 50:151–158

    PubMed  CAS  Google Scholar 

  • Gerard PR, Fernandez-Manjarres JF, Bertolino P, Dufour J, Raquin C, Frascaria-Lacoste N (2006a) New insights in the recognition of the European ash species Fraxinus excelsior L. and Fraxinus angustifolia Vahl as useful tools for forest management. Ann For Sci 63:733–738

    Google Scholar 

  • Gerard PR, Fernandez-Manjarres JF, Frascaria-Lacoste N (2006b) Temporal cline in a hybrid zone population between Fraxinus excelsior L. and Fraxinus angustifolia Vahl. Mol Ecol 15:3655–3667

    PubMed  CAS  Google Scholar 

  • Gerard PR, Klein EK, Austerlitz F, Fernandez-Manjarres JF, Frascaria-Lacoste N (2006c) Assortative mating and differential male mating success in an ash hybrid zone population. BMC Evol Biol 6:96

    PubMed  Google Scholar 

  • Halmschlager E, Kirisits T (2008) First report of the ash dieback pathogen Chalara fraxinea on Fraxinus excelsior in Austria. New Disease Reports 17, February 2008–July 2008. http://www.bspp.org.uk/ndr/july2008/2008-25.asp

  • Hammatt N (1997) Fraxinus excelsior L. (Common ash). Biotechnol Agric For 35:173–193

    Google Scholar 

  • Hammatt N, Ridout MS (1992) Micropropagation of common ash (Fraxinus excelsior). Plant Cell Tissue Org Cult 13:67–74

    Google Scholar 

  • Harbourne ME, Douglas GC, Waldren S, Hodkinson TR (2005) Characterization and primer development for amplification of chloroplast microsatellite regions of Fraxinus excelsior. J Plant Res 118:339–341

    PubMed  CAS  Google Scholar 

  • Hebel I, Haas R, Dounavi A (2006) Genetic variation of common ash (Fraxinus excelsior L.) populations from provenance regions in southern Germany by using nuclear and chloroplast microsatellites. Silvae Genetica 55:38–44

    Google Scholar 

  • Hebel I, Aldinger E, Haas R, Karopka M, Bogenrieder A, Dounavi A (2007) Pollen dispersal and pollen contamination in an ash seed orchard (Fraxinus excelsior L.). Allgemeine Forst Und Jagdzeitung 178:44–49

    Google Scholar 

  • Hemery GE, Clark JR, Aldinger E, Claessens H, Malvolti ME, O’Connor E, Raftoyannis Y, Savill PS, Brus R (2010) Growing scattered broadleaved tree species in Europe in a changing climate: a review of risks and opportunities. Forestry 83:65–81

    Google Scholar 

  • Heuertz M, Hausman JF, Tsvetkov I, Frascaria-Lacoste N, Vekemans X (2001) Assessment of genetic structure within and among Bulgarian populations of the common ash (Fraxinus excelsior L.). Mol Ecol 10:1615–1623

    PubMed  CAS  Google Scholar 

  • Heuertz M, Vekemans X, Hausman JF, Palada M, Hardy OJ (2003) Estimating seed vs. pollen dispersal from spatial genetic structure in the common ash. Mol Ecol 12:2483–2495

    PubMed  CAS  Google Scholar 

  • Heuertz M, Hausman JF, Hardy OJ, Vendramin GG, Frascaria-Lacoste N, Vekemans X (2004a) Nuclear microsatellites reveal contrasting patterns of genetic structure between western and southeastern European populations of the common ash (Fraxinus excelsior L.). Evolution 58:976–988

    PubMed  Google Scholar 

  • Heuertz M, Fineschi S, Anzidei M, Pastorelli R, Salvini D, Paule L, Frascaria-Lacoste N, Hardy OJ, Vekemans X, Vendramin GG (2004b) Chloroplast DNA variation and postglacial recolonization of common ash (Fraxinus excelsior L.) in Europe. Mol Ecol 13:3437–3452

    PubMed  CAS  Google Scholar 

  • Holtken AM, Tahtinen J, Pappinen A (2003) Effects of discontinuous marginal habitats on the genetic structure of common ash (Fraxinus excelsior L.). Silvae Genetica 52:206–211

    Google Scholar 

  • Janse JD (1981) The bacterial disease of ash (Fraxinus excelsior), caused by Pseudomonas syringae subsp. savastanoi pv. fraxini. Eur J For Pathol 11:306–315. doi:10.1111/j.1439-0329.1981.tb00100.x

    Google Scholar 

  • Johansson SBK, Vasaitis R, Ihrmark K, Barklund P, Stenlid J (2009) Detection of Chalara fraxinea from tissue of Fraxinus excelsior using species-specific ITS primers. For Pathol 40(2):111–115

    Google Scholar 

  • Jonsson A, Eriksson G (1989) A review of genetic studies of some important traits in the genera Acer, Fagus, Fraxinus, Prunus, Quercus and Ulmus. Rapporter och Uppsatser Institutionen for Skogsgenetik, Sveriges Lantbruksuniversitet, No. 44, 50 p

    Google Scholar 

  • Jouve L, Jacques D, Douglas GC, Hoffmann L, Hausman J-F (2007) Biochemical characterization of early and late bud flushing in common ash (Fraxinus excelsior L.). Plant Sci 172:962–969

    CAS  Google Scholar 

  • Kerr G, Boswell RC (2001) The influence of spring frosts, ash bud moth (Prays fraxinella) and site factors on forking of young ash (Fraxinus excelsior) in southern Britain. Forestry 74:30–40

    Google Scholar 

  • Kile GA (1993) Plant diseases caused by species of Ceratocystis sensu stricto and Chalara. In: Wingfield MJ, Seifert KA, Webber JF (eds) Ceratocystis and Ophiostoma: taxonomy, ecology, and pathogenicity. The American Phytopathological Society, St. Paul, pp 173–183

    Google Scholar 

  • Kim M-S, Schumann CM, Klopfenstein NB (1997) Effects of thidiazuron and benzyladenine on axillary shoot proliferation of three ash (Fraxinus pennsylvanica Marsh.) clones. Plant Cell Tissue Org Cult 48:45–52

    CAS  Google Scholar 

  • Kirisits T, Matlakova M, Mottinger-Kroupa S, Halmschlager E (2008) Involvement of Chalara fraxinea in ash dieback in Austria. Forstschutz Aktuell 44:16–18

    Google Scholar 

  • Kirisits T, Matlakova M, Mottinger-Kroupa S, Halmschlanger E, Lakatos F (2009) Chalara fraxinea associated with dieback of narrow-leafed ash (Fraxinus angustifolia). New Dis Rep 19:43

    Google Scholar 

  • Kleinschmit J, Svolba J, Enescu V, Franke A, Rau HM, Ruetz W (1986) First results of provenance trials of Fraxinus excelsior established in 1982 [in German]. Forstarchiv 67:114–122

    Google Scholar 

  • Kleinschmit J, Lück FW, Rau H-M, Ruetz WF (2002) Ergebnisse eines Eschen-Herkunftsversuches, results of an ash provenance experiment. Forst und Holz 57(60):166–172

    Google Scholar 

  • Koski V, Tigerstedt PMA (1996) Breeding plans in case of global warming. Euphytica 92:235–239. XIV EUCARPIA Congress on adaption in plant breeding, held on 31 July–4 Aug 1995, Jyvaskyla, Finland

    Google Scholar 

  • Kowalski T (2006) Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. For Pathol 36:264–270

    Google Scholar 

  • Kowalski T, Holdenrieder O (2009a) The teleomorph of Chalara fraxinea, the causal agent of ash dieback. For Pathol 39:304–308

    Google Scholar 

  • Kowalski T, Holdenrieder O (2009b) Pathogenicity of Chalara fraxinea. For Pathol 39:1–7

    Google Scholar 

  • Kramer K, Vreugdenhil SJ, van der Werf DC (2008) Effects of flooding on the recruitment, damage and mortality of riparian tree species: a field and simulation study on the Rhine floodplain. For Ecol Manage 255:3893–3903

    Google Scholar 

  • Leforestier F, Courtois-Gras M, Joseph C (1991) Etude comparative de la micropropagation de quelques espèces de Fraxinus. Acta Hortic 289:215

    Google Scholar 

  • Lefort F, Brachet S, Frascaria-Lacoste N, Edwards KJ, Douglas GC (1999) Identification and characterization of microsatellite loci in ash (Fraxinus excelsior L.) and their conservation in the olive family (Oleaceae). Mol Ecol 8:1088–1090

    CAS  Google Scholar 

  • Lindgren D, Libby WS, Bondesson FL (1989) Deployment to plantations of numbers and proportions of clones with special emphasis on maximizing gain at a constant diversity. Theor Appl Genet 77:825–831

    Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain Laurel, Kalmia latifolia, by use of shoot tip culture. Proc Int Plant Propag Soc 30:421–427

    Google Scholar 

  • Loos R, Kowalski T, Husson C, Holdenrieder O (2009) Rapid in planta detection of Chalara fraxinea by a real-time PCR assay using a dual-labelled probe. Eur J Plant Pathol 125:329–335

    Google Scholar 

  • Lozano C, Kidd NAC, Campos M (1993) Studies on the population dynamics of the bark beetle Leperisinus varius (Fabr.) (Col., Scolytidae) on European olive (Olea europaea). J Appl Entomol 116:118–126

    Google Scholar 

  • Lygis V, Vasiliauskas R, Larsson K-H, Stenlid J (2005) Wood-inhabiting fungi in stems of Fraxinus excelsior in declining ash stands of northern Lithuania, with particular reference to Armillaria cepistipes. Scand J For Res 20:337–346

    Google Scholar 

  • McDonald BA, Linde C (2002a) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379

    PubMed  CAS  Google Scholar 

  • McDonald BA, Linde C (2002b) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163–180

    CAS  Google Scholar 

  • McKeand SE, Eriksson G, Roberds JH (1997) Genotype by environment interaction for index traits that combine growth and wood density in loblolly pine. Theor Appl Genet 94:1015–1022

    Google Scholar 

  • McKinney LV, Nielsen LR, Hansen JK, Kjear D (2011) Presence of natural genetic resistance in Fraxinus excelsior (Oleraceae) to Chalara fraxinea (Ascomycota): an emerging infectious disease. Heredity 106(5):788–797

    PubMed  CAS  Google Scholar 

  • Miyamoto N, Fernandez-Manjarres JF, Morand-Prieur ME, Bertolino P, Frascaria-Lacoste N (2008) What sampling is needed for reliable estimations of genetic diversity in Fraxinus excelsior L. (Oleaceae)? Ann For Sci 65:403p1–403p8

    Google Scholar 

  • Morand ME, Brachet S, Rossignol P, Dufour J, Frascaria-Lacoste N (2002a) A generalized heterozygote deficiency assessed with microsatellites in French common ash populations. Mol Ecol 11:377–385

    PubMed  CAS  Google Scholar 

  • Morand ME, Gerber S, Frascaria-Lacoste N (2002b) Limited seed dispersal in a partially scattered tree species, Fraxinus excelsior L., as revealed by parentage analysis using microsatellites. In: Dynamics and conservation of genetic diversity in forest ecosystems. International conference Dygen, Strasbourg, 2002, p 34

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioessays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Mwase WF, Savill PS, Hemery G (2008) Genetic parameter estimates for growth and form traits in common ash (Fraxinus excelsior L.) in a breeding seedling orchard at Little Wittenham in England. New For 36:225–238

    Google Scholar 

  • Myking T (2002) Evaluating genetic resources of forest trees by means of life history traits – a Norwegian example. Biodivers Conserv 11:1681–1696

    Google Scholar 

  • Namkoong G (1976) A multiple index selection strategy. Silvae Genetica 25:199–201

    Google Scholar 

  • Namkoong G (1984) A control concept of gene conservation. Silvae Genetica 33:160–163

    Google Scholar 

  • Namkoong G (1985) The influence of composite traits on genotype by environment interaction relations. Theor Appl Genet 70:315–317

    Google Scholar 

  • Navarrete NE, Van Sambeek JW, Preece JE, Gaffney GR (1989) Improved micropropagation of white ash Fraxinus americana L. In: Proceedings of the 7th central hardwood conference, Southern Illinois University at Carbondale, General technical report no. NC-132 of the North Central Forest Experiment Station, USDA Forest Service

    Google Scholar 

  • Novák V, Hrozinka F, Starý B (1974) Atlas hmyzích škodcov lesných drevín (Atlas of the pests on forest trees.). Príroda, Bratislava, 127 p

    Google Scholar 

  • Osorio LF, White TL, Huber DA (2003) Age-age and trait-trait correlations in Eucalyptus grandis Hill ex Maiden and their implications for optimal selection age and design of clonal trials. Theor Appl Genet 106:735–743

    PubMed  CAS  Google Scholar 

  • Palada-Nicolau M, Blada I, Popescu F (2005) New considerations concerning the ash species in Romania: mixed populations of Fraxinus excelsior and Fraxinus angustifolia. In: Sestras R (ed) Bulletin of the university of agricultural science and veterinary medicine, vol 61. Animal Husbandry and Biotechnology, Cluj-Napoca, Romania, pp 369–375

    Google Scholar 

  • Pârnuţă Gh, Tudoroiu M, Mirancea I, Nică MS (2009) Variabilitatea genetică a frasinului: evaluare în culturi comparative. În: Mihai G (ed) Surse de seminţe testate pentru principalele specii de arbori forestieri din România. Editura Silvică www.editurasilvica.ro, pp 159–176, 252–275, ISBN 978-973-88938-6-3. (Ash genetic variability: evaluation in comparative trials. In: Mihai G (ed) Tested seed sources for the main forest tree species from Romania. Editura Silvică www.editurasilvica.ro, pp 159–176, 252–275, ISBN 978-973-88938-6-3.)

  • Penuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob Chang Biol 8:531–544

    Google Scholar 

  • Perez-Parron MA, Gonzalez-Benito ME, Perez C (1994) Micropropagation of Fraxinus angustifolia from mature and juvenile plant material. Plant Cell Tissue Org Cult 37:297–302

    CAS  Google Scholar 

  • Pierik RM, Sprenkels PA (1997) Micropropagation of Fraxinus excelsior L. (Common ash). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 39. Springer, Berlin/Heidelberg, pp 330–343

    Google Scholar 

  • Pliura A (1999) European long-term gene conservation strategies Ash (Fraxinus ssp). In: Noble Hardwoods network. Report of the third meeting, 13–16 June 1998, Sagadi, Estonia (compilers Turok J, Jensen J, Palmberg-Lerche C et al.). International Plant Genetic Resources Institute, Rome, pp 8–20

    Google Scholar 

  • Pliūra A, Baliuckas V (2007) Genetic variation in adaptive traits of progenies of Lithuanian and western European populations of Fraxinus excelsior L. Baltic For 13:28–38

    Google Scholar 

  • Pliura A, Heuertz M (2003) EUFORGEN technical guidelines for genetic conservation and use for common ash (Fraxinus excelsior). International Plant Genetic Resources Institute (IPGRI) Publication, Rome, 6 p

    Google Scholar 

  • Pliūra A, Lygis V, Suchockas V, Bartkevičius E (2011) Performance of twenty four European Fraxinus excelsior populations in three Lithuanian progeny trials with a special emphasis on resistance to Chalara fraxinea. Baltic For 17(1):17–34

    Google Scholar 

  • Popescu Fl, Postolache D (2009) Evaluarea diversităţii intra şi inter populaţionale cu ajutorul markerilor genetici. In: Mihai G (ed) Surse de seminţe testate pentru principalele specii de arbori forestieri din România. Editura Silvică, pp 201–219, ISBN 978-973-88938-6-3 (Evaluation of intra and inter population diversity by the means of genetic markers. In: Mihai G (ed) Tested seed sources for the main forest tree species from Romania. pp 201–219)

    Google Scholar 

  • Preece JE, Christ PH, Ensenberger L, Zhao JL (1987) Micropropagation of ash (Fraxinus). Comb Proc Int Plant Propag Soc 37:366–372

    Google Scholar 

  • Preece JE, Zhao J, Kung FH (1989) Callus production and somatic embryogenesis from white ash. Hortic Sci 24:377–380

    CAS  Google Scholar 

  • Queloz V, Grünig CR, Berndt R, Kowalski T, Sieber TN, Holdenrieder O (2010) Cryptic speciation in Hymenoscyphus albidus. For Pathol 41(2):133–142

    Google Scholar 

  • Raquin C, Frascaria-Lacoste N (2006) New insights in the recognition of the European ash species Fraxinus excelsior L. and Fraxinus angustifolia Vahl as useful tools for forest management. Ann For Sci 63:733–738

    Google Scholar 

  • Raquin C, Jung-Muller B, Dufour J, Frascaria-Lacoste N (2002) Rapid seedling obtaining from European ash species Fraxinus excelsior L. and Fraxinus angustifolia Vahl. Ann For Sci 59:219–224

    Google Scholar 

  • Rosvall O, Mullin TJ (2003) Positive assortative mating with selection restrictions on group coancestry enhances gain while conserving genetic diversity in long-term forest tree breeding. Theor Appl Genet 107:629–642

    PubMed  CAS  Google Scholar 

  • Routsalainen S, Lindgren D (1998) Predicting genetic gain of backward and forward selection in forest tree breeding. Silvae Genetica 47:42–50

    Google Scholar 

  • Ruedinger MCD, Glaeser J, Hebel I, Dounavi A (2008) Genetic structures of common ash (Fraxinus excelsior) populations in Germany at sites differing in water regimes. Can J For Res Rev Canadienne De Recherche Forestiere 38:1199–1210

    Google Scholar 

  • Ruigini E (1984) In vitro propagation of some olive (Olea europaea sativa L.) cultivars with different root-ability and medium development using analytical data from developing shoot and embryos. Sci Hortic 24:123–134

    Google Scholar 

  • Savill PS, Spencer R, Roberts JE, Hubert JD (1999) Sixth year results from four ash (Fraxinus excelsior) breeding seedling orchards. Silvae Genetica 48:92–100

    Google Scholar 

  • Schoenweiss K, Meier-Dinkel A (2005) In vitro propagation of selected mature trees and juvenile embryo-derived cultures of common ash ( F. excelsior). Propag Ornam Plants 5:137–145

    Google Scholar 

  • Schoenweiss K, Meier-Dinkel A, Grotha R (2005) Comparison of cryopreservation techniques for long-term storage of ash (Fraxinus excelsior L.). Cryo Lett 26:201–212

    Google Scholar 

  • Silveira CE, Cottignies A (1994) Period of harvest, sprouting ability of cuttings, and in vitro plant regeneration in Fraxinus excelsior. Can J Bot 72:261–267

    Google Scholar 

  • Skovsgaard JP, Thomsen IM, Skovgaard IM, Martinussen T (2009) Associations between symptoms of dieback in even-aged stands of ash (Fraxinus excelsior L.). For Pathol 40(1):7–18

    Google Scholar 

  • Smîntînă I (1993) Teste de provenienţă la frasin comun (Fraxinus excelsior). Rezultate obţinute la 10 ani de la plantare. În: Revista pădurilor nr.1/1993(108), pp 10–17 (Provenance tests for common ash (Fraxinus excelsior). Results obtained at the age of 10 years from the establishment. In: The forest magazine no. 1/1993 (108), pp 10–17)

    Google Scholar 

  • Smîntînă I (1995) Variabilitatea genetică interpopulaţională a gorunului (Quercus petraea (Matt.) Liebl.), stejarului pedunculat (Quercus robur L.) şi frasinului (Fraxinus sp.) în culturi comparative de provenienţă. În teză de doctorat ASAS. (Inter population genetic variability of Sessile oak (Quercus petraea (Matt.) Liebl.), Pedunculate oak (Quercus robur L.) and ash (Fraxinus sp.) in multisite comparative trials.). Ph.D. thesis ASAS

    Google Scholar 

  • Smîntînă I et al (1994) Cercetări privind variabilitatea genetică determinată geografic de specii de răşinoase şi foioase, testată în culturi comparative de: molid, brad, larice, duglas, pin negru, pin silvestru, gorun, stejar şi frasin. (Researches concerning the geographic determined genetic variability for conifers and broadleaves species tested in comparative trials for the following species: Norway spruce, Silver fir, larch, Douglas fir, Austrian pine, Sessile oak, Pedunculate oak and Ash.) Referat ştiinţific final, ICAS Bucureşti (Scientific Final Report, ICAS Bucharest 1994)

    Google Scholar 

  • Suszka B, Muller C, Bonnet-Masimbert M (1996) Seeds of forest broadleaves: from harvest to sowing. Translated by Andrew Gordon, INRA Editions, Paris, 294 p, ISBN: 2-7380-0659, ISSN: 1150–3912

    Google Scholar 

  • Thomasset M (2011) Introduced hybrid ash: Fraxinus excelsior × F. angustifolia in Ireland and its potential for interbreeding with native ash. Ph.D. thesis, University of Dublin Trinity College, Dublin

    Google Scholar 

  • Thomasset M, Fernández-Manjarrés JF, Douglas GC, Frascaria- Lacoste N, Raquin C, Hodkinson TR (2011a) Molecular and morphological characterization of reciprocal F1 hybrid ash (Fraxinus excelsior × F. angustifolia, Oleaceae) and parental species reveals asymmetric character inheritance. Int J Plant Sci 172(3):423–433. http://www.jstor.org/stable/10.1086/658169

    Google Scholar 

  • Thomasset M, Fernández-Manjarrés JF, Douglas GC, Frascaria-Lacoste N, Hodkinson TR (2011b) Hybridisation, introgression and climate change: a case study for the tree genus Fraxinus (Oleaceae). In: Hodkinson TR, Jones MB, Waldren S, Parnell JAN (eds) Climate change, ecology and systematics. Cambridge University Press, Cambridge (UK)/New York (USA), pp 320–342, © The Systematics Association 2011

    Google Scholar 

  • Thomasset M, Fernández-Manjarrés JF, Douglas GC, Bertolino P, Frascaria-Lacoste N, Hodkinson TR (2012) Assignment testing reveals multiple introduced source populations including potential ash hybrids (Fraxinus excelsior × F. angustifolia) in Ireland. Eur J For Res 131:1–15. http://rd.springer.com/article/10.1007%2Fs10342-012-0667-9

  • Tonon G, Capuana M, Rossi C (2001) Somatic embryogenesis and embryo encapsulation in Fraxinus angustifolia Vhal. J Hortic Sci Biotechnol 76:753–757

    Google Scholar 

  • Varela MC, Eriksson G (1995) Multipurpose gene conservation in Quercus suber – a Portuguese example. Silvae Genetica 44:28–37

    Google Scholar 

  • Vitasse Y, Porte AJ, Kremer A, Michalet R, Delzon S (2009a) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161:187–198

    PubMed  Google Scholar 

  • Vitasse Y, Delzon S, Bresson CC, Michalet R, Kremer A (2009b) Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Can J For Res Rev Canadienne De Recherche Forestiere 39:1259–1269

    Google Scholar 

  • Vitasse Y, Delzon S, Dufrene E, Pontailler JY, Louvet JM, Kremer A, Michalet R (2009c) Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agric For Meteorol 149:735–744

    Google Scholar 

  • Weiser F (1995) Studies into the existence of ecotypes of ash (Fraxinus excelsior) [in German]. Forstarchiv 66:251–257

    Google Scholar 

  • Williams CG, Hamrick JL, Lewis PO (1995) Multiple-population versus hierarchical conifer breeding programs: a comparison of genetic diversity levels. Theor Appl Genet 90:584–594

    Google Scholar 

  • Zúbrik M, Kunca A, Novotný J (2008) Hmyz a huby (Insects and fungi.). Národne lesnícke centrum, Zvolen, 178 p

    Google Scholar 

  • Zvingila D, Verbylaite R, Baliuckas V, Pliura A, Kuusienė S (2005) Genetic diversity (RAPD) in natural Lithuanian populations of common ash (Fraxinus excelsior L.). Biologija 3:46–53

    Google Scholar 

Download references

Acknowledgements and Contributors

The financial support of the Treebreedex project is acknowledged and the information and contact details of statistics from European countries are given below in Annexe 9.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerry C. Douglas .

Editor information

Editors and Affiliations

Annexe 9.1

Annexe 9.1

9.1.1 Details of the Principal Providers of Country Statistics in Tables 9.1 and 9.2 on Ash

Name

Country

Organization

E-mail

B. Heinze

Austria

BFW

Berthold.Heinze@bfw.gv.at

P. Mertens

Belgium

CRNF

p.mertens@mrw.wallonie.be

J. Frydl/J. S. Burianek

Czech. Rep.

VULHM

frydl@vulhm.cz

V. Schneck

Germany

vTI

volker.schneck@vti.bund.de

H. Wolf

Germany

SBS

Heino.Wolf@smul.sachsen.de

S. Lee

UK

(FR)FC

steve.lee@forestry.gsi.gov.uk

F. Ducci

Italy

CRA

ducci.fulvio@ricercaforestale.it

Gh. Parnuta

Romania

ICAS

gh_parnuta@icas.ro

J.K. Hansen

Denmark

UoC

jkh@life.ku.dk

P. Doody

Ireland

Coillte

Pat.Doody@coillte.ie

A. Pliura

Lithuania

LFRI

genetsk@mi.lt

J. Climent

Spain

INIA

climent@inia.es

J. Dufour

France

INRA

dufour@orleans.inra.fr

K. Kärkkäinen

Finland

METLA

katri.karkkainen@metla.fi

R.Longauer

Slovakia

 

longauer@nlcsk.org

J. Buiteveld

Netherlands

ALTERRA

joukje.buiteveld@wur.nl

T. Myking

Norway

Skoglandscap

tor.myking@skogoglandskap.no

Bart de Cuyper

Belgium

INBO

bart.decuyper@inbo.be

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Douglas, G.C. et al. (2013). Common Ash (Fraxinus excelsior L.). In: Pâques, L. (eds) Forest Tree Breeding in Europe. Managing Forest Ecosystems, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6146-9_9

Download citation

Publish with us

Policies and ethics