Wild Cherry Breeding (Prunus avium L.)

  • Fulvio Ducci
  • Bart De Cuyper
  • Anna De Rogatis
  • Jean Dufour
  • Fréderique Santi
Chapter
Part of the Managing Forest Ecosystems book series (MAFE, volume 25)

Abstract

Wild cherry (Prunus avium L.) is native from central-eastern European temperate forests and it has only recently been introduced in intensive forest tree farming practices outside its natural range. Characterised by allogamy with pollination provided by honey bees, it is also able to spread by root stumps in juvenile phases of the ecosystem.

Wild cherry cultivation for wood production has started in the early 1980s in Western Europe and then, more recently, in Eastern Europe. It is now an important commercial species in all the temperate areas of Europe – namely Spain, France, Italy, Germany, the Netherlands, Belgium and Great Britain – where most progress has been made in breeding and selection. Due to the higher aesthetic value of its wood, wild cherry is nowadays overcoming other valuable species such as walnut. Unfortunately, selection and breeding programmes have now effectively come to a reduction of funds for planting.

This monograph presents the main biological features of the species relative to breeding and it describes the work carried out in breeding and propagation techniques across 14 European countries. Main results in terms of genetic parameters and trade of reproductive materials are then summarised. Numerous references are provided for the interested reader.

Keywords

Vegetative Propagation Seed Orchard Sweet Cherry Clonal Variety Root Sucker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Avramidou E, Ganopoulos IV, Aravanopoulos FA (2010) DNA fingerprinting of elite Greek wild cherry (Prunus avium L.) genotypes using microsatellite markers. Forestry 83(5):527–533. doi:10.1093/forestry/cpq035, First published online: 1 Nov 2010CrossRefGoogle Scholar
  2. Barzanti GP, Biancalani F, De Rogatis A, Ghelardini L, Guerri S, Santini A (2004) Indagini preliminari per la messa a punto di test precoci di resistenza a Phytophthora sp. in alcuni cloni italiani di ciliegio da legno (Prunus avium L.). Forest 1(2):135–140CrossRefGoogle Scholar
  3. Berti S, Brunetti M, Nocetti M (2007) Product development with Italian underutilized hardwood species. In: Proceeding of the ISCHP, Québec City, Canada, 8 pGoogle Scholar
  4. Brancheriau L, Baillès H (2002) Natural vibration analysis of clear wooden beams: a theoretical review. Wood Sci Technol 36(4):347–365CrossRefGoogle Scholar
  5. Breitbach N, Laube I, Steffan-Dewenter I, Boehning-Gaese K (2010) Bird diversity and seed dispersal along a human land-use gradient: high seed removal in structurally simple farmland. Oecologia 162:965–976. doi: 10.1007/s00442-009-1547-y PubMedCrossRefGoogle Scholar
  6. Buresti Lattes E, Mori P (2004) Conduzione e valutazione degli impianti di Arboricoltura da legno [Management and evaluation of intensive farming wooden tree plantations]. Ecoalleco, Compagnia delle Foreste, Arezzo, 78pGoogle Scholar
  7. Buresti Lattes E, Mori P (2010) L’indice di qualità di piantagioni miste [A quality index of pure and mixed plantations (It)]. Sherwood, Arezzo, vol. 163, pp 31–35Google Scholar
  8. Cazet M, Dufour J, Verger M (1993a) Multiplication du merisier par bouturage herbacé (1ère partie). PHM Rev Hortic 338:27–29Google Scholar
  9. Cazet M, Dufour J, Verger M (1993b) Multiplication du merisier par bouturage herbacé (2ème partie). PHM Rev Hortic 339:9–13Google Scholar
  10. Clarke JB, Tobutt KR (2003) Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Mol Ecol Notes 3(4):578–580CrossRefGoogle Scholar
  11. Clarke JB, Tobutt KR (2009) A standard set of accessions, microsatellites and genotypes for harmonising the fingerprinting of cherry collections for the ECPGR. In: R. Socias I Company et al. (eds) Proceedings of the XIIth Eucarpia symposium on fruit breeding and genetics, Zaragoza, 2009. Acta Hort, 814. ISHS: 615–618Google Scholar
  12. Coutand C, Dupraz C, Jaouen G, Ploquin S, Adam B (2008) Mechanical stimuli regulate the allocation of biomass in trees: demonstration with young Prunus avium trees. Ann Bot 101(9):1421–1432. doi: 10.1093/aob/mcn054v, Published online 1 May 2008PubMedCrossRefGoogle Scholar
  13. Crane MB, Lawrence WJC (1929) Genetical and cytological aspects of incompatibility and sterility in cultivated fruits. J Pomol Hortic Sci 7:276–301Google Scholar
  14. De Cuyper B, Sonneveld T, Tobutt KR (2005) Determining self-incompatibility genotypes in Belgium wild cherries. Mol Ecol 14:945–955PubMedCrossRefGoogle Scholar
  15. De Rogatis A, Guerri S, Proietti R (2006) Experiences with wild cherry tissue culture. In: Noble hardwoods network, report of seventh meetings (22–24 Apr 2004, Arezzo, Italy), Genetic conservation, tree breeding and utilization of noble hardwoods 61. Bozzano M, Rusanen M, Rotach P, Koskela J (Compilers), International Plant Genetic Resources Institute, RomeGoogle Scholar
  16. De Rogatis A, Ducci F, Guerri S, Vedele S (2009) Colture in vitro in Prunus avium L. Italus Hortus 16(2):49–52Google Scholar
  17. De Rogatis A, Ferrazzini D, Ducci F, Guerri S, Carnevale S, Belletti P (2013) Genetic variation in Italian wild cherry (Prunus avium L.) as characterized by nSSR markers. Forestry 0:1–10. doi:10.1093/forestry/cpt00Google Scholar
  18. Ducci F (ed) (2005) Monografia sul Ciliegio Selvatico (Prunus avium L.) [Monograph on wild cherry (Prunus avium L.)]. CRA – Istituto Sperimentale per la Selvicoltura, Arezzo, Italy, 126 p. ISBN ISBN 88-901923-0-5Google Scholar
  19. Ducci F, Proietti R (1997) Variabilità alloenzimatica nel ciliegio selvatico (Prunus avium L.) in Italia (Allozyme variation of wild cherry [Prunus avium L.] in Italy). Ann Ist Sperim Selvic Arezzo XXV–XXVI:81–104Google Scholar
  20. Ducci F, Santi F (1998) The distribution of clones in managed and unmanaged populations of wild cherry (Prunus avium). Can J For Res 27:1998–2004CrossRefGoogle Scholar
  21. Ducci F, Germani A, Janin G, Proietti R, Signorini G (2006) Clone selection for wild cherry (Prunus avium L.) with special reference to some traits used. In: Bozzano M, Rusanen M, Rotach P, Koskela J (eds) Noble hardwoods network. Report of the sixth (9–11 June 2002, Alter do Chao, Portugal) and seventh meetings (22–24 Apr 2004, Arezzo, Italy). IPGRI, Rome, pp 53–60Google Scholar
  22. Ducci F., De Rogatis A., Proietti R., 2009. ‘Clonal replicated provenances’ performance and clone selection techniques. (Leopold Poljakovic-Pjnik and Albina Tarjan Tobolka Eds.) Proceedings of the international Conference “Forestry in achieving Millennium Goals”, Inst. of Lowland Forestry and Environment, Novi Sad, pp 93–103Google Scholar
  23. Ducci F, De Cuyper B, Proietti R, Paques LE, Wolf H (in Press) Reference protocols for assessment of traits and reference genotypes used as standards in international research projects. Treebreedex research infrastructure net work 2006–2011 (European project CT2006-026076). CRA SEL, Arezzo Ed., Italy, 84 pGoogle Scholar
  24. Dufour J, Santi F (2009) Rapport de présentation de matériel végétal pour inscription au catalogue des plantes cultivées (verger à graines “Avessac”), Paris, 9 Apr 2009Google Scholar
  25. Dufour J, Santi F, Migeot J, Rondouin M, Le Bouler H, (2012) Des plants de merisiers issus des vergers à graines disponibles ! Forêt Entreprise 204:50–54Google Scholar
  26. Frascaria N, Santi F, Gouyon PH (1993) Genetic differentiation within and among populations of chestnut (Castanea sativa Mill.) and wild cherry (Prunus avium L.). Heredity 70:634–641CrossRefGoogle Scholar
  27. Guarino C, Santoro S, De Simone L, Cipriani G (2009) Prunus avium: nuclear DNA study in wild populations and sweet cherry cultivars. Genome 52(4):320–337PubMedCrossRefGoogle Scholar
  28. Hemery GE (2007) Forest management and silvicultural responses to predicted climate change impacts on valuable broadleaved species. Short-term scientific mission report for working group 1, COST Action E42, 73 pp, 196 refs. www.ForestryHorizons.eu
  29. Hemery G, Spiecker H, Aldinger E, Kerr G, Collet C, Bell S (2008) COST Action E42: growing valuable broadleaved tree species. Final report, 40 pp. http://www.valbro.uni-freiburg.de/
  30. Jolivet C, Holstein AM, Liesebach M, Steiner W, Degen B (2010) Spatial genetic structure in wild cherry (Prunus avium L.): I. variation among natural populations of different density. Tree Genet Genomes. Online First™, 6 Oct 2010, doi:  10.1007/s11295-010-0330-x
  31. Kerstien G, Shaves CV (1994) Response of growth and carbon allocation to elevated CO2 in young cherry (Prunus avium L.) saplings in relation to root environment. New Phytol 128(4):607–614 [Article first published online: 28 Apr 2006, doi:  10.1111/j.1469-8137.1994.tb04024.x]
  32. Kranenborg KG, de Vries SMG (1997) Genetic differences in wild cherry (Prunus avium) and ash (Fraxinus excelsior) in relation to the afforestation of former agricultural sites. IBN report 97/2, Instituut voor Bos- en Natuuronderzoek, Wageningen, 32 ppGoogle Scholar
  33. Mariette S, Lefranc M, Legrand P, Taneyhill D, Frascaria-Lacoste N, Machon N (1997) Genetic variability in wild cherry populations in France. Effects of colonizing processes. Theor Appl Genet 94:904–908CrossRefGoogle Scholar
  34. Martinsson O (2001) Wild cherry (Prunus avium L.) for timber production: consequences for early growth from selection of open-pollinated single-tree progenies in Sweden. Scand J For Res 16:117–126CrossRefGoogle Scholar
  35. Muranty H, Schermann N, Santi F, Dufour J (1998) Genetic parameters estimated from a wild cherry diallel: consequences for breeding. Silvae Genet 47(5–6):249–257Google Scholar
  36. Nocetti M, Brunetti M, Ducci F, Romagnoli M, Santi F (2010) Variability of wood properties in two wild cherry clonal trials. Wood Sci Technol 44:621–637. doi: 10.1007/s00226-009-0294-x CrossRefGoogle Scholar
  37. Pérez R, Navarro F, Sánchez MA, Ortíz JM, Morales R (2010) Analysis of agromorphological descriptors to differentiate between duke cherry (Prunus x gondouinii (Poit. & Turpin) Rehd.) and its progenitors: sweet cherry (Prunus avium L.) and sour cherry (Prunus cerasus L.). Chil J Agric Res 70(1):34–49. doi:10.4067/S0718-58392010000100004Google Scholar
  38. Proietti R, Ducci F, Guerri S, Gui L, Gorian F (2006) Gestione delle risorse genetiche nella filiera vivaistica del ciliegio selvatico (Prunus avium L.) [Management of genetic resources in the nursery system of wild cherry (Prunus avium L.)]. Forest 3:496–510 [online: 18 Dec 2006]CrossRefGoogle Scholar
  39. Rasse N, Santi F, Dufour J, Gauthier A (2005) Adaptation et performance de merisiers testés dans et hors de leur région d’origine. Conséquences pour l’utilisation de variétés. Rev For Fr LVII 3:277–287CrossRefGoogle Scholar
  40. Rötzer T, Chmielewski FM (2001) http://www.int-res.com/articles/cr/18/c018p249.pdf
  41. Santi F, Dufour J (2010) Differences between Georgian and French wild cherry populations and consequences for wild cherry breeding programmes. Silvae Genet 59(4):137–144Google Scholar
  42. Santi F, Lemoine M (1990) Genetic markers for Prunus avium L. 2. Clonal identifications and discrimination from P. cerasus × P. avium. Ann Sci For 47:219–227CrossRefGoogle Scholar
  43. Santi F, Muranty H, Dufour J, Paques LE (1998) Genetic parameters and selection in a multisite wild cherry clonal test. Silvae Genet 47(2–3):61–67Google Scholar
  44. Schueler S, Tusch A, Schuster M, Ziegehagen B (2003) Characterization of microsatellites in wild and cherry (Prunus avium L.) markers for individual identification and reproductive processes. Genome 46:95–102PubMedCrossRefGoogle Scholar
  45. Schueler S, Tusch A, Scholz F (2006) Comparative analysis of the within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellites. Mol Ecol 15:3231–3243PubMedCrossRefGoogle Scholar
  46. Signorini G (2006) Studio sulla variabilità interclonale del colore del legno di ciliegio [Studies on inter-clone variation of wild cherry wood colour]. Ph.D. thesis, Università degli Studi di Firenze, Florence, 172 ppGoogle Scholar
  47. Şofletea N, Curtu A-L, Pârnuţă G (2008) Evaluarea resurselor genetice de cireş sălbatic (Prunus avium L.) şi nuc negru american (Juglans nigra L.) din România cu ajutorul markerilor ­biochimici primari [Evaluation of wild cherry (Prunus avium L.) and black walnut (Juglans nigra L.) genetic resources from Romania by means of isozymes markers]. Rev Pădurilor 5:3–8Google Scholar
  48. Stoecker S, Grange J, Fernandez-Manjarres JF, Bilger I, Frascaria-Lacoste N, Mariette S (2006) Heterozygote excess in a self-incompatible and spatially clonal forest tree species – Prunus avium L. Mol Ecol. doi: 10.1111/j.1365-294X.2006.02926.x
  49. Tavaud M, Zanetto A, David JL, Laigret F, Dirlewanger E (2004) Genetic relationships between diploid and allotetraploid cherry species (Prunus avium, Prunus x gondouinii and Prunus cerasus). Heredity 93:631–638PubMedCrossRefGoogle Scholar
  50. Van Lerberghe P, Balleux P (2001) L’imboschimento dei terreni agricoli [Planting forest trees in agricultural lands]. IDF, Paris, 128 p. ISBN 2-904740-77-0Google Scholar
  51. Vaughan SP, Russell K (2004) Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol Ecol Notes 4(3):429–431CrossRefGoogle Scholar
  52. Vaughan SP, Russell K, Sargent DJ, Tobutt KR (2006) Characterization of pollen S alleles in Prunus avium L. and their application in a novel method suitable for large-scale population studies of self incompatibility in Prunus species. Theor Appl Genet 112:856–866PubMedCrossRefGoogle Scholar
  53. Wilkins D, Van Oosten JJ, Besford RT (1994) Effects of elevated CO(2) on growth and chloroplast proteins in Prunus avium. Tree Physiol 14(7–9):769–779PubMedCrossRefGoogle Scholar
  54. Wünsch A, Hormaza JI (2002) Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach [Prunus persica (L.) Batsch] SSR sequences. Heredity 89(1):56–63PubMedCrossRefGoogle Scholar
  55. Wünsch A, Hormaza JI (2004) Cloning and characterization of genomic DNA sequences of four ­self-incompatibility alleles in sweet cherry (Prunus avium L.). Theor Appl Genet 108(2):299–305, Epub 4 Sept 2003PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Fulvio Ducci
    • 1
  • Bart De Cuyper
    • 2
  • Anna De Rogatis
    • 1
  • Jean Dufour
    • 3
  • Fréderique Santi
    • 3
  1. 1.Consiglio per la Ricerca e la sperimentazione in AgricolturaForestry Research Centre (CRA-SEL) viale Santa Margherita 80ArezzoItaly
  2. 2.Instituut voor Natuur- en Bosonderzoek (INBO)Research Unit of Forest Genetic Resources Gaverstraat 4GeraardsbergenBelgium
  3. 3.Unité de Recherche Amélioration, Génétique et Physiologie Forestières - Forest Tree Breeding and Physiology UnitINRA UR 588ArdonFrance

Personalised recommendations