Skip to main content

Iron Transport Systems and Iron Homeostasis in Pseudomonas

  • Chapter
  • First Online:
Iron Uptake in Bacteria with Emphasis on E. coli and Pseudomonas

Part of the book series: SpringerBriefs in Molecular Science ((SB BIOMETALS))

Abstract

During the last few years the knowledge about iron uptake and homeostasis in Pseudomonas has increased enormously. These very versatile bacteria can adapt to widely different ecological niches. It is therefore not surprising that Pseudomonas has a remarkable ability to take up iron and balance iron levels in the cell. The fluorescent pseudomonads, the best known species being P. aeruginosa, P. putida, P. syringae, and P. fluorescens, all produce a fluorescent pigment called pyoverdine, which serves as the major siderophore to capture iron (III). Pyoverdines are complex peptidic structures and each species produces its own pyoverdine siderophore and the corresponding receptor at the level of the outer membrane, meaning that both receptors and pyoverdines co-evolved. A peculiarity of the pyoverdine-mediated iron uptake is the release of iron since it takes place in the periplasm. Many pseudomonads produce a second siderophore of lesser affinity as well, such as pyochelin, enantio-pyochelin, pseudomonin, yersiniabactin, thioquinolobactin, achromobactin, and PDTC, which have other functions next to their role in iron uptake, such as antimicrobial and catalytic activity. A remarkable characteristic of fluorescent pseudomonads is their capacity to scavenge siderophores produced by other microorganisms (xenosiderophores) via a plethora of different outer membrane receptors. Heme is another source of iron that can be used by pseudomonads, animal pathogens such as P. aeruginosa and P. entomophila, having three different heme uptake systems. Finally, some pseudomonads have the capacity to take up iron (II). The regulation of iron homeostasis in fluorescent pseudomonads is quite elaborate and multi-layered, involving the master regulator Fur and secondary regulators, including sigma factors, two-component systems regulators, and small RNAs. Finally, we will present evidence that there is cross-talk between the quorum sensing regulon and iron homeostasis as well as between the response to oxidative stress and the control of iron uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd H, Wretlind B, Saeed A, Idsund E, Hultenby K, Sandstrom G (2008) Pseudomonas aeruginosa utilises its type III secretion system to kill the free-living amoeba Acanthamoeba castellanii. J Eukaryot Microbiol 55:235–243

    Article  Google Scholar 

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  CAS  Google Scholar 

  • Ankenbauer RG (1992) Cloning of the outer membrane high-affinity Fe(III)-pyochelin receptor of Pseudomonas aeruginosa. J Bacteriol 174:4401–4409

    CAS  Google Scholar 

  • Ankenbauer RG, Cox CD (1988) Isolation and characterization of Pseudomonas aeruginosa mutants requiring salicylic acid for pyochelin biosynthesis. J Bacteriol 170:5364–5367

    CAS  Google Scholar 

  • Apidianakis Y, Rahme LG (2009) Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nat Protoc 4:1285–1294

    Article  CAS  Google Scholar 

  • Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587

    Article  CAS  Google Scholar 

  • Baysse C, Budzikiewicz H, Uria Fernandez D, Cornelis P (2002) Impaired maturation of the siderophore pyoverdine chromophore in Pseudomonas fluorescens ATCC 17400 deficient for the cytochrome c biogenesis protein CcmC. FEBS Lett 523:23–28

    Article  CAS  Google Scholar 

  • Berti AD, Thomas MG (2009) Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a. J Bacteriol 191:4594–4604

    Article  CAS  Google Scholar 

  • Bodilis J et al (2009) Distribution and evolution of ferripyoverdine receptors in Pseudomonas aeruginosa. Environ Microbiol 11:2123–2135

    Article  CAS  Google Scholar 

  • Braun V, Killmann H (1999) Bacterial solutions to the iron-supply problem. Trends Biochem Sci 24:104–109

    Article  CAS  Google Scholar 

  • Braun V, Mahren S, Sauter A (2006) Gene regulation by transmembrane signaling. Biometals 19:103–113

    Article  CAS  Google Scholar 

  • Bredenbruch F, Geffers R, Nimtz M, Buer J, Haussler S (2006) The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 8:1318–1329

    Article  CAS  Google Scholar 

  • Britigan BE, Rasmussen GT, Cox CD (1997) Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa siderophore pyochelin. Infect Immun 65:1071–1076

    CAS  Google Scholar 

  • Britigan BE, Roeder TL, Rasmussen GT, Shasby DM, McCormick ML, Cox CD (1992) Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury. J Clin Invest 90:2187–2196

    Article  CAS  Google Scholar 

  • Buell CR et al (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 100:10181–10186

    Article  CAS  Google Scholar 

  • Bultreys A, Gheysen I, de Hoffmann E (2006) Yersiniabactin production by Pseudomonas syringae and Escherichia coli, and description of a second yersiniabactin locus evolutionary group. Appl Environ Microbiol 72:3814–3825

    Article  CAS  Google Scholar 

  • Butcher BG et al (2011) Characterization of the Fur regulon in Pseudomonas syringae pv. tomato DC3000. J Bacteriol 193:4598–4611

    Article  CAS  Google Scholar 

  • Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116

    Article  CAS  Google Scholar 

  • Cao J, Woodhall MR, Alvarez J, Cartron ML, Andrews SC (2007) EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157:H7. Mol Microbiol 65:857–875

    Article  CAS  Google Scholar 

  • Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC (2006) Feo transport of ferrous iron into bacteria. Biometals 19:143–157

    Article  CAS  Google Scholar 

  • Cha JY, Lee JS, Oh JI, Choi JW, Baik HS (2008) Functional analysis of the role of Fur in the virulence of Pseudomonas syringae pv. tabaci 11528: Fur controls expression of genes involved in quorum-sensing. Biochem Biophys Res Commun 366:281–287

    Article  CAS  Google Scholar 

  • Cobessi D, Celia H, Pattus F (2005) Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa. J Mol Biol 352:893–904

    Article  CAS  Google Scholar 

  • Coffman TJ, Cox CD, Edeker BL, Britigan BE (1990) Possible role of bacterial siderophores in inflammation. Iron bound to the Pseudomonas siderophore pyochelin can function as a hydroxyl radical catalyst. J Clin Invest 86:1030–1037

    Article  CAS  Google Scholar 

  • Cornelis P (2008) The ‘core’ and ‘accessory’ regulons of Pseudomonas-specific extracytoplasmic sigma factors. Mol Microbiol 68:810–812

    Article  CAS  Google Scholar 

  • Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645

    Article  CAS  Google Scholar 

  • Cornelis P, Aendekerk S (2004) A new regulator linking quorum sensing and iron uptake in Pseudomonas aeruginosa. Microbiology 150:752–756

    Article  CAS  Google Scholar 

  • Cornelis P, Bodilis J (2009) A survey of TonB-dependent receptors in fluorescent pseudomonads. Environ Microbiol Reports 1:256–262

    Article  CAS  Google Scholar 

  • Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798

    Article  CAS  Google Scholar 

  • Cornelis P, Matthijs S, Van Oeffelen L (2009) Iron uptake regulation in Pseudomonas aeruginosa. Biometals 22:15–22

    Article  CAS  Google Scholar 

  • Cornelis P, Wei Q, Andrews SC, Vinckx T (2011) Iron homeostasis and management of oxidative stress response in bacteria. Metallomics 3:540–549

    Article  CAS  Google Scholar 

  • Cox CD, Rinehart KL Jr, Moore ML, Cook JC Jr (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 78:4256–4260

    Article  CAS  Google Scholar 

  • Cuiv PO, Clarke P, O’Connell M (2006) Identification and characterization of an iron-regulated gene, chtA, required for the utilization of the xenosiderophores aerobactin, rhizobactin 1021 and schizokinen by Pseudomonas aeruginosa. Microbiology 152:945–954

    Article  CAS  Google Scholar 

  • de Chial M et al (2003) Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. Microbiology 149:821–831

    Article  CAS  Google Scholar 

  • Dean CR, Poole K (1993a) Cloning and characterization of the ferric enterobactin receptor gene (pfeA) of Pseudomonas aeruginosa. J Bacteriol 175:317–324

    CAS  Google Scholar 

  • Dean CR, Poole K (1993b) Expression of the ferric enterobactin receptor (PfeA) of Pseudomonas aeruginosa: involvement of a two-component regulatory system. Mol Microbiol 8:1095–1103

    Article  CAS  Google Scholar 

  • Diggle SP, Cornelis P, Williams P, Camara M (2006) 4-quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol 296:83–91

    Article  CAS  Google Scholar 

  • Diggle SP et al (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96

    Article  CAS  Google Scholar 

  • Draper RC, Martin LW, Beare PA, Lamont IL (2011) Differential proteolysis of sigma regulators controls cell-surface signalling in Pseudomonas aeruginosa. Mol Microbiol 82:1444–1453

    Article  CAS  Google Scholar 

  • Elias S, Degtyar E, Banin E (2011) FvbA is required for vibriobactin utilization in Pseudomonas aeruginosa. Microbiology 157:2172–2180

    Article  CAS  Google Scholar 

  • Escolar L, Perez-Martin J, de Lorenzo V (1999) Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229

    CAS  Google Scholar 

  • Farmer KL, Thomas MS (2004) Isolation and characterization of Burkholderia cenocepacia mutants deficient in pyochelin production: pyochelin biosynthesis is sensitive to sulfur availability. J Bacteriol 186:270–277

    Article  CAS  Google Scholar 

  • Ghysels B et al (2004) FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa. Microbiology 150:1671–1680

    Article  CAS  Google Scholar 

  • Ghysels B et al (2005) The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues. FEMS Microbiol Lett 246:167–174

    Article  CAS  Google Scholar 

  • Gilbert KB, Kim TH, Gupta R, Greenberg EP, Schuster M (2009) Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol Microbiol 73:1072–1085

    Article  CAS  Google Scholar 

  • Goldberg JB (2000) Pseudomonas: global bacteria. Trends Microbiol 8:55–57

    Article  CAS  Google Scholar 

  • Greenwald J et al (2007) Real time fluorescent resonance energy transfer visualization of ferric pyoverdine uptake in Pseudomonas aeruginosa. A role for ferrous iron. J Biol Chem 282:2987–2995

    Article  CAS  Google Scholar 

  • Greenwald JW, Greenwald CJ, Philmus BJ, Begley TP, Gross DC (2012) RNA-seq analysis reveals that an ECF sigma factor, AcsS, regulates achromobactin biosynthesis in Pseudomonas syringae pv. syringae B728a. PLoS ONE 7:e34804

    Article  CAS  Google Scholar 

  • Guillon L, El Mecherki M, Altenburger S, Graumann PL, Schalk IJ (2012) High cellular organization of pyoverdine biosynthesis in Pseudomonas aeruginosa: clustering of PvdA at the old cell pole. Environ Microbiol 14:1982–1994

    Article  CAS  Google Scholar 

  • Hannauer M, Braud A, Hoegy F, Ronot P, Boos A, Schalk IJ (2012a) The PvdRT-OpmQ efflux pump controls the metal selectivity of the iron uptake pathway mediated by the siderophore pyoverdine in Pseudomonas aeruginosa. Environ Microbiol 14:1696–1708

    Article  CAS  Google Scholar 

  • Hannauer M et al (2012b) Biosynthesis of the pyoverdine siderophore of Pseudomonas aeruginosa involves precursors with a myristic or a myristoleic acid chain. FEBS Lett 586:96–101

    Article  CAS  Google Scholar 

  • Hannauer M, Yeterian E, Martin LW, Lamont IL, Schalk IJ (2010) An efflux pump is involved in secretion of newly synthesized siderophore by Pseudomonas aeruginosa. FEBS Lett 584:4751–4755

    Article  CAS  Google Scholar 

  • Hartney SL, Mazurier S, Kidarsa TA, Quecine MC, Lemanceau P, Loper JE (2011) TonB-dependent outer-membrane proteins and siderophore utilization in Pseudomonas fluorescens Pf-5. Biometals 24:193–213

    Article  CAS  Google Scholar 

  • Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Camara M (2011) Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 35:247–274

    Article  CAS  Google Scholar 

  • Hentzer M et al (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815

    Article  CAS  Google Scholar 

  • Heo YJ et al (2010) The major catalase gene (katA) of Pseudomonas aeruginosa PA14 is under both positive and negative control of the global transactivator OxyR in response to hydrogen peroxide. J Bacteriol 192:381–390

    Article  CAS  Google Scholar 

  • Hunter RC, Klepac-Ceraj V, Lorenzi MM, Grotzinger H, Martin TR, Newman DK (2012) Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity. Am J Respir Cell Mol Biol 10(3):216–22

    Google Scholar 

  • Imperi F et al (2008) Membrane-association determinants of the omega-amino acid monooxygenase PvdA, a pyoverdine biosynthetic enzyme from Pseudomonas aeruginosa. Microbiology 154:2804–2813

    Article  CAS  Google Scholar 

  • Imperi F, Tiburzi F, Visca P (2009) Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 106:20440–20445

    Article  CAS  Google Scholar 

  • Joardar V et al (2005) Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 187:6488–6498

    Article  CAS  Google Scholar 

  • Jones AM, Lindow SE, Wildermuth MC (2007) Salicylic acid, yersiniabactin, and pyoverdin production by the model phytopathogen Pseudomonas syringae pv. tomato DC3000: synthesis, regulation, and impact on tomato and Arabidopsis host plants. J Bacteriol 189:6773–6786

    Article  CAS  Google Scholar 

  • Juhas M et al (2004) Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology 150:831–841

    Article  CAS  Google Scholar 

  • Leach LH, Morris JC, Lewis TA (2007) The role of the siderophore pyridine-2,6-bis (thiocarboxylic acid) (PDTC) in zinc utilization by Pseudomonas putida DSM 3601. Biometals 20:717–726

    Article  CAS  Google Scholar 

  • Letoffe S, Redeker V, Wandersman C (1998) Isolation and characterization of an extracellular haem-binding protein from Pseudomonas aeruginosa that shares function and sequence similarities with the Serratia marcescens HasA haemophore. Mol Microbiol 28:1223–1234

    Article  CAS  Google Scholar 

  • Lewis TA et al (2004) Physiological and molecular genetic evaluation of the dechlorination agent, pyridine-2,6-bis(monothiocarboxylic acid) (PDTC) as a secondary siderophore of Pseudomonas. Environ Microbiol 6:159–169

    Article  CAS  Google Scholar 

  • Llamas MA, Mooij MJ, Sparrius M, Vandenbroucke-Grauls CM, Ratledge C, Bitter W (2008) Characterization of five novel Pseudomonas aeruginosa cell-surface signalling systems. Mol Microbiol 67:458–472

    Article  CAS  Google Scholar 

  • Llamas MA, Sparrius M, Kloet R, Jimenez CR, Vandenbroucke-Grauls C, Bitter W (2006) The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in Pseudomonas aeruginosa. J Bacteriol 188:1882–1891

    Article  CAS  Google Scholar 

  • Mahajan-Miklos S, Tan MW, Rahme LG, Ausubel FM (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96:47–56

    Article  CAS  Google Scholar 

  • Matthijs S et al (2004) The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Mol Microbiol 52:371–384

    Article  CAS  Google Scholar 

  • Matthijs S, Budzikiewicz H, Schafer M, Wathelet B, Cornelis P (2008) Ornicorrugatin, a new siderophore from Pseudomonas fluorescens AF76. Z Naturforsch C 63:8–12

    CAS  Google Scholar 

  • Matthijs S et al (2009) Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440. Biometals 22:951–964

    Article  CAS  Google Scholar 

  • Matthijs S, Tehrani KA, Laus G, Jackson RW, Cooper RM, Cornelis P (2007) Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9:425–434

    Article  CAS  Google Scholar 

  • McMorran BJ, Merriman ME, Rombel IT, Lamont IL (1996) Characterisation of the pvdE gene which is required for pyoverdine synthesis in Pseudomonas aeruginosa. Gene 176:55–59

    Article  CAS  Google Scholar 

  • Mercado-Blanco J, van der Drift KM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PA (2001) Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920

    Article  CAS  Google Scholar 

  • Mettrick KA, Lamont IL (2009) Different roles for anti-sigma factors in siderophore signalling pathways of Pseudomonas aeruginosa. Mol Microbiol 74:1257–1271

    Article  CAS  Google Scholar 

  • Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142

    Article  CAS  Google Scholar 

  • Meyer JM, Neely A, Stintzi A, Georges C, Holder IA (1996) Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun 64:518–523

    CAS  Google Scholar 

  • Meyer JM et al (1997) Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiol 143:35–43

    Article  CAS  Google Scholar 

  • Michel L, Gonzalez N, Jagdeep S, Nguyen-Ngoc T, Reimmann C (2005) PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. Mol Microbiol 58:495–509

    Article  CAS  Google Scholar 

  • Mislin GL, Hoegy F, Cobessi D, Poole K, Rognan D, Schalk IJ (2006) Binding properties of pyochelin and structurally related molecules to FptA of Pseudomonas aeruginosa. J Mol Biol 357:1437–1448

    Article  CAS  Google Scholar 

  • Morales SE, Lewis TA (2006) Transcriptional regulation of the pdt gene cluster of Pseudomonas stutzeri KC involves an AraC/XylS family transcriptional activator (PdtC) and the cognate siderophore pyridine-2,6-bis(thiocarboxylic acid). Appl Environ Microbiol 72:6994–7002

    Article  CAS  Google Scholar 

  • Mossialos D et al (2000) Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which is repressed by the cognate pyoverdine. Appl Environ Microbiol 66:487–492

    Article  CAS  Google Scholar 

  • Mossialos D et al (2002) Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. Mol Microbiol 45:1673–1685

    Article  CAS  Google Scholar 

  • Nadal Jimenez P et al (2010) Role of PvdQ in Pseudomonas aeruginosa virulence under iron-limiting conditions. Microbiol 156:49–59

    Article  CAS  Google Scholar 

  • Nelson KE et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  Google Scholar 

  • Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    Article  CAS  Google Scholar 

  • O’Neill MJ, Bhakta MN, Fleming KG, Wilks A (2012) Induced fit on heme binding to the Pseudomonas aeruginosa cytoplasmic protein (PhuS) drives interaction with heme oxygenase (HemO). Proc Natl Acad Sci U S A 109:5639–5644

    Article  Google Scholar 

  • Ochsner UA, Johnson Z, Vasil ML (2000a) Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiol 146:185–198

    CAS  Google Scholar 

  • Ochsner UA, Vasil ML, Alsabbagh E, Parvatiyar K, Hassett DJ (2000b) Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol 182:4533–4544

    Article  CAS  Google Scholar 

  • Oglesby AG et al (2008) The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J Biol Chem 283:15558–15567

    Article  CAS  Google Scholar 

  • Owen JG, Ackerley DF (2011) Characterization of pyoverdine and achromobactin in Pseudomonas syringae pv. phaseolicola 1448a. BMC Microbiol 11:218

    Article  CAS  Google Scholar 

  • Paulsen IT et al (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    Article  CAS  Google Scholar 

  • Potvin E, Sanschagrin F, Levesque RC (2008) Sigma factors in Pseudomonas aeruginosa. FEMS Microbiol Rev 32:38–55

    Article  CAS  Google Scholar 

  • Pukatzki S, Kessin RH, Mekalanos JJ (2002) The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc Natl Acad Sci U S A 99:3159–3164

    Article  CAS  Google Scholar 

  • Rajasekaran MB et al (2010) Isolation and characterisation of EfeM, a periplasmic component of the putative EfeUOBM iron transporter of Pseudomonas syringae pv. syringae. Biochem Biophys Res Commun 398:366–371

    Article  CAS  Google Scholar 

  • Ravel J, Cornelis P (2003) Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11:195–200

    Article  CAS  Google Scholar 

  • Reimmann C (2012) Inner-membrane transporters for the siderophores pyochelin in Pseudomonas aeruginosa and enantio-pyochelin in Pseudomonas fluorescens display different enantioselectivities. Microbiology 158:1317–1324

    Article  CAS  Google Scholar 

  • Schalk IJ, Abdallah MA, Pattus F (2002) Recycling of pyoverdin on the FpvA receptor after ferric pyoverdin uptake and dissociation in Pseudomonas aeruginosa. Biochem 41:1663–1671

    Article  CAS  Google Scholar 

  • Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  Google Scholar 

  • Serino L, Reimmann C, Baur H, Beyeler M, Visca P, Haas D (1995) Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet 249:217–228

    Article  CAS  Google Scholar 

  • Serino L, Reimmann C, Visca P, Beyeler M, Chiesa VD, Haas D (1997) Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J Bacteriol 179:248–257

    CAS  Google Scholar 

  • Smith EE, Sims EH, Spencer DH, Kaul R, Olson MV (2005) Evidence for diversifying selection at the pyoverdine locus of Pseudomonas aeruginosa. J Bacteriol 187:2138–2147

    Article  CAS  Google Scholar 

  • Stover CK et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  Google Scholar 

  • Sun GX, Zhong JJ (2006) Mechanism of augmentation of organotin decomposition by ferripyochelin: formation of hydroxyl radical and organotin-pyochelin-iron ternary complex. Appl Environ Microbiol 72:7264–7269

    Article  CAS  Google Scholar 

  • Sun GX, Zhou WQ, Zhong JJ (2006) Organotin decomposition by pyochelin, secreted by Pseudomonas aeruginosa even in an iron-sufficient environment. Appl Environ Microbiol 72:6411–6413

    Article  CAS  Google Scholar 

  • Swingle B, Thete D, Moll M, Myers CR, Schneider DJ, Cartinhour S (2008) Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads. Mol Microbiol 68:871–889

    Article  CAS  Google Scholar 

  • Tummler B, Cornelis P (2005) Pyoverdine receptor: a case of positive Darwinian selection in Pseudomonas aeruginosa. J Bacteriol 187:3289–3292

    Article  CAS  Google Scholar 

  • Vallet I et al (2004) Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. J Bacteriol 186:2880–2890

    Article  CAS  Google Scholar 

  • van Oeffelen L, Cornelis P, Van Delm W, De Ridder F, De Moor B, Moreau Y (2008) Detecting cis-regulatory binding sites for cooperatively binding proteins. Nucleic Acids Res 36:e46

    Article  CAS  Google Scholar 

  • Vasil ML (2007) How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events. Biometals 20:587–601

    Article  CAS  Google Scholar 

  • Vasil ML, Ochsner UA (1999) The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol 34:399–413

    Article  CAS  Google Scholar 

  • Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30:274–291

    Article  CAS  Google Scholar 

  • Vinckx T, Matthijs S, Cornelis P (2008) Loss of the oxidative stress regulator OxyR in Pseudomonas aeruginosa PAO1 impairs growth under iron-limited conditions. FEMS Microbiol Lett 288:258–265

    Article  CAS  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30

    Article  CAS  Google Scholar 

  • Vodovar N et al (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24:673–679

    Article  CAS  Google Scholar 

  • Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095

    Article  CAS  Google Scholar 

  • Walker TS et al (2004) Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 134:320–331

    Article  CAS  Google Scholar 

  • Wei Q et al (2012) Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res 40:4320–4333

    Article  CAS  Google Scholar 

  • Weinel C, Nelson KE, Tummler B (2002) Global features of the Pseudomonas putida KT2440 genome sequence. Environ Microbiol 4:809–818

    Article  CAS  Google Scholar 

  • Wilderman PJ et al (2004) Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci U S A 101:9792–9797

    Article  CAS  Google Scholar 

  • Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191

    Article  CAS  Google Scholar 

  • Wyckoff EE, Lopreato GF, Tipton KA, Payne SM (2005) Shigella dysenteriae ShuS promotes utilization of heme as an iron source and protects against heme toxicity. J Bacteriol 187:5658–5664

    Article  CAS  Google Scholar 

  • Yang B, Hoegy F, Mislin GL, Mesini PJ, Schalk IJ (2011) Terbium, a fluorescent probe for investigation of siderophore pyochelin interactions with its outer membrane transporter FptA. J Inorg Biochem 105:1293–1298

    Article  CAS  Google Scholar 

  • Yeterian E, Martin LW, Guillon L, Journet L, Lamont IL, Schalk IJ (2010) Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation. Amino Acids 38:1447–1459

    Article  CAS  Google Scholar 

  • Youard ZA, Mislin GL, Majcherczyk PA, Schalk IJ, Reimmann C (2007) Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J Biol Chem 282:33553–35546

    Article  CAS  Google Scholar 

  • Youard ZA, Reimmann C (2010) Stereospecific recognition of pyochelin and enantio-pyochelin by the PchR proteins in fluorescent pseudomonads. Microbiol 156:1772–1782

    Article  CAS  Google Scholar 

  • Youard ZA, Wenner N, Reimmann C (2011) Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in Pseudomonas species. Biometals 24:513–522

    Article  CAS  Google Scholar 

  • Zheng P, Sun J, Geffers R, Zeng AP (2007) Functional characterization of the gene PA2384 in large-scale gene regulation in response to iron starvation in Pseudomonas aeruginosa. J Biotechnol 132:342–352

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Cornelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Cornelis, P. (2013). Iron Transport Systems and Iron Homeostasis in Pseudomonas . In: Chakraborty, R., Braun, V., Hantke, K., Cornelis, P. (eds) Iron Uptake in Bacteria with Emphasis on E. coli and Pseudomonas. SpringerBriefs in Molecular Science(). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6088-2_3

Download citation

Publish with us

Policies and ethics