Tetraspanins pp 203-231 | Cite as

The Role of Tetraspanin Complexes in Egg-Sperm Fusion

  • Virginie Barraud-Lange
  • Claude Boucheix
Part of the Proteins and Cell Regulation book series (PROR, volume 9)


Cell fusion occurs when cells unit their membranes and share their ­cytoplasm. Cell fusion may occur between genetically identical or different cells. Gamete fusion is a short event of the organism life cycle but it is essential for all organisms that depend on sexual reproduction for the maintenance of the species. The fusion of gametes having inherited one half of the genetic material of their respective parents ensures the diversity of individuals within a population. This diversity is increased by the exchange of genetic material between homologous chromosomes during meiosis. Therefore gamete fusion is a critical biological step in the life cycle that has recently raised more interest due to the possibility of treating patients with a fertility defect by in vitro methods. Molecular mechanisms underlying the fusion process are far from evident since (1) gene-knock out technologies developed to test in vivo the data from in vitro fertilization (IVF) studies failed to confirm the essential role of most of previously candidate molecules and (2) the surface proteins involved are deprived of fusogen properties. Indeed, among the large number of in vivo tested proteins, only CD9 and CD81 tetraspanins on egg and Izumo on sperm have been shown to be essential in mammalian sperm-egg membrane fusion and none of these molecules contain a fusion peptide.


Zona Pellucida Acrosome Reaction Perivitelline Space Sperm Surface Acrosomal Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aguilar PS, Engel A, Walter P (2007) The plasma membrane proteins prm1 and fig 1 ascertain fidelity of membrane fusion during yeast mating. Mol Biol Cell 18(2):547–556PubMedGoogle Scholar
  2. Alfieri JA, Martin AD, Takeda J, Kondoh G, Myles DG, Primakoff P (2003) Infertility in female mice with an oocyte-specific knockout of gpi-anchored proteins. J Cell Sci 116(Pt 11):2149–2155PubMedGoogle Scholar
  3. Allen CA, Green DP (1995) Monoclonal antibodies which recognize equatorial segment epitopes presented de novo following the a23187-induced acrosome reaction of guinea pig sperm. J Cell Sci 108(Pt 2):767–777PubMedGoogle Scholar
  4. Almeida EA, Huovila AP, Sutherland AE, Stephens LE, Calarco PG, Shaw LM, Mercurio AM, Sonnenberg A, Primakoff P, Myles DG et al (1995) Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor. Cell 81(7):1095–1104PubMedGoogle Scholar
  5. Austin CR (1951) Observations on the penetration of the sperm in the mammalian egg. Aust J Sci Res B 4(4):581–596PubMedGoogle Scholar
  6. Barraud-Lange V, Naud-Barriant N, Bomsel M, Wolf JP, Ziyyat A (2007a) Transfer of oocyte membrane fragments to fertilizing spermatozoa. FASEB J 21(13):3446–3449PubMedGoogle Scholar
  7. Barraud-Lange V, Naud-Barriant N, Saffar L, Gattegno L, Ducot B, Drillet AS, Bomsel M, Wolf JP, Ziyyat A (2007b) Alpha6beta1 integrin expressed by sperm is determinant in mouse fertilization. BMC Dev Biol 7(1):102PubMedGoogle Scholar
  8. Barreiro O, Zamai M, Yanez-Mo M, Tejera E, Lopez-Romero P, Monk PN, Gratton E, Caiolfa VR, Sanchez-Madrid F (2008) Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J Cell Biol 183(3):527–542PubMedGoogle Scholar
  9. Berditchevski F (2001) Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 114(Pt 23):4143–4151PubMedGoogle Scholar
  10. Bigler D, Takahashi Y, Chen MS, Almeida EA, Osbourne L, White JM (2000) Sequence-specific interaction between the disintegrin domain of mouse adam 2 (fertilin beta) and murine eggs. Role of the alpha(6) integrin subunit. J Biol Chem 275(16):11576–11584PubMedGoogle Scholar
  11. Blobel CP, Wolfsberg TG, Turck CW, Myles DG, Primakoff P, White JM (1992) A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356(6366):248–252PubMedGoogle Scholar
  12. Boucheix C, Rubinstein E (2001) Tetraspanins. Cell Mol Life Sci 58(9):1189–1205PubMedGoogle Scholar
  13. Bronson RA, Fusi F (1990) Sperm-oolemmal interaction: role of the arg-gly-asp (rgd) adhesion peptide. Fertil Steril 54(3):527–529PubMedGoogle Scholar
  14. Bronson RA, Fusi FM, Calzi F, Doldi N, Ferrari A (1999) Evidence that a functional fertilin-like adam plays a role in human sperm-oolemmal interactions. Mol Hum Reprod 5(5):433–440PubMedGoogle Scholar
  15. Busso D, Cohen DJ, Maldera JA, Dematteis A, Cuasnicu PS (2007) A novel function for crisp1 in rodent fertilization: involvement in sperm-zona pellucida interaction. Biol Reprod 77(5):848–854PubMedGoogle Scholar
  16. Campbell S, Swann HR, Seif MW, Kimber SJ, Aplin JD (1995) Cell adhesion molecules on the oocyte and preimplantation human embryo. Hum Reprod 10(6):1571–1578PubMedGoogle Scholar
  17. Charrin S, Le Naour F, Labas V, Billard M, Le Caer JP, Emile JF, Petit MA, Boucheix C, Rubinstein E (2003) Ewi-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem J 373(Pt 2):409–421PubMedGoogle Scholar
  18. Charrin S, Le Naour F, Oualid M, Billard M, Faure G, Hanash SM, Boucheix C, Rubinstein E (2001) The major cd9 and cd81 molecular partner. Identification and characterization of the complexes. J Biol Chem 276(17):14329–14337PubMedGoogle Scholar
  19. Charrin S, le Naour F, Silvie O, Milhiet PE, Boucheix C, Rubinstein E (2009) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420(2):133–154PubMedGoogle Scholar
  20. Chatterjee I, Richmond A, Putiri E, Shakes DC, Singson A (2005) The caenorhabditis elegans spe-38 gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization. Development 132(12):2795–2808PubMedGoogle Scholar
  21. Chen H, Dziuba N, Friedrich B, von Lindern J, Murray JL, Rojo DR, Hodge TW, O’Brien WA, Ferguson MR (2008) A critical role for cd63 in hiv replication and infection of macrophages and cell lines. Virology 379(2):191–196PubMedGoogle Scholar
  22. Chen MS, Tung KS, Coonrod SA, Takahashi Y, Bigler D, Chang A, Yamashita Y, Kincade PW, Herr JC, White JM (1999) Role of the integrin-associated protein cd9 in binding between sperm adam 2 and the egg integrin alpha6beta1: implications for murine fertilization. Proc Natl Acad Sci USA 96(21):11830–11835PubMedGoogle Scholar
  23. Cho C, Bunch DO, Faure JE, Goulding EH, Eddy EM, Primakoff P, Myles DG (1998) Fertilization defects in sperm from mice lacking fertilin beta. Science 281(5384):1857–1859PubMedGoogle Scholar
  24. Clark KL, Zeng Z, Langford AL, Bowen SM, Todd SC (2001) Pgrl is a major cd81-associated protein on lymphocytes and distinguishes a new family of cell surface proteins. J Immunol 167(9):5115–5121PubMedGoogle Scholar
  25. Cohen DJ, Da Ros VG, Busso D, Ellerman DA, Maldera JA, Goldweic N, Cuasnicu PS (2007) Participation of epididymal cysteine-rich secretory proteins in sperm-egg fusion and their potential use for male fertility regulation. Asian J Androl 9(4):528–532PubMedGoogle Scholar
  26. Coonrod SA, Naaby-Hansen S, Shetty J, Shibahara H, Chen M, White JM, Herr JC (1999) Treatment of mouse oocytes with pi-plc releases 70-kda (pi 5) and 35- to 45-kda (pi 5.5) protein clusters from the egg surface and inhibits sperm-oolemma binding and fusion. Dev Biol 207(2):334–349PubMedGoogle Scholar
  27. Da Ros VG, Maldera JA, Willis WD, Cohen DJ, Goulding EH, Gelman DM, Rubinstein M, Eddy EM, Cuasnicu PS (2008) Impaired sperm fertilizing ability in mice lacking cysteine-rich secretory protein 1 (crisp1). Dev Biol 320(1):12–18PubMedGoogle Scholar
  28. Ellerman DA, Ha C, Primakoff P, Myles DG, Dveksler GS (2003) Direct binding of the ligand psg17 to cd9 requires a cd9 site essential for sperm-egg fusion. Mol Biol Cell 14(12):5098–5103PubMedGoogle Scholar
  29. Ellerman DA, Pei J, Gupta S, Snell WJ, Myles D, Primakoff P (2009) Izumo is part of a multiprotein family whose members form large complexes on mammalian sperm. Mol Reprod Dev 76(12):1188–1199PubMedGoogle Scholar
  30. Espenel C, Margeat E, Dosset P, Arduise C, Le Grimellec C, Royer CA, Boucheix C, Rubinstein E, Milhiet PE (2008) Single-molecule analysis of cd9 dynamics and partitioning reveals multiple modes of interaction in the tetraspanin web. J Cell Biol 182(4):765–776PubMedGoogle Scholar
  31. Evans JP, Kopf GS, Schultz RM (1997) Characterization of the binding of recombinant mouse sperm fertilin beta subunit to mouse eggs: evidence for adhesive activity via an egg beta1 integrin-mediated interaction. Dev Biol 187(1):79–93PubMedGoogle Scholar
  32. Evans JP, Schultz RM, Kopf GS (1995) Mouse sperm-egg plasma membrane interactions: analysis of roles of egg integrins and the mouse sperm homologue of ph-30 (fertilin) beta. J Cell Sci 108(Pt 10):3267–3278PubMedGoogle Scholar
  33. Evans JP, Schultz RM, Kopf GS (1998) Roles of the disintegrin domains of mouse fertilins alpha and beta in fertilization. Biol Reprod 59(1):145–152PubMedGoogle Scholar
  34. Fusi FM, Bernocchi N, Ferrari A, Bronson RA (1996a) Is vitronectin the velcro that binds the gametes together? Mol Hum Reprod 2(11):859–866PubMedGoogle Scholar
  35. Fusi FM, Bronson RA (1992) Sperm surface fibronectin. Expression following capacitation. J Androl 13(1):28–35PubMedGoogle Scholar
  36. Fusi FM, Lorenzetti I, Mangili F, Herr JC, Freemerman AJ, Gailit J, Bronson RA (1994) Vitronectin is an intrinsic protein of human spermatozoa released during the acrosome reaction. Mol Reprod Dev 39(3):337–343PubMedGoogle Scholar
  37. Fusi FM, Tamburini C, Mangili F, Montesano M, Ferrari A, Bronson RA (1996b) The expression of alpha v, alpha 5, beta 1, and beta 3 integrin chains on ejaculated human spermatozoa varies with their functional state. SO -. Mol Hum Reprod 2(3):169–175PubMedGoogle Scholar
  38. Fusi FM, Vignali M, Gailit J, Bronson RA (1993) Mammalian oocytes exhibit specific recognition of the rgd (arg-gly-asp) tripeptide and express oolemmal integrins. Mol Reprod Dev 36(2):212–219PubMedGoogle Scholar
  39. Glazar AI, Evans JP (2009) Immunoglobulin superfamily member igsf8 (ewi-2) and cd9 in fertilisation: evidence of distinct functions for cd9 and a cd9-associated protein in mammalian sperm-egg interaction. Reprod Fertil Dev 21(2):293–303PubMedGoogle Scholar
  40. Goldberg AF (2006) Role of peripherin/rds in vertebrate photoreceptor architecture and inherited retinal degenerations. Int Rev Cytol 253:131–175PubMedGoogle Scholar
  41. Gordon-Alonso M, Yanez-Mo M, Barreiro O, Alvarez S, Munoz-Fernandez MA, Valenzuela-Fernandez A, Sanchez-Madrid F (2006) Tetraspanins cd9 and cd81 modulate hiv-1-induced membrane fusion. J Immunol 177(8):5129–5137PubMedGoogle Scholar
  42. Granados-Gonzalez V, Aknin-Seifer I, Touraine RL, Chouteau J, Wolf JP, Levy R (2008) Preliminary study on the role of the human izumo gene in oocyte-spermatozoa fusion failure. Fertil Steril 90(4):1246–1248PubMedGoogle Scholar
  43. Grigorov B, Attuil-Audenis V, Perugi F, Nedelec M, Watson S, Pique C, Darlix JL, Conjeaud H, Muriaux D (2009) A role for cd81 on the late steps of hiv-1 replication in a chronically infected t cell line. Retrovirology 6:28PubMedGoogle Scholar
  44. Gupta S, Primakoff P, Myles DG (2009) Can the presence of wild-type oocytes during insemination rescue the fusion defect of cd9 null oocytes? Mol Reprod Dev 76(7):602PubMedGoogle Scholar
  45. Ha CT, Waterhouse R, Wessells J, Wu JA, Dveksler GS (2005) Binding of pregnancy-specific glycoprotein 17 to cd9 on macrophages induces secretion of il-10, il-6, pge2, and tgf-beta1. J Leukoc Biol 77(6):948–957PubMedGoogle Scholar
  46. Hayasaka S, Terada Y, Inoue N, Okabe M, Yaegashi N, Okamura K (2007) Positive expression of the immunoglobulin superfamily protein izumo on human sperm of severely infertile male patients. Fertil Steril 88(1):214–216PubMedGoogle Scholar
  47. He ZY, Brakebusch C, Fassler R, Kreidberg JA, Primakoff P, Myles DG (2003) None of the integrins known to be present on the mouse egg or to be adam receptors are essential for sperm-egg binding and fusion. Dev Biol 254(2):226–237PubMedGoogle Scholar
  48. He ZY, Gupta S, Myles D, Primakoff P (2009) Loss of surface ewi-2 on cd9 null oocytes. Mol Reprod Dev 76(7):629–636PubMedGoogle Scholar
  49. Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6(10):801–811PubMedGoogle Scholar
  50. Higginbottom A, Quinn ER, Kuo CC, Flint M, Wilson LH, Bianchi E, Nicosia A, Monk PN, McKeating JA, Levy S (2000) Identification of amino acid residues in cd81 critical for interaction with hepatitis c virus envelope glycoprotein e2. J Virol 74(8):3642–3649PubMedGoogle Scholar
  51. Hirai M, Arai M, Mori T, Miyagishima SY, Kawai S, Kita K, Kuroiwa T, Terenius O, Matsuoka H (2008) Male fertility of malaria parasites is determined by gcs1, a plant-type reproduction factor. Curr Biol 18(8):607–613PubMedGoogle Scholar
  52. Holm K, Weclewicz K, Hewson R, Suomalainen M (2003) Human immunodeficiency virus type 1 assembly and lipid rafts: Pr55(gag) associates with membrane domains that are largely resistant to brij98 but sensitive to triton x-100. J Virol 77(8):4805–4817PubMedGoogle Scholar
  53. Holt DS, Botto M, Bygrave AE, Hanna SM, Walport MJ, Morgan BP (2001) Targeted deletion of the cd59 gene causes spontaneous intravascular hemolysis and hemoglobinuria. Blood 98(2):442–449PubMedGoogle Scholar
  54. Ikawa M, Inoue N, Benham AM, Okabe M (2010) Fertilization: a sperm’s journey to and interaction with the oocyte. J Clin Invest 120(4):984–994PubMedGoogle Scholar
  55. Ilayperuma I (2002) Identification of the 48-kda g11 protein from guinea pig testes as sperad. J Exp Zool 293(6):617–623PubMedGoogle Scholar
  56. Inoue N, Ikawa M, Isotani A, Okabe M (2005) The immunoglobulin superfamily protein izumo is required for sperm to fuse with eggs. Nature 434(7030):234–238PubMedGoogle Scholar
  57. Inoue N, Nishikawa T, Ikawa M, Okabe M (2012) Tetraspanin-interacting protein igsf8 is dispensable for mouse fertility. Fertil Steril 98(2):465–470PubMedGoogle Scholar
  58. Ishii M, Iwai K, Koike M, Ohshima S, Kudo-Tanaka E, Ishii T, Mima T, Katada Y, Miyatake K, Uchiyama Y, Saeki Y (2006) Rankl-induced expression of tetraspanin cd9 in lipid raft membrane microdomain is essential for cell fusion during osteoclastogenesis. J Bone Miner Res 21(6):965–976PubMedGoogle Scholar
  59. Ito C, Yamatoya K, Yoshida K, Maekawa M, Miyado K, Toshimori K (2010) Tetraspanin family protein cd9 in the mouse sperm: unique localization, appearance, behavior and fate during fertilization. Cell Tissue Res 340(3):583–594PubMedGoogle Scholar
  60. Iwai K, Ishii M, Ohshima S, Miyatake K, Saeki Y (2007) Expression and function of transmembrane-4 superfamily (tetraspanin) proteins in osteoclasts: reciprocal roles of tspan-5 and net-6 during osteoclastogenesis. Allergol Int 56(4):457–463PubMedGoogle Scholar
  61. Jegou A, Pincet F, Perez E, Wolf JP, Ziyyat A, Gourier C (2008) Mapping mouse gamete interaction forces reveal several oocyte membrane regions with different mechanical and adhesive properties. Langmuir 24(4):1451–1458PubMedGoogle Scholar
  62. Jegou A, Ziyyat A, Barraud-Lange V, Perez E, Wolf JP, Pincet F, Gourier C (2011) Cd9 tetraspanin generates fusion competent sites on the egg membrane for mammalian fertilization. Proc Natl Acad Sci USA 108(27):10946–10951PubMedGoogle Scholar
  63. Ji YZ, Wolf JP, Jouannet P, Bomsel M (1998) Human gamete fusion can bypass beta1 integrin requirement. Hum Reprod 13(3):682–689PubMedGoogle Scholar
  64. Jin H, Carlile C, Nolan S, Grote E (2004) Prm1 prevents contact-dependent lysis of yeast mating pairs. Eukaryot Cell 3(6):1664–1673PubMedGoogle Scholar
  65. Jolly C, Sattentau QJ (2007) Human immunodeficiency virus type 1 assembly, budding, and cell-cell spread in t cells take place in tetraspanin-enriched plasma membrane domains. J Virol 81(15):7873–7884PubMedGoogle Scholar
  66. Joly E, Hudrisier D (2003) What is trogocytosis and what is its purpose? Nat Immunol 4(9):815PubMedGoogle Scholar
  67. Kadandale P, Stewart-Michaelis A, Gordon S, Rubin J, Klancer R, Schweinsberg P, Grant BD, Singson A (2005) The egg surface ldl receptor repeat-containing proteins egg-1 and egg-2 are required for fertilization in caenorhabditis elegans. Curr Biol 15(24):2222–2229PubMedGoogle Scholar
  68. Kahn-Kirby AH, Bargmann CI (2006) Trp channels in c. Elegans. Annu Rev Physiol 68:719–736PubMedGoogle Scholar
  69. Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A (2000) The gamete fusion process is defective in eggs of cd9-deficient mice. Nat Genet 24(3):279–282PubMedGoogle Scholar
  70. Kaji K, Oda S, Miyazaki S, Kudo A (2002) Infertility of cd9-deficient mouse eggs is reversed by mouse cd9, human cd9, or mouse cd81; polyadenylated mrna injection developed for molecular analysis of sperm-egg fusion. Dev Biol 247(2):327–334PubMedGoogle Scholar
  71. Kawagoe K, Kitamura D, Okabe M, Taniuchi I, Ikawa M, Watanabe T, Kinoshita T, Takeda J (1996) Glycosylphosphatidylinositol-anchor-deficient mice: implications for clonal dominance of mutant cells in paroxysmal nocturnal hemoglobinuria. Blood 87(9):3600–3606PubMedGoogle Scholar
  72. Kelic S, Levy S, Suarez C, Weinstein DE (2001) Cd81 regulates neuron-induced astrocyte cell-­cycle exit. Mol Cell Neurosci 17(3):551–560PubMedGoogle Scholar
  73. Krementsov DN, Weng J, Lambele M, Roy NH, Thali M (2009) Tetraspanins regulate cell-to-cell transmission of hiv-1. Retrovirology 6:64PubMedGoogle Scholar
  74. Krementsov DN, Rassam P, Margeat E, Roy NH, Schneider-Schaulies J, Milhiet PE, Thali M (2010) Hiv-1 assembly differentially alters dynamics and partitioning of tetraspanins and raft components. Traffic 11(11):1401–1414PubMedGoogle Scholar
  75. Kroft TL, Gleason EJ, L’Hernault SW (2005) The spe-42 gene is required for sperm-egg interactions during c. Elegans fertilization and encodes a sperm-specific transmembrane protein. Dev Biol 286(1):169–181PubMedGoogle Scholar
  76. Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C (2000) Severely reduced female fertility in cd9-deficient mice. Science 287(5451):319–321PubMedGoogle Scholar
  77. Le Naour F, Andre M, Boucheix C, Rubinstein E (2006) Membrane microdomains and proteomics: lessons from tetraspanin microdomains and comparison with lipid rafts. Proteomics 6(24):6447–6454PubMedGoogle Scholar
  78. Lefevre B, Wolf JP, Ziyyat A (2010) Sperm-egg interaction: is there a link between tetraspanin(s) and gpi-anchored protein(s)? Bioessays 32(2):143–152PubMedGoogle Scholar
  79. Lefievre L, Conner SJ, Salpekar A, Olufowobi O, Ashton P, Pavlovic B, Lenton W, Afnan M, Brewis IA, Monk M, Hughes DC, Barratt CL (2004) Four zona pellucida glycoproteins are expressed in the human. Hum Reprod 19(7):1580–1586PubMedGoogle Scholar
  80. Levy S, Shoham T (2005) The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol 5(2):136–148PubMedGoogle Scholar
  81. Li YH, Hou Y, Ma W, Yuan JX, Zhang D, Sun QY, Wang WH (2004) Localization of cd9 in pig oocytes and its effects on sperm-egg interaction. Reproduction 127(2):151–157PubMedGoogle Scholar
  82. Liu Y, Tewari R, Ning J, Blagborough AM, Garbom S, Pei J, Grishin NV, Steele RE, Sinden RE, Snell WJ, Billker O (2008) The conserved plant sterility gene hap2 functions after attachment of fusogenic membranes in chlamydomonas and plasmodium gametes. Genes Dev 22(8):1051–1068PubMedGoogle Scholar
  83. Low MG, Finean JB (1978) Specific release of plasma membrane enzymes by a phosphatidylinositol-­specific phospholipase c. Biochim Biophys Acta 508(3):565–570PubMedGoogle Scholar
  84. Low MG, Saltiel AR (1988) Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science 239(4837):268–275PubMedGoogle Scholar
  85. Maecker HT, Do MS, Levy S (1998) Cd81 on b cells promotes interleukin 4 secretion and antibody production during t helper type 2 immune responses. Proc Natl Acad Sci USA 95(5):2458–2462PubMedGoogle Scholar
  86. Marcello MR, Singson A (2010) Fertilization and the oocyte-to-embryo transition in c. Elegans. BMB Rep 43(6):389–399PubMedGoogle Scholar
  87. Mazurov D, Heidecker G, Derse D (2006) Htlv-1 gag protein associates with cd82 tetraspanin microdomains at the plasma membrane. Virology 346(1):194–204PubMedGoogle Scholar
  88. Miller BJ, Georges-Labouesse E, Primakoff P, Myles DG (2000) Normal fertilization occurs with eggs lacking the integrin alpha6beta1 and is cd9-dependent. J Cell Biol 149(6):1289–1296PubMedGoogle Scholar
  89. Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E (2000) Requirement of cd9 on the egg plasma membrane for fertilization. Science 287(5451):321–324PubMedGoogle Scholar
  90. Miyado K, Yoshida K, Yamagata K, Sakakibara K, Okabe M, Wang X, Miyamoto K, Akutsu H, Kondo T, Takahashi Y, Ban T, Ito C, Toshimori K, Nakamura A, Ito M, Miyado M, Mekada E, Umezawa A (2008) The fusing ability of sperm is bestowed by cd9-containing vesicles released from eggs in mice. Proc Natl Acad Sci USA 105(35):12921–12926PubMedGoogle Scholar
  91. Myles DG, Kimmel LH, Blobel CP, White JM, Primakoff P (1994) Identification of a binding site in the disintegrin domain of fertilin required for sperm-egg fusion. Proc Natl Acad Sci USA 91(10):4195–4198PubMedGoogle Scholar
  92. Nishiyama S, Kishi T, Kato T, Suzuki M, Nishizawa H, Pryor-Koishi K, Sawada T, Nishiyama Y, Iwata N, Udagawa Y, Kurahashi H (2010) Cd9 gene variations are not associated with female ­infertility in humans. Gynecol Obstet Invest 69(2):116–121PubMedGoogle Scholar
  93. Nydegger S, Khurana S, Krementsov DN, Foti M, Thali M (2006) Mapping of tetraspanin-enriched microdomains that can function as gateways for hiv-1. J Cell Biol 173(5):795–807PubMedGoogle Scholar
  94. Okabe M, Yagasaki M, Oda H, Matzno S, Kohama Y, Mimura T (1988) Effect of a monoclonal anti-­mouse sperm antibody (obf13) on the interaction of mouse sperm with zona-free mouse and hamster eggs. J Reprod Immunol 13(3):211–219PubMedGoogle Scholar
  95. Ono A, Freed EO (2005) Role of lipid rafts in virus replication. Adv Virus Res 64:311–358PubMedGoogle Scholar
  96. Oren-Suissa M, Podbilewicz B (2010) Evolution of programmed cell fusion: common mechanisms and distinct functions. Dev Dyn 239(5):1515–1528PubMedGoogle Scholar
  97. Ott DE (2008) Cellular proteins detected in hiv-1. Rev Med Virol 18(3):159–175PubMedGoogle Scholar
  98. Pique C, Lagaudriere-Gesbert C, Delamarre L, Rosenberg AR, Conjeaud H, Dokhelar MC (2000) Interaction of cd82 tetraspanin proteins with htlv-1 envelope glycoproteins inhibits cell-to-cell fusion and virus transmission. Virology 276(2):455–465PubMedGoogle Scholar
  99. Primakoff P, Myles DG (1983) A map of the guinea pig sperm surface constructed with monoclonal antibodies. Dev Biol 98(2):417–428PubMedGoogle Scholar
  100. Primakoff P, Hyatt H, Tredick-Kline J (1987) Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J Cell Biol 104(1):141–149PubMedGoogle Scholar
  101. Putiri E, Zannoni S, Kadandale P, Singson A (2004) Functional domains and temperature-­sensitive mutations in spe-9, an egf repeat-containing protein required for fertility in caenorhabditis elegans. Dev Biol 272(2):448–459PubMedGoogle Scholar
  102. Reddy VR, Rajeev SK, Gupta V (2003) Alpha 6 beta 1 integrin is a potential clinical marker for evaluating sperm quality in men. SO Fertil Steril 79(Suppl 3):1590–1596Google Scholar
  103. Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf JP, Levy S, Le Naour F, Boucheix C (2006a) Reduced fertility of female mice lacking cd81. Dev Biol 290(2):351–358PubMedGoogle Scholar
  104. Rubinstein E, Ziyyat A, Wolf JP, Le Naour F, Boucheix C (2006b) The molecular players of sperm-­egg fusion in mammals. Semin Cell Dev Biol 17(2):254–263PubMedGoogle Scholar
  105. Ruiz-Mateos E, Pelchen-Matthews A, Deneka M, Marsh M (2008) Cd63 is not required for production of infectious human immunodeficiency virus type 1 in human macrophages. J Virol 82(10):4751–4761PubMedGoogle Scholar
  106. Runge KE, Evans JE, He ZY, Gupta S, McDonald KL, Stahlberg H, Primakoff P, Myles DG (2007) Oocyte cd9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev Biol 304(1):317–325PubMedGoogle Scholar
  107. Sala-Valdes M, Ursa A, Charrin S, Rubinstein E, Hemler ME, Sanchez-Madrid F, Yanez-Mo M (2006) Ewi-2 and ewi-f link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J Biol Chem 281(28):19665–19675PubMedGoogle Scholar
  108. Sato K, Aoki J, Misawa N, Daikoku E, Sano K, Tanaka Y, Koyanagi Y (2008) Modulation of human immunodeficiency virus type 1 infectivity through incorporation of tetraspanin proteins. J Virol 82(2):1021–1033PubMedGoogle Scholar
  109. Schwander M, Leu M, Stumm M, Dorchies OM, Ruegg UT, Schittny J, Muller U (2003) Beta1 integrins regulate myoblast fusion and sarcomere assembly. Dev Cell 4(5):673–685PubMedGoogle Scholar
  110. Sengoku K, Takuma N, Miyamoto T, Horikawa M, Ishikawa M (2004) Integrins are not involved in the process of human sperm-oolemmal fusion. Hum Reprod 19(3):639–644PubMedGoogle Scholar
  111. Serru V, Le Naour F, Billard M, Azorsa DO, Lanza F, Boucheix C, Rubinstein E (1999) Selective tetraspan-­integrin complexes (cd81/alpha4beta1, cd151/alpha3beta1, cd151/alpha6beta1) under conditions disrupting tetraspan interactions. Biochem J 340(Pt 1):103–111PubMedGoogle Scholar
  112. Shamsadin R, Adham IM, Nayernia K, Heinlein UA, Oberwinkler H, Engel W (1999) Male mice deficient for germ-cell cyritestin are infertile. Biol Reprod 61(6):1445–1451PubMedGoogle Scholar
  113. Singson A, Mercer KB, L’Hernault SW (1998) The c. Elegans spe-9 gene encodes a sperm transmembrane protein that contains egf-like repeats and is required for fertilization. Cell 93(1):71–79PubMedGoogle Scholar
  114. Stipp CS, Kolesnikova TV, Hemler ME (2001) Ewi-2 is a major cd9 and cd81 partner and member of a novel ig protein subfamily. J Biol Chem 276(44):40545–40554PubMedGoogle Scholar
  115. Stipp CS, Kolesnikova TV, Hemler ME (2003) Ewi-2 regulates alpha3beta1 integrin-dependent cell functions on laminin-5. J Cell Biol 163(5):1167–1177PubMedGoogle Scholar
  116. Sun X, Funk CD, Deng C, Sahu A, Lambris JD, Song WC (1999) Role of decay-accelerating factor in regulating complement activation on the erythrocyte surface as revealed by gene targeting. Proc Natl Acad Sci USA 96(2):628–633PubMedGoogle Scholar
  117. Sutovsky P (2009) Sperm-egg adhesion and fusion in mammals. Expert Rev Mol Med 11:e11PubMedGoogle Scholar
  118. Tachibana I, Hemler ME (1999) Role of transmembrane 4 superfamily (tm4sf) proteins cd9 and cd81 in muscle cell fusion and myotube maintenance. J Cell Biol 146(4):893–904PubMedGoogle Scholar
  119. Takeda Y, Tachibana I, Miyado K, Kobayashi M, Miyazaki T, Funakoshi T, Kimura H, Yamane H, Saito Y, Goto H, Yoneda T, Yoshida M, Kumagai T, Osaki T, Hayashi S, Kawase I, Mekada E (2003) Tetraspanins cd9 and cd81 function to prevent the fusion of mononuclear phagocytes. J Cell Biol 161(5):945–956PubMedGoogle Scholar
  120. Tang Y, Tan XM, Yue CW, Li CX, Fan ZX, Zhang YZ (2008) Cloning, sequence, and function analyses of giant panda (ailuropoda melanoleuca) cd9 gene. Mol Reprod Dev 75(9):1418–1425PubMedGoogle Scholar
  121. Taylor CT, Johnson PM (1996) Complement-binding proteins are strongly expressed by human preimplantation blastocysts and cumulus cells as well as gametes. Mol Hum Reprod 2(1):52–59PubMedGoogle Scholar
  122. Tiede A, Nischan C, Schubert J, Schmidt RE (2000) Characterisation of the enzymatic complex for the first step in glycosylphosphatidylinositol biosynthesis. Int J Biochem Cell Biol 32(3):339–350PubMedGoogle Scholar
  123. Todres E, Nardi JB, Robertson HM (2000) The tetraspanin superfamily in insects. Insect Mol Biol 9(6):581–590PubMedGoogle Scholar
  124. Vignery A (2005) Macrophage fusion: are somatic and cancer cells possible partners? Trends Cell Biol 15(4):188–193PubMedGoogle Scholar
  125. von Besser K, Frank AC, Johnson MA, Preuss D (2006) Arabidopsis hap2 (gcs1) is a sperm-­specific gene required for pollen tube guidance and fertilization. Development 133(23):4761–4769Google Scholar
  126. Wassarman PM (1988) Zona pellucida glycoproteins. Annu Rev Biochem 57:415–442PubMedGoogle Scholar
  127. Wassarman PM (2002) Sperm receptors and fertilization in mammals. Mt Sinai J Med 69(3):148–155PubMedGoogle Scholar
  128. Wassarman PM, Mortillo S (1991) Structure of the mouse egg extracellular coat, the zona pellucida. Int Rev Cytol 130:85–110PubMedGoogle Scholar
  129. Waterhouse R, Ha C, Dveksler GS (2002) Murine cd9 is the receptor for pregnancy-specific ­glycoprotein 17. J Exp Med 195(2):277–282PubMedGoogle Scholar
  130. Weng J, Krementsov DN, Khurana S, Roy NH, Thali M (2009) Formation of syncytia is repressed by tetraspanins in human immunodeficiency virus type 1-producing cells. J Virol 83(15):7467–7474PubMedGoogle Scholar
  131. Wright MD, Geary SM, Fitter S, Moseley GW, Lau LM, Sheng KC, Apostolopoulos V, Stanley EG, Jackson DE, Ashman LK (2004) Characterization of mice lacking the tetraspanin superfamily member cd151. Mol Cell Biol 24(13):5978–5988PubMedGoogle Scholar
  132. Xu XZ, Sternberg PW (2003) A c. Elegans sperm trp protein required for sperm-egg interactions during fertilization. Cell 114(3):285–297PubMedGoogle Scholar
  133. Yanagimachi R (1994) Mammalian fertilization. In: Knobil E, Neill JD (eds) The physiology of reproduction, Secondth edn. Raven, New York, pp 189–317Google Scholar
  134. Yanez-Mo M, Barreiro O, Gordon-Alonso M, Sala-Valdes M, Sanchez-Madrid F (2009) Tetraspanin-­enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 19(9):434–446PubMedGoogle Scholar
  135. Yuan R, Primakoff P, Myles DG (1997) A role for the disintegrin domain of cyritestin, a sperm surface protein belonging to the adam family, in mouse sperm-egg plasma membrane adhesion and fusion. J Cell Biol 137(1):105–112PubMedGoogle Scholar
  136. Zannoni S, L’Hernault SW, Singson AW (2003) Dynamic localization of spe-9 in sperm: a protein required for sperm-oocyte interactions in caenorhabditis elegans. BMC Dev Biol 3:10PubMedGoogle Scholar
  137. Zhou GB, Liu GS, Meng QG, Liu Y, Hou YP, Wang XX, Li N, Zhu SE (2009) Tetraspanin cd9 in bovine oocytes and its role in fertilization. J Reprod Dev 55(3):305–308PubMedGoogle Scholar
  138. Zhu X, Evans JP (2002) Analysis of the roles of rgd-binding integrins, alpha(4)/alpha(9) integrins, alpha(6) integrins, and cd9 in the interaction of the fertilin beta (adam2) disintegrin domain with the mouse egg membrane. Biol Reprod 66(4):1193–1202PubMedGoogle Scholar
  139. Zhu X, Bansal NP, Evans JP (2000) Identification of key functional amino acids of the mouse fertilin beta (adam2) disintegrin loop for cell-cell adhesion during fertilization. J Biol Chem 275(11):7677–7683PubMedGoogle Scholar
  140. Zhu GZ, Miller BJ, Boucheix C, Rubinstein E, Liu CC, Hynes RO, Myles DG, Primakoff P (2002) Residues sfq (173–175) in the large extracellular loop of cd9 are required for gamete fusion. Development 129(8):1995–2002PubMedGoogle Scholar
  141. Ziyyat A, Naud-Barriant N, Barraud-Lange V, Chevalier F, Kulski O, Lemkecher T, Bomsel M, Wolf JP (2005) Cyclic fee peptide increases human gamete fusion and potentiates its rgd-induced inhibition. Hum Reprod 20(12):3452–3458PubMedGoogle Scholar
  142. Ziyyat A, Rubinstein E, Monier-Gavelle F, Barraud V, Kulski O, Prenant M, Boucheix C, Bomsel M, Wolf JP (2006) Cd9 controls the formation of clusters that contain tetraspanins and the integrin {alpha}6{beta}1, which are involved in human and mouse gamete fusion. J Cell Sci 119(Pt 3):416–424PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Inserm U1016ParisFrance
  2. 2.Université Paris Descartes, UFR médecineParisFrance
  3. 3.Laboratoire de Biologie de la ReproductionHôpital Cochin, AP-HPParisFrance
  4. 4.Inserm U1004VillejuifFrance
  5. 5.Université Paris-Sud 11VillejuifFrance

Personalised recommendations