Advertisement

Organisation of the Tetraspanin Web

  • Eric Rubinstein
  • Stéphanie Charrin
  • Michael G. Tomlinson
Chapter
Part of the Proteins and Cell Regulation book series (PROR, volume 9)

Abstract

Tetraspanins are currently hypothesized to promote membrane compartmentalization, through their ability to organize a network of molecular interactions termed the tetraspanin web or tetraspanin-enriched microdomains. In this chapter we will describe how the discovery of this unique ability of tetraspanins to interact with one another and with many other surface proteins led to this concept, and will discuss the hierarchical organization of these structures. We will also show how tetraspanins modulate the function of the proteins they associate with, including the regulation of trafficking, ligand binding, signal transduction and enzymatic activities.

Keywords

Lipid Raft Partner Protein Epidermolysis Bullosa ADAM10 Expression Catch Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abache T, Le Naour F, Planchon S, Harper F, Boucheix C, Rubinstein E (2007) The transferrin receptor and the tetraspanin web molecules CD9, CD81, and CD9P-1 are differentially sorted into exosomes after TPA treatment of K562 cells. J Cell Biochem 102:650–664PubMedCrossRefGoogle Scholar
  2. Andre M, Le Caer JP, Greco C, Planchon S, El Nemer W, Boucheix C, Rubinstein E, Chamot-Rooke J, Le Naour F (2006) Proteomic analysis of the tetraspanin web using LC-ESI-MS/MS and MALDI-FTICR-MS. Proteomics 6:1437–1449PubMedCrossRefGoogle Scholar
  3. Andre M, Chambrion C, Charrin S, Soave S, Chaker J, Boucheix C, Rubinstein E, Le Naour F (2009) In situ chemical cross-linking on living cells reveals CD9P-1 cis-oligomer at cell surface. J Proteomics 73:93–102PubMedCrossRefGoogle Scholar
  4. Angelisova P, Hilgert I, Horejsi V (1994) Association of four antigens of the tetraspans family (CD37, CD53, TAPA-1, and R2/C33) with MHC class II glycoproteins. Immunogenetics 39:249–256PubMedCrossRefGoogle Scholar
  5. Anzai N, Lee Y, Youn BS, Fukuda S, Kim YJ, Mantel C, Akashi M, Broxmeyer HE (2002) C-kit associated with the transmembrane 4 superfamily proteins constitutes a functionally distinct subunit in human hematopoietic progenitors. Blood 99:4413–4421PubMedCrossRefGoogle Scholar
  6. Arduise C, Abache T, Li L, Billard M, Chabanon A, Ludwig A, Mauduit P, Boucheix C, Rubinstein E, Le Naour F (2008) Tetraspanins regulate ADAM10-mediated cleavage of TNF-alpha and epidermal growth factor. J Immunol 181:7002–7013PubMedGoogle Scholar
  7. Baldwin G, Novitskaya V, Sadej R, Pochec E, Litynska A, Hartmann C, Williams J, Ashman L, Eble JA, Berditchevski F (2008) Tetraspanin CD151 regulates glycosylation of (alpha)3(beta)1 integrin. J Biol Chem 283:35445–35454PubMedCrossRefGoogle Scholar
  8. Baleato RM, Guthrie PL, Gubler MC, Ashman LK, Roselli S (2008) Deletion of CD151 results in a strain-dependent glomerular disease due to severe alterations of the glomerular basement membrane. Am J Pathol 173:927–937PubMedCrossRefGoogle Scholar
  9. Bandyopadhyay S, Zhan R, Chaudhuri A, Watabe M, Pai SK, Hirota S, Hosobe S, Tsukada T, Miura K, Takano Y, Saito K, Pauza ME, Hayashi S, Wang Y, Mohinta S, Mashimo T, Iiizumi M, Furuta E, Watabe K (2006) Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 12:933–938PubMedCrossRefGoogle Scholar
  10. Barreiro O, Yanez-Mo M, Sala-Valdes M, Gutierrez-Lopez MD, Ovalle S, Higginbottom A, Monk PN, Cabanas C, Sanchez-Madrid F (2005) Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 105:2852–2861PubMedCrossRefGoogle Scholar
  11. Barreiro O, Zamai M, Yanez-Mo M, Tejera E, Lopez-Romero P, Monk PN, Gratton E, Caiolfa VR, Sanchez-Madrid F (2008) Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J Cell Biol 183:527–542PubMedCrossRefGoogle Scholar
  12. Barylko B, Mao YS, Wlodarski P, Jung G, Binns DD, Sun HQ, Yin HL, Albanesi JP (2009) Palmitoylation controls the catalytic activity and subcellular distribution of ­phosphatidylinositol 4-kinase II{alpha}. J Biol Chem 284:9994–1PubMedCrossRefGoogle Scholar
  13. Bassani S, Cingolani LA, Valnegri P, Folci A, Zapata J, Gianfelice A, Sala C, Goda Y, Passafaro M (2012) The X-linked intellectual disability protein TSPAN7 regulates excitatory synapse development and AMPAR trafficking. Neuron 73:1143–1158PubMedCrossRefGoogle Scholar
  14. Baudoux B, Castanares-Zapatero D, Leclercq-Smekens M, Berna N, Poumay Y (2000) The tetraspanin CD9 associates with the integrin alpha6beta4 in cultured human epidermal keratinocytes and is involved in cell motility. Eur J Cell Biol 79:41–51PubMedCrossRefGoogle Scholar
  15. Bell GM, Seaman WE, Niemi EC, Imboden JB (1992) The OX-44 molecule couples to signaling pathways and is associated with CD2 on rat T lymphocytes and a natural killer cell line. J Exp Med 175:527–536PubMedCrossRefGoogle Scholar
  16. Berditchevski F, Bazzoni G, Hemler ME (1995) Specific association of CD63 with the VLA-3 and VLA-6 integrins. J Biol Chem 270:17784–17790PubMedCrossRefGoogle Scholar
  17. Berditchevski F, Zutter MM, Hemler ME (1996) Characterization of novel complexes on the cell surface between integrins and proteins with 4 transmembrane domains (TM4 proteins). Mol BiolCell 7:193–207Google Scholar
  18. Berditchevski F, Tolias KF, Wong K, Carpenter CL, Hemler ME (1997) A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J Biol Chem 272:2595–2598PubMedCrossRefGoogle Scholar
  19. Berditchevski F, Gilbert E, Griffiths MR, Fitter S, Ashman L, Jenner SJ (2001) Analysis of the CD151-alpha3beta1 integrin and CD151-tetraspanin interactions by mutagenesis. J Biol Chem 276:41165–41174PubMedCrossRefGoogle Scholar
  20. Berditchevski F, Odintsova E, Sawada S, Gilbert E (2002) Expression of the palmitoylation-­deficient CD151 weakens the association of alpha 3 beta 1 integrin with the tetraspanin-­enriched microdomains and affects integrin-dependent signaling. J Biol Chem 277:36991–37000PubMedCrossRefGoogle Scholar
  21. Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6:32–43PubMedCrossRefGoogle Scholar
  22. Boucheix C, Rubinstein E (2001) Tetraspanins. Cell Mol Life Sci 58:1189–1205PubMedCrossRefGoogle Scholar
  23. Bradbury LE, Kansas GS, Levy S, Evans RL, Tedder TF (1992) The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J Immunol 149:2841–2850PubMedGoogle Scholar
  24. Cailleteau L, Estrach S, Thyss R, Boyer L, Doye A, Domange B, Johnsson N, Rubinstein E, Boucheix C, Ebrahimian T, Silvestre JS, Lemichez E, Meneguzzi G, Mettouchi A (2010) Alpha2beta1 integrin controls association of Rac with the membrane and triggers quiescence of endothelial cells. J Cell Sci 123:2491–2501PubMedCrossRefGoogle Scholar
  25. Carter RH, Fearon DT (1992) CD19: lowering the treshold for antigen receptor stimulation of B lymphocytes. Science 256:105–107PubMedCrossRefGoogle Scholar
  26. Chang Y, Finnemann SC (2007) Tetraspanin CD81 is required for the alpha v beta5-integrin-dependent particle-binding step of RPE phagocytosis. J Cell Sci 120:3053–3063PubMedCrossRefGoogle Scholar
  27. Charrin S, Alcover A (2006) Role of ERM (Ezrin-Radixin-Moesin) proteins in T lymphocyte polarization, immune synapse formation and in T cell receptor-mediated signaling. Front Biosci 11:1987–1997PubMedCrossRefGoogle Scholar
  28. Charrin S, Le Naour F, Oualid M, Billard M, Faure G, Hanash SM, Boucheix C, Rubinstein E (2001) The major CD9 and CD81 molecular partner: identification and characterization of the complexes. J Biol Chem 276:14329–14337PubMedGoogle Scholar
  29. Charrin S, Manie S, Oualid M, Billard M, Boucheix C, Rubinstein E (2002) Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett 516:139–144PubMedCrossRefGoogle Scholar
  30. Charrin S, Le Naour F, Labas V, Billard M, Le Caer JP, Emile JF, Petit MA, Boucheix C, Rubinstein E (2003a) EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem J 373:409–421PubMedCrossRefGoogle Scholar
  31. Charrin S, Manie S, Billard M, Ashman L, Gerlier D, Boucheix C, Rubinstein E (2003b) Multiple levels of interactions within the tetraspanin web. Biochem Biophys Res Commun 304:107–112PubMedCrossRefGoogle Scholar
  32. Charrin S, Manie S, Thiele C, Billard M, Gerlier D, Boucheix C, Rubinstein E (2003c) A physical and functional link between cholesterol and tetraspanins. Eur J Immunol 33:2479–2489PubMedCrossRefGoogle Scholar
  33. Charrin S, Le Naour F, Silvie O, Milhiet PE, Boucheix C, Rubinstein E (2009a) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420:133–154PubMedCrossRefGoogle Scholar
  34. Charrin S, Yalaoui S, Bartosch B, Cocquerel L, Franetich JF, Boucheix C, Mazier D, Rubinstein E, Silvie O (2009b) The Ig domain protein CD9P-1 down-regulates CD81 ability to support Plasmodium yoelii infection. J Biol Chem 284:31572–31578PubMedCrossRefGoogle Scholar
  35. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265PubMedCrossRefGoogle Scholar
  36. Chometon G, Zhang ZG, Rubinstein E, Boucheix C, Mauch C, Aumailley M (2006) Dissociation of the complex between CD151 and laminin-binding integrins permits migration of epithelial cells. Exp Cell Res 312:983–995PubMedCrossRefGoogle Scholar
  37. Claas C, Stipp CS, Hemler ME (2001) Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts. J Biol Chem 276:7974–7984PubMedCrossRefGoogle Scholar
  38. Claas C, Wahl J, Orlicky DJ, Karaduman H, Schnolzer M, Kempf T, Zoller M (2005) The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. Biochem J 389:99–110PubMedCrossRefGoogle Scholar
  39. Clark KL, Zeng Z, Langford AL, Bowen SM, Todd SC (2001) Pgrl is a major cd81-associated protein on lymphocytes and distinguishes a new family of cell surface proteins. J Immunol 167:5115–5121PubMedGoogle Scholar
  40. Clark KL, Oelke A, Johnson ME, Eilert KD, Simpson PC, Todd SC (2004) CD81 associates with 14-3-3 in a redox-regulated palmitoylation-dependent manner. J Biol Chem 279:19401–19406PubMedCrossRefGoogle Scholar
  41. Clergeot PH, Gourgues M, Cots J, Laurans F, Latorse MP, Pepin R, Tharreau D, Notteghem JL, Lebrun MH (2001) PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci USA 98:6963–6968PubMedCrossRefGoogle Scholar
  42. Cnops G, Neyt P, Raes J, Petrarulo M, Nelissen H, Malenica N, Luschnig C, Tietz O, Ditengou F, Palme K, Azmi A, Prinsen E, Van Lijsebettens M (2006) The TORNADO1 and TORNADO2 genes function in several patterning processes during early leaf development in Arabidopsis thaliana. Plant Cell 18:852–866PubMedCrossRefGoogle Scholar
  43. Codina J, Li J, DuBose TD Jr (2005) CD63 interacts with the carboxy terminus of the colonic H + -K + -ATPase to decrease [corrected] plasma membrane localization and 86Rb + uptake. Am J Physiol Cell Physiol 288:C1279–C1286PubMedCrossRefGoogle Scholar
  44. Coffey GP, Rajapaksa R, Liu R, Sharpe O, Kuo CC, Krauss SW, Sagi Y, Davis RE, Staudt LM, Sharman JP, Robinson WH, Levy S (2009) Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin. J Cell Sci 122:3137–3144PubMedCrossRefGoogle Scholar
  45. Cowin AJ, Adams D, Geary SM, Wright MD, Jones JC, Ashman LK (2006) Wound healing is defective in mice lacking tetraspanin CD151. J Invest Dermatol 126:680–689PubMedCrossRefGoogle Scholar
  46. Danglot L, Chaineau M, Dahan M, Gendron MC, Boggetto N, Perez F, Galli T (2010) Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling. J Cell Sci 123:723–735PubMedCrossRefGoogle Scholar
  47. Delaguillaumie A, Harriague J, Kohanna S, Bismuth G, Rubinstein E, Seigneuret M, Conjeaud H (2004) Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation. J Cell Sci 117:5269–5282PubMedCrossRefGoogle Scholar
  48. Dornier E, Coumailleau F, Ottavi JF, Moretti J, Boucheix C, Mauduit P, Schweisguth F, Rubinstein E (2012) TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals. J Cell Biol 199:481–496PubMedCrossRefGoogle Scholar
  49. Doyle EL, Ridger V, Ferraro F, Turmaine M, Saftig P, Cutler DF (2011) CD63 is an essential cofactor to leukocyte recruitment by endothelial P-selectin. Blood 118:4265–4273PubMedCrossRefGoogle Scholar
  50. Draber P, Vonkova I, Stepanek O, Hrdinka M, Kucova M, Skopcova T, Otahal P, Angelisova P, Horejsi V, Yeung M, Weiss A, Brdicka T (2011) SCIMP, a transmembrane adaptor protein involved in major histocompatibility complex class II signaling. Mol Cell Biol 31:4550–4562PubMedCrossRefGoogle Scholar
  51. Duffield A, Kamsteeg EJ, Brown AN, Pagel P, Caplan MJ (2003) The tetraspanin CD63 enhances the internalization of the H, K-ATPase beta-subunit. Proc Natl Acad Sci USA 100:15560–15565PubMedCrossRefGoogle Scholar
  52. Dunn CD, Sulis ML, Ferrando AA, Greenwald I (2010) A conserved tetraspanin subfamily promotes Notch signaling in Caenorhabditis elegans and in human cells. Proc Natl Acad Sci USA 107:5907–5912PubMedCrossRefGoogle Scholar
  53. Ellerman DA, Ha C, Primakoff P, Myles DG, Dveksler GS (2003) Direct binding of the ligand PSG17 to CD9 requires a CD9 site essential for sperm-egg fusion. Mol Biol Cell 14:5098–5103PubMedCrossRefGoogle Scholar
  54. Espenel C, Margeat E, Dosset P, Arduise C, Le Grimellec C, Royer CA, Boucheix C, Rubinstein E, Milhiet PE (2008) Single-molecule analysis of CD9 dynamics and partitioning reveals multiple modes of interaction in the tetraspanin web. J Cell Biol 182:765–776PubMedCrossRefGoogle Scholar
  55. Fearon DT, Carter RH (1995) The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Annu Rev Immunol 13:127–149PubMedCrossRefGoogle Scholar
  56. Feigelson SW, Grabovsky V, Shamri R, Levy S, Alon R (2003) The CD81 tetraspanin facilitates instantaneous leukocyte VLA-4 adhesion strengthening to Vascular Cell Adhesion Molecule 1 (VCAM-1) under shear flow. J Biol Chem 278:51203–51212PubMedCrossRefGoogle Scholar
  57. Fitter S, Sincock PM, Jolliffe CN, Ashman LK (1999) Transmembrane 4 superfamily protein CD151 (PETA-3) associates with beta 1 and alpha IIb beta 3 integrins in haemopoietic cell lines and modulates cell-cell adhesion. Biochem J 338:61–70PubMedCrossRefGoogle Scholar
  58. Flannery AR, Czibener C, Andrews NW (2010) Palmitoylation-dependent association with CD63 targets the Ca2+ sensor synaptotagmin VII to lysosomes. J Cell Biol 191:599–613PubMedCrossRefGoogle Scholar
  59. Force T, Woulfe K, Koch WJ, Kerkela R (2007) Molecular scaffolds regulate bidirectional crosstalk between Wnt and classical seven-transmembrane-domain receptor signaling pathways. Sci STKE 2007:e41CrossRefGoogle Scholar
  60. Gambin Y, Lopez-Esparza R, Reffay M, Sierecki E, Gov NS, Genest M, Hodges RS, Urbach W (2006) Lateral mobility of proteins in liquid membranes revisited. Proc Natl Acad Sci USA 103:2098–2102PubMedCrossRefGoogle Scholar
  61. Garcia-Espana A, Chung PJ, Sarkar IN, Stiner E, Sun TT, Desalle R (2008) Appearance of new tetraspanin genes during vertebrate evolution. Genomics 91:326–334PubMedCrossRefGoogle Scholar
  62. Goldberg AF (2006) Role of peripherin/rds in vertebrate photoreceptor architecture and inherited retinal degenerations. Int Rev Cytol 253:131–175PubMedCrossRefGoogle Scholar
  63. Goschnick MW, Lau LM, Wee JL, Liu YS, Hogarth PM, Robb LM, Hickey MJ, Wright MD, Jackson DE (2006) Impaired “outside-in” integrin alphaIIbbeta3 signaling and thrombus stability in TSSC6-deficient mice. Blood 108:1911–1918PubMedCrossRefGoogle Scholar
  64. Greco C, Bralet MP, Ailane N, Dubart-Kupperschmitt A, Rubinstein E, Le Naour F, Boucheix C (2010) E-cadherin/p120-catenin and tetraspanin Co-029 cooperate for cell motility control in human colon carcinoma. Cancer Res 70:7674–7683PubMedCrossRefGoogle Scholar
  65. Gutierrez-Lopez MD, Gilsanz A, Yanez-Mo M, Ovalle S, Lafuente EM, Dominguez C, Monk PN, Gonzalez-Alvaro I, Sanchez-Madrid F, Cabanas C (2011) The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9. Cell Mol Life Sci 68:3275–3292Google Scholar
  66. Ha CT, Waterhouse R, Wessells J, Wu JA, Dveksler GS (2005) Binding of pregnancy-specific glycoprotein 17 to CD9 on macrophages induces secretion of IL-10, IL-6, PGE2, and TGF-beta1. J Leukoc Biol 77:948–957PubMedCrossRefGoogle Scholar
  67. Haining EJ, Yang J, Bailey RL, Khan K, Collier R, Tsai S, Watson SP, Frampton J, Garcia P, Tomlinson MG (2012) The TspanC8 subgroup of tetraspanins interacts with a disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression. J Biol Chem 287:39753–39765PubMedCrossRefGoogle Scholar
  68. Harris HJ, Farquhar MJ, Mee CJ, Davis C, Reynolds GM, Jennings A, Hu K, Yuan F, Deng H, Hubscher SG, Han JH, Balfe P, McKeating JA (2008) CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry. J Virol 82:5007–5020PubMedCrossRefGoogle Scholar
  69. Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422PubMedCrossRefGoogle Scholar
  70. Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811PubMedCrossRefGoogle Scholar
  71. Ho SH, Martin F, Higginbottom A, Partridge LJ, Parthasarathy V, Moseley GW, Lopez P, Cheng-­Mayer C, Monk PN (2006) Recombinant extracellular domains of tetraspanin proteins are potent inhibitors of the infection of macrophages by human immunodeficiency virus type 1. J Virol 80:6487–6496PubMedCrossRefGoogle Scholar
  72. Horváth G, Serru V, Clay D, Billard M, Boucheix C, Rubinstein E (1998) CD19 is linked to the integrin-­associated tetraspans CD9, CD81, and CD82. J Biol Chem 273:30537–30543PubMedCrossRefGoogle Scholar
  73. Huang S, Yuan S, Dong M, Su J, Yu C, Shen Y, Xie X, Yu Y, Yu X, Chen S, Zhang S, Pontarotti P, Xu A (2005) The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms. Genomics 86:674–684PubMedCrossRefGoogle Scholar
  74. Imai T, Yoshie O (1993) C33 antigen and M38 antigen recognized by monoclonal antibodies inhibitory to syncytium formation by human T cell leukemia virus type 1 are both members of the transmembrane 4 superfamily and associate with each other and with CD4 or CD8 in T cells. J Immunol 151:6470–6481PubMedGoogle Scholar
  75. Imai T, Kakizaki M, Nishimura M, Yoshie O (1995) Molecular analyses of the association of CD4 with two members of the transmembrane 4 superfamily CD81 and CD82. J Immunol 155:1229–1239PubMedGoogle Scholar
  76. Indig FE, Diaz-Gonzalez F, Ginsberg MH (1997) Analysis of the tetraspanin CD9-integrin à IIb á3 (GPIIb-IIIa) complex in platelet membranes and transfected cells. Biochem J 327:291–298PubMedGoogle Scholar
  77. Ishibashi T, Ding L, Ikenaka K, Inoue Y, Miyado K, Mekada E, Baba H (2004) Tetraspanin protein CD9 is a novel paranodal component regulating paranodal junctional formation. J Neurosci 24:96–102PubMedCrossRefGoogle Scholar
  78. Israels SJ, McMillan-Ward EM, Easton J, Robertson C, McNicol A (2001) CD63 associates with the alphaIIb beta3 integrin-CD9 complex on the surface of activated platelets. Thromb Haemost 85:134–141PubMedGoogle Scholar
  79. Iwamoto R, Higashiyama S, Mitamura T, Taniguchi N, Klagsbrun M, Mekada E (1994) Heparin-­binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which up-regulates functional receptors and diphtheria toxin sensitivity. EMBO J 13:2322–2330PubMedGoogle Scholar
  80. Jones EY, Davis SJ, Williams AF, Harlos K, Stuart DI (1992) Crystal structure at 2.8 a resolution of a soluble form of the cell adhesion molecule CD2. Nature 360:232–239PubMedCrossRefGoogle Scholar
  81. Jones PH, Bishop LA, Watt FM (1996) Functional significance of CD9 association with á1 integrins in human epidermal keratinocytes. Cell Adhes Commun 4:297–305PubMedCrossRefGoogle Scholar
  82. Jung KK, Liu XW, Chirco R, Fridman R, Kim HR (2006) Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. EMBO J 25:3934–3942PubMedCrossRefGoogle Scholar
  83. Junge HJ, Yang S, Burton JB, Paes K, Shu X, French DM, Costa M, Rice DS, Ye W (2009) TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/beta-catenin signaling. Cell 139:299–311PubMedCrossRefGoogle Scholar
  84. Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A (2000) The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat Genet 24:279–282PubMedCrossRefGoogle Scholar
  85. Kaji K, Oda S, Miyazaki S, Kudo A (2002) Infertility of CD9-deficient mouse eggs is reversed by mouse CD9, human CD9, or mouse CD81; polyadenylated mRNA injection developed for molecular analysis of sperm-egg fusion. Dev Biol 247:327–334PubMedCrossRefGoogle Scholar
  86. Karamatic CV, Burton N, Kagan A, Green CA, Levene C, Flinter F, Brady RL, Daniels G, Anstee DJ (2004) CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood 104:2217–2223CrossRefGoogle Scholar
  87. Kazarov AR, Yang X, Stipp CS, Sehgal B, Hemler ME (2002) An extracellular site on tetraspanin CD151 determines alpha 3 and alpha 6 integrin-dependent cellular morphology. J Cell Biol 158:1299–1309PubMedCrossRefGoogle Scholar
  88. Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, Grandi G, Bolognesi M (2001) CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J 20:12–18PubMedCrossRefGoogle Scholar
  89. Klosek SK, Nakashiro K, Hara S, Shintani S, Hasegawa H, Hamakawa H (2005) CD151 forms a functional complex with c-Met in human salivary gland cancer cells. Biochem Biophys Res Commun 336:408–416PubMedCrossRefGoogle Scholar
  90. Kolesnikova TV, Stipp CS, Rao RM, Lane WS, Luscinskas FW, Hemler ME (2004) EWI-2 modulates lymphocyte integrin {alpha}4{beta}1 functions. Blood 103:3013–3019PubMedCrossRefGoogle Scholar
  91. Kong F, Garcia AJ, Mould AP, Humphries MJ, Zhu C (2009) Demonstration of catch bonds between an integrin and its ligand. J Cell Biol 185:1275–1284PubMedCrossRefGoogle Scholar
  92. Kopczynski CC, Davis GW, Goodman CS (1996) A neural tetraspanin, encoded by late bloomer, that facilitates synapse formation. Science 271:1867–1870PubMedCrossRefGoogle Scholar
  93. Kovalenko OV, Yang XH, Hemler ME (2007) A novel cysteine cross-linking method reveals a direct association between claudin-1 and tetraspanin CD9. Mol Cell Proteomics 6:1855–1867PubMedCrossRefGoogle Scholar
  94. Krementsov DN, Rassam P, Margeat E, Roy NH, Schneider-Schaulies J, Milhiet PE, Thali M (2010) HIV-1 assembly differentially alters dynamics and partitioning of tetraspanins and raft components. Traffic 11:1401–1414PubMedCrossRefGoogle Scholar
  95. Lafleur MA, Xu D, Hemler ME (2009) Tetraspanin proteins regulate membrane type-1 matrix metalloproteinase-dependent pericellular proteolysis. Mol Biol Cell 20:2030–2040PubMedCrossRefGoogle Scholar
  96. Lagaudriere-Gesbert C, Le Naour F, Lebel-Binay S, Billard M, Lemichez E, Boucheix C, Conjeaud H, Rubinstein E (1997a) Functional analysis of four tetraspans, CD9, CD53, CD81, and CD82, suggests a common role in costimulation, cell adhesion, and migration: only CD9 upregulates HB-EGF activity. Cell Immunol 182:105–112PubMedCrossRefGoogle Scholar
  97. Lagaudriere-Gesbert C, Lebel-Binay S, Wiertz E, Ploegh HL, Fradelizi D, Conjeaud H (1997b) The tetraspanin protein CD82 associates with both free HLA class I heavy chain and heterodimeric beta2-microglobulin complexes. J Immunol 158:2790–2797PubMedGoogle Scholar
  98. Lagaudriere-Gesbert C, Lebel-Binay S, Hubeau C, Fradelizi D, Conjeaud H (1998) Signaling through the tetraspanin CD82 triggers its association with the cytoskeleton leading to sustained morphological changes and T cell activation. Eur J Immunol 28:4332–4344PubMedCrossRefGoogle Scholar
  99. Lammerding J, Kazarov AR, Huang H, Lee RT, Hemler ME (2003) Tetraspanin CD151 regulates {alpha}6{beta}1 integrin adhesion strengthening. Proc Natl Acad Sci USA 100:7616–7621PubMedCrossRefGoogle Scholar
  100. Latysheva N, Muratov G, Rajesh S, Padgett M, Hotchin NA, Overduin M, Berditchevski F (2006) Syntenin-1 is a new component of tetraspanin-enriched microdomains: mechanisms and consequences of the interaction of syntenin-1 with CD63. Mol Cell Biol 26:7707–7718PubMedCrossRefGoogle Scholar
  101. Lau LM, Wee JL, Wright MD, Moseley GW, Hogarth PM, Ashman LK, Jackson DE (2004) The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function. Blood 104:2368–2375PubMedCrossRefGoogle Scholar
  102. Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C (2000) Severely reduced female fertility in CD9-deficient mice. Science 287:319–321PubMedCrossRefGoogle Scholar
  103. Le Naour F, Andre M, Greco C, Billard M, Sordat B, Emile JF, Lanza F, Boucheix C, Rubinstein E (2006) Profiling of the tetraspanin web of human colon cancer cells. Mol Cell Proteomics 5:845–857PubMedCrossRefGoogle Scholar
  104. Lebel-Binay S, Lagaudrière C, Fradelizi D, Conjeaud H (1995) CD82, member of the tetra-span-transmembrane protein family, is a costimulatory protein for T cell activation. J Immunol 155:101–110PubMedGoogle Scholar
  105. Lekishvili T, Fromm E, Mujoomdar M, Berditchevski F (2008) The tumour-associated antigen L6 (L6-Ag) is recruited to the tetraspanin-enriched microdomains: implication for tumour cell motility. J Cell Sci 121:685–694PubMedCrossRefGoogle Scholar
  106. Levy S, Shoham T (2005) The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol 5:136–148PubMedCrossRefGoogle Scholar
  107. Levy S, Nguyen VQ, Andria ML, Takahashi S (1991) Structure and membrane topology of TAPA-1. J Biol Chem 266:14597–14602PubMedGoogle Scholar
  108. Lineberry N, Su L, Soares L, Fathman CG (2008) The single subunit transmembrane E3 ligase Gene Related to Anergy In Lymphocytes (GRAIL) captures and then ubiquitinates transmembrane proteins across the cell membrane. J Biol Chem 283:28497–28505PubMedCrossRefGoogle Scholar
  109. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50PubMedCrossRefGoogle Scholar
  110. Little KD, Hemler ME, Stipp CS (2004) Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association. Mol Biol Cell 15:2375–2387PubMedCrossRefGoogle Scholar
  111. Longhurst CM, White MM, Wilkinson DA, Jennings LK (1999) A CD9, IIb3, integrin-associated protein, and GPIb/V/IX complex on the surface of human platelets is influenced by IIb3 conformational states. Eur J Biochem 263:104–111PubMedCrossRefGoogle Scholar
  112. Lozahic S, Christiansen D, Manie S, Gerlier D, Billard M, Boucheix C, Rubinstein E (2000) CD46 (membrane cofactor protein) associates with multiple beta1 integrins and tetraspans. Eur J Immunol 30:900–907PubMedCrossRefGoogle Scholar
  113. Mangin PH, Kleitz L, Boucheix C, Gachet C, Lanza F (2009) CD9 negatively regulates integrin alpha(llb)beta(3) activation and could thus prevent excessive platelet recruitment at sites of vascular injury. J Thromb Haemost 7:900–902Google Scholar
  114. Mannion BA, Berditchevski F, Kraeft SK, Chen LB, Hemler ME (1996) Transmembrane-4 superfamily proteins CD81 (TAPA-1), CD82, CD63, and CD53 specifically associated with integrin alpha 4 beta 1 (CD49d/CD29). J Immunol 157:2039–2047PubMedGoogle Scholar
  115. Marakalala MJ, Graham LM, Brown GD (2010) The role of Syk/CARD9-coupled C-type lectin receptors in immunity to Mycobacterium tuberculosis infections. Clin Dev Immunol 2010:567571PubMedCrossRefGoogle Scholar
  116. Marsh D (2008) Protein modulation of lipids, and vice-versa, in membranes. Biochim Biophys Acta 1778:1545–1575PubMedCrossRefGoogle Scholar
  117. Matsumoto AK, Martin DR, Carter RH, Klickstein LB, Ahearn JM, Fearon DT (1993) Functional dissection of the CD21/CD19/TAPA-1/leu-13 complex of B lymphocytes. J Exp Med 178:1407–1417PubMedCrossRefGoogle Scholar
  118. Meyer-Wentrup F, Figdor CG, Ansems M, Brossart P, Wright MD, Adema GJ, van Spriel AB (2007) Dectin-1 interaction with tetraspanin CD37 inhibits IL-6 production. J Immunol 178:154–162PubMedGoogle Scholar
  119. Miao WM, Vasile E, Lane WS, Lawler J (2001) CD36 associates with CD9 and integrins on human blood platelets. Blood 97:1689–1696PubMedCrossRefGoogle Scholar
  120. Min G, Wang H, Sun TT, Kong XP (2006) Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution. J Cell Biol 173:975–983PubMedCrossRefGoogle Scholar
  121. Mittelbrunn M, Yanez-Mo M, Sancho D, Ursa A, Sanchez-Madrid F (2002) Cutting edge: dynamic redistribution of tetraspanin CD81 at the central zone of the immune synapse in both T lymphocytes and APC. J Immunol 169:6691–6695PubMedGoogle Scholar
  122. Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324PubMedCrossRefGoogle Scholar
  123. Montpellier C, Tews BA, Poitrimole J, Rocha-Perugini V, D’Arienzo V, Potel J, Zhang XA, Rubinstein E, Dubuisson J, Cocquerel L (2011) Interacting regions of CD81 and two of its partners, EWI-2 and EWI-2wint and their effect on hepatitis C virus infection. J Biol Chem 286:13954–13965PubMedCrossRefGoogle Scholar
  124. Moribe H, Yochem J, Yamada H, Tabuse Y, Fujimoto T, Mekada E (2004) Tetraspanin protein (TSP-­15) is required for epidermal integrity in Caenorhabditis elegans. J Cell Sci 117:5209–5220PubMedCrossRefGoogle Scholar
  125. Murayama Y, Shinomura Y, Oritani K, Miyagawa J, Yoshida H, Nishida M, Katsube F, Shiraga M, Miyazaki T, Nakamoto T, Tsutsui S, Tamura S, Higashiyama S, Shimomura I, Hayashi N (2008) The tetraspanin CD9 modulates epidermal growth factor receptor signaling in cancer cells. J Cell Physiol 216:135–143PubMedCrossRefGoogle Scholar
  126. Nakamura K, Mitamura T, Takahashi T, Kobayashi T, Mekada E (2000) Importance of the major extracellular domain of CD9 and the Epidermal Growth Factor (EGF)-like domain of heparin-­binding EGF-like growth factor for Up-regulation of binding and activity. J Biol Chem 275:18284–18290PubMedCrossRefGoogle Scholar
  127. Nichols TC, Guthridge JM, Karp DR, Molina H, Fletcher DR, Holers VM (1998) Gamma-glutamyl transpeptidase, an ecto-enzyme regulator of intracellular redox potential, is a component of TM4 signal transduction complexes. Eur J Immunol 28:4123–4129PubMedCrossRefGoogle Scholar
  128. Nikopoulos K, Gilissen C, Hoischen A, van Nouhuys CE, Boonstra FN, Blokland EA, Arts P, Wieskamp N, Strom TM, Ayuso C, Tilanus MA, Bouwhuis S, Mukhopadhyay A, Scheffer H, Hoefsloot LH, Veltman JA, Cremers FP, Collin RW (2010) Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy. Am J Hum Genet 86:240–247PubMedCrossRefGoogle Scholar
  129. Nishiuchi R, Sanzen N, Nada S, Sumida Y, Wada Y, Okada M, Takagi J, Hasegawa H, Sekiguchi K (2005) Potentiation of the ligand-binding activity of integrin alpha3beta1 via association with tetraspanin CD151. Proc Natl Acad Sci USA 102:1939–1944PubMedCrossRefGoogle Scholar
  130. Novitskaya V, Romanska H, Dawoud M, Jones JL, Berditchevski F (2010) Tetraspanin CD151 regulates growth of mammary epithelial cells in three-dimensional extracellular matrix: implication for mammary ductal carcinoma in situ. Cancer Res 70:4698–4708PubMedCrossRefGoogle Scholar
  131. Odintsova E, Sugiura T, Berditchevski F (2000) Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI-1. Curr Biol 10:1009–1012PubMedCrossRefGoogle Scholar
  132. Odintsova E, Voortman J, Gilbert E, Berditchevski F (2003) Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. J Cell Sci 116:4557–4566PubMedCrossRefGoogle Scholar
  133. Odintsova E, Butters TD, Monti E, Sprong H, van Meer G, Berditchevski F (2006) Gangliosides play an important role in the organization of CD82-enriched microdomains. Biochem J 400:315–325PubMedCrossRefGoogle Scholar
  134. Olmos E, Reiss B, Dekker K (2003) The ekeko mutant demonstrates a role for tetraspanin-like protein in plant development. Biochem Biophys Res Commun 310:1054–1061PubMedCrossRefGoogle Scholar
  135. Ono M, Handa K, Sonnino S, Withers DA, Nagai H, Hakomori S (2001) GM3 ganglioside inhibits CD9-facilitated haptotactic cell motility: coexpression of GM3 and CD9 is essential in the downregulation of tumor cell motility and malignancy. Biochemistry 40:6414–6421PubMedCrossRefGoogle Scholar
  136. Orlowski E, Chand R, Yip J, Wong C, Goschnick MW, Wright MD, Ashman LK, Jackson DE (2009) A platelet tetraspanin superfamily member, CD151, is required for regulation of thrombus growth and stability in vivo. J Thromb Haemost 7:2074–2084PubMedCrossRefGoogle Scholar
  137. Pan Y, Brown C, Wang X, Geisert EE (2007) The developmental regulation of CD81 in the rat retina. Mol Vis 13:181–189PubMedGoogle Scholar
  138. Parthasarathy V, Martin F, Higginbottom A, Murray H, Moseley GW, Read RC, Mal G, Hulme R, Monk PN, Partridge LJ (2009) Distinct roles for tetraspanins CD9, CD63 and CD81 in the formation of multinucleated giant cells. Immunology 127:237–248PubMedCrossRefGoogle Scholar
  139. Poulter JA, Ali M, Gilmour DF, Rice A, Kondo H, Hayashi K, Mackey DA, Kearns LS, Ruddle JB, Craig JE, Pierce EA, Downey LM, Mohamed MD, Markham AF, Inglehearn CF, Toomes C (2010) Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy. Am J Hum Genet 86:248–253PubMedCrossRefGoogle Scholar
  140. Protty MB, Watkins NA, Colombo D, Thomas SG, Heath VL, Herbert JM, Bicknell R, Senis YA, Ashman LK, Berditchevski F, Ouwehand WH, Watson SP, Tomlinson MG (2009) Identification of Tspan9 as a novel platelet tetraspanin and the collagen receptor GPVI as a component of tetraspanin microdomains. Biochem J 417:391–400PubMedCrossRefGoogle Scholar
  141. Prox J, Willenbrock M, Weber S, Lehmann T, Schmidt-Arras D, Schwanbeck R, Saftig P, Schwake M (2012) Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10. Cell Mol Life Sci 69:2919–2932PubMedCrossRefGoogle Scholar
  142. Puklin-Faucher E, Sheetz MP (2009) The mechanical integrin cycle. J Cell Sci 122:179–186PubMedCrossRefGoogle Scholar
  143. Qi JC, Wang J, Mandadi S, Tanaka K, Roufogalis BD, Madigan MC, Lai K, Yan F, Chong BH, Stevens RL, Krilis SA (2006) Human and mouse mast cells use the tetraspanin CD9 as an alternate interleukin-16 receptor. Blood 107:135–142PubMedCrossRefGoogle Scholar
  144. Rao TP, Kuhl M (2010) An updated overview on Wnt signaling pathways: a prelude for more. Circ Res 106:1798–1806PubMedCrossRefGoogle Scholar
  145. Reiss K, Saftig P (2009) The “A Disintegrin And Metalloprotease” (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 20:126–137PubMedCrossRefGoogle Scholar
  146. Romanska HM, Berditchevski F (2011) Tetraspanins in human epithelial malignancies. J Pathol 223:4–14PubMedCrossRefGoogle Scholar
  147. Rubinstein E, Le Naour F, Billard M, Prenant M, Boucheix C (1994) CD9 antigen is an accessory subunit of the VLA integrin complexes. Eur J Immunol 24:3005–3013PubMedCrossRefGoogle Scholar
  148. Rubinstein E, Le Naour F, Lagaudrière C, Billard M, Conjeaud H, Boucheix C (1996) CD9, CD63, CD81 and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins. Eur J Immunol 26:2657–2665PubMedCrossRefGoogle Scholar
  149. Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf JP, Levy S, Le Naour F, Boucheix C (2006) Reduced fertility of female mice lacking CD81. Dev Biol 290:351–358PubMedCrossRefGoogle Scholar
  150. Sachs N, Kreft M, van den Bergh Weerman MA, Beynon AJ, Peters TA, Weening JJ, Sonnenberg A (2006) Kidney failure in mice lacking the tetraspanin CD151. J Cell Biol 175:33–39PubMedCrossRefGoogle Scholar
  151. Sadej R, Romanska H, Baldwin G, Gkirtzimanaki K, Novitskaya V, Filer AD, Krcova Z, Kusinska R, Ehrmann J, Buckley CD, Kordek R, Potemski P, Eliopoulos AG, Lalani E, Berditchevski F (2009) CD151 regulates tumorigenesis by modulating the communication between tumor cells and endothelium. Mol Cancer Res 7:787–798PubMedCrossRefGoogle Scholar
  152. Sadej R, Romanska H, Kavanagh D, Baldwin G, Takahashi T, Kalia N, Berditchevski F (2010) Tetraspanin CD151 regulates transforming growth factor beta signaling: implication in tumor metastasis. Cancer Res 70:6059–6070PubMedCrossRefGoogle Scholar
  153. Sala-Valdes M, Ursa A, Charrin S, Rubinstein E, Hemler ME, Sanchez-Madrid F, Yanez-Mo M (2006) EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J Biol Chem 281:19665–19675PubMedCrossRefGoogle Scholar
  154. Schick MR, Levy S (1993) The TAPA-1 molecule is associated on the surface of B cells with HLA-DR molecules. J Immunol 151:4090–4097PubMedGoogle Scholar
  155. Schmidt C, Kunemund V, Wintergerst ES, Schmitz B, Schachner M (1996) CD9 of mouse brain is implicated in neurite outgrowth and cell migration in vitro and is associated with the alpha 6/beta 1 integrin and the neural adhesion molecule L1. J Neurosci Res 43:12–31PubMedCrossRefGoogle Scholar
  156. Seehafer JG, Shou Ching T, Slupsky JR, Shaw ARE (1988) The functional glycoprotein CD9 is variably acylated: localization of the variably acylated region to a membrane-associated peptide containing the binding site for the agonistic monoclonal antibody 50H.19. Biochim Biophys Acta 957:399–410PubMedCrossRefGoogle Scholar
  157. Seigneuret M (2006) Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily. Biophys J 90:212–227PubMedCrossRefGoogle Scholar
  158. Serru V, Le Naour F, Billard M, Azorsa DO, Lanza F, Boucheix C, Rubinstein E (1999) Selective Tetraspan/integrin complexes (CD81/à4á1, CD151/à3á1, CD151/à6á1) under conditions disrupting tetraspan interactions. Biochem J 340:103–111PubMedCrossRefGoogle Scholar
  159. Sharma C, Yang XH, Hemler ME (2008) DHHC2 affects palmitoylation, stability, and functions of tetraspanins CD9 and CD151. Mol Biol Cell 19:3415–3425PubMedCrossRefGoogle Scholar
  160. Sheng KC, van Spriel AB, Gartlan KH, Sofi M, Apostolopoulos V, Ashman L, Wright MD (2009) Tetraspanins CD37 and CD151 differentially regulate Ag presentation and T-cell co-­stimulation by DC. Eur J Immunol 39:50–55PubMedCrossRefGoogle Scholar
  161. Shi W, Fan H, Shum L, Derynck R (2000) The tetraspanin CD9 associates with transmembrane TGF-alpha and regulates TGF-alpha-induced EGF receptor activation and cell proliferation. J Cell Biol 148:591–602PubMedCrossRefGoogle Scholar
  162. Shibagaki N, Hanada K, Yamashita H, Shimada S, Hamada H (1999) Overexpression of CD82 on human T cells enhances LFA-1/ICAM-1-mediated cell-cell adhesion: functional association between CD82 and LFA-1 in T cell activation. Eur J Immunol 29:4081–4091PubMedCrossRefGoogle Scholar
  163. Shigeta M, Sanzen N, Ozawa M, Gu J, Hasegawa H, Sekiguchi K (2003) CD151 regulates epithelial cell-cell adhesion through PKC- and Cdc42-dependent actin cytoskeletal reorganization. J Cell Biol 163:165–176PubMedCrossRefGoogle Scholar
  164. Shiomi T, Inoki I, Kataoka F, Ohtsuka T, Hashimoto G, Nemori R, Okada Y (2005) Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151. Lab Invest 85:1489–1506PubMedGoogle Scholar
  165. Shoham T, Rajapaksa R, Boucheix C, Rubinstein E, Poe JC, Tedder TF, Levy S (2003) The tetraspanin CD81 regulates the expression of CD19 during B cell development in a postendoplasmic reticulum compartment. J Immunol 171:4062–4072PubMedGoogle Scholar
  166. Shoham T, Rajapaksa R, Kuo CC, Haimovich J, Levy S (2006) Building of the tetraspanin web: distinct structural domains of CD81 function in different cellular compartments. Mol Cell Biol 26:1373–1385PubMedCrossRefGoogle Scholar
  167. Silvie O, Charrin S, Billard M, Franetich JF, Clark KL, van Gemert GJ, Sauerwein RW, Dautry F, Boucheix C, Mazier D, Rubinstein E (2006) Cholesterol contributes to the organization of tetraspanin-enriched microdomains and to CD81-dependent infection by malaria sporozoites. J Cell Sci 119:1992–2002PubMedCrossRefGoogle Scholar
  168. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39PubMedCrossRefGoogle Scholar
  169. Sincock PM, Fitter S, Parton RG, Berndt MC, Gamble JR, Ashman LK (1999) PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J Cell Sci 112:833–844PubMedGoogle Scholar
  170. Skubitz KM, Campbell KD, Iida J, Skubitz APN (1996) CD63 associates with tyorsine kinase activity and CD11/CD18; and transmits an activation signal in neutrophils. J Immunol 157:3617–3626PubMedGoogle Scholar
  171. Slupsky JR, Seehafer JG, Tang SC, Masellis-Smith A, Shaw AR (1989) Evidence that monoclonal antibodies against CD9 antigen induce specific association between CD9 and the platelet glycoprotein IIb-IIIa complex. J Biol Chem 264:12289–12293PubMedGoogle Scholar
  172. Slupsky JR, Kamiguti AS, Rhodes NP, Cawley JC, Shaw AR, Zuzel M (1997) The platelet antigens CD9, CD42 and integrin alpha IIb beta IIIa can be topographically associated and transduce functionally similar signals. Eur J Biochem 244:168–175PubMedCrossRefGoogle Scholar
  173. Sridhar SC, Miranti CK (2006) Tetraspanin KAI1/CD82 suppresses invasion by inhibiting integrin-­dependent crosstalk with c-Met receptor and Src kinases. Oncogene 25:2367–2378PubMedCrossRefGoogle Scholar
  174. Sterk LM, Geuijen CA, Oomen LC, Calafat J, Janssen H, Sonnenberg A (2000) The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alpha6beta4 and may regulate the spatial organization of hemidesmosomes. J Cell Biol 149:969–982PubMedCrossRefGoogle Scholar
  175. Sterk LM, Geuijen CA, van den Berg JG, Claessen N, Weening JJ, Sonnenberg A (2002) Association of the tetraspanin CD151 with the laminin-binding integrins alpha3beta1, alpha6beta1, alpha6beta4 and alpha7beta1 in cells in culture and in vivo. J Cell Sci 115:1161–1173PubMedGoogle Scholar
  176. Stipp CS, Kolesnikova TV, Hemler ME (2001a) EWI-2 is a major CD9 and CD81 partner and member of a novel Ig protein subfamily. J Biol Chem 276:40545–40554PubMedCrossRefGoogle Scholar
  177. Stipp CS, Orlicky D, Hemler ME (2001b) FPRP, a major, highly stoichiometric, highly specific CD81- and CD9-associated protein. J Biol Chem 276:4853–4862PubMedCrossRefGoogle Scholar
  178. Stipp CS, Kolesnikova TV, Hemler ME (2003) EWI-2 regulates alpha3beta1 integrin-dependent cell functions on laminin-5. J Cell Biol 163:1167–1177PubMedCrossRefGoogle Scholar
  179. Sun TT (2006) Altered phenotype of cultured urothelial and other stratified epithelial cells: implications for wound healing. Am J Physiol Renal Physiol 291:F9–F21PubMedCrossRefGoogle Scholar
  180. Szöllösi J, Horejsi V, Bene L, Angelisova P, Damjanovich S (1996) Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. J Immunol 157:2939–2946PubMedGoogle Scholar
  181. Tachibana I, Bodorova J, Berditchevski F, Zutter MM, Hemler ME (1997) NAG-2 a novel Transmembrane-4 Superfamily (TM4SF) protein that complexes with integrins and other TM4SF proteins. J Biol Chem 272:29181–29189PubMedCrossRefGoogle Scholar
  182. Tai XG, Toyooka K, Yashiro Y, Abe R, Park CS, Hamaoka T, Kobayashi M, Neben S, Fujiwara H (1997) CD9-mediated costimulation of TCR-triggered naive T cells leads to activation followed by apoptosis. J Immunol 159:3799–3807PubMedGoogle Scholar
  183. Takahashi S, Doss C, Levy S, Levy R (1990) TAPA-1, the target of an antiproliferative antibody, is associated on the cell surface with the Leu-13 antigen. J Immunol 145:2207–2213PubMedGoogle Scholar
  184. Takahashi M, Sugiura T, Abe M, Ishii K, Shirasuna K (2007) Regulation of c-Met signaling by the tetraspanin KAI-1/CD82 affects cancer cell migration. Int J Cancer 121:1919–1929PubMedCrossRefGoogle Scholar
  185. Takeda Y, Tachibana I, Miyado K, Kobayashi M, Miyazaki T, Funakoshi T, Kimura H, Yamane H, Saito Y, Goto H, Yoneda T, Yoshida M, Kumagai T, Osaki T, Hayashi S, Kawase I, Mekada E (2003) Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J Cell Biol 161:945–956PubMedCrossRefGoogle Scholar
  186. Takeda Y, Kazarov AR, Butterfield CE, Hopkins BD, Benjamin LE, Kaipainen A, Hemler ME (2007) Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood 109:1524–1532PubMedCrossRefGoogle Scholar
  187. Takeda Y, He P, Tachibana I, Zhou B, Miyado K, Kaneko H, Suzuki M, Minami S, Iwasaki T, Goya S, Kijima T, Kumagai T, Yoshida M, Osaki T, Komori T, Mekada E, Kawase I (2008) Double deficiency of tetraspanins CD9 and CD81 alters cell motility and protease production of macrophages and causes chronic obstructive pulmonary disease-like phenotype in mice. J Biol Chem 283:26089–26097PubMedCrossRefGoogle Scholar
  188. Takino T, Miyamori H, Kawaguchi N, Uekita T, Seiki M, Sato H (2003) Tetraspanin CD63 promotes targeting and lysosomal proteolysis of membrane-type 1 matrix metalloproteinase. Biochem Biophys Res Commun 304:160–166PubMedCrossRefGoogle Scholar
  189. Tarrant JM, Groom J, Metcalf D, Li R, Borobokas B, Wright MD, Tarlinton D, Robb L (2002) The absence of Tssc6, a member of the tetraspanin superfamily, does not affect lymphoid development but enhances in vitro T-cell proliferative responses. Mol Cell Biol 22:5006–5018PubMedCrossRefGoogle Scholar
  190. Tedder TF, Zhou LJ, Engel P (1994) The CD19/CD21 signal transduction complex of B lymphocytes. Immunol Today 15:437–442PubMedCrossRefGoogle Scholar
  191. Thomas W (2008) Catch bonds in adhesion. Annu Rev Biomed Eng 10:39–57PubMedCrossRefGoogle Scholar
  192. Todeschini AR, Dos Santos JN, Handa K, Hakomori SI (2007) Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J Biol Chem 282:8123–8133PubMedCrossRefGoogle Scholar
  193. Toyo-Oka K, Yashiro-Ohtani Y, Park CS, Tai XG, Miyake K, Hamaoka T, Fujiwara H (1999) Association of a tetraspanin CD9 with CD5 on the T cell surface: role of particular transmembrane domains in the association. Int Immunol 11:2043–2052PubMedCrossRefGoogle Scholar
  194. Tsai YC, Mendoza A, Mariano JM, Zhou M, Kostova Z, Chen B, Veenstra T, Hewitt SM, Helman LJ, Khanna C, Weissman AM (2007) The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat Med 13:1504–1509PubMedCrossRefGoogle Scholar
  195. Tu L, Sun TT, Kreibich G (2002) Specific heterodimer formation is a prerequisite for uroplakins to exit from the endoplasmic reticulum. Mol Biol Cell 13:4221–4230PubMedCrossRefGoogle Scholar
  196. Ubarretxena-Belandia I, Stokes DL (2010) Present and future of membrane protein structure determination by electron crystallography. Adv Protein Chem Struct Biol 81:33–60PubMedCrossRefGoogle Scholar
  197. Unternaehrer JJ, Chow A, Pypaert M, Inaba K, Mellman I (2007) The tetraspanin CD9 mediates lateral association of MHC class II molecules on the dendritic cell surface. Proc Natl Acad Sci USA 104:234–239PubMedCrossRefGoogle Scholar
  198. van Spriel AB, Puls KL, Sofi M, Pouniotis D, Hochrein H, Orinska Z, Knobeloch KP, Plebanski M, Wright MD (2004) A regulatory role for CD37 in T cell proliferation. J Immunol 172:2953–2961PubMedGoogle Scholar
  199. van Zelm MC, Smet J, Adams B, Mascart F, Schandene L, Janssen F, Ferster A, Kuo CC, Levy S, van Dongen JJ, van der Burg M (2010) CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest 120:1265–1274PubMedCrossRefGoogle Scholar
  200. Voisset C, Lavie M, Helle F, Op DB, Bilheu A, Bertrand-Michel J, Terce F, Cocquerel L, Wychowski C, Vu-Dac N, Dubuisson J (2008) Ceramide enrichment of the plasma membrane induces CD81 internalization and inhibits hepatitis C virus entry. Cell Microbiol 10:606–617PubMedCrossRefGoogle Scholar
  201. Wakabayashi T, Craessaerts K, Bammens L, Bentahir M, Borgions F, Herdewijn P, Staes A, Timmerman E, Vandekerckhove J, Rubinstein E, Boucheix C, Gevaert K, de Strooper B (2009) Analysis of the gamma-secretase interactome and validation of its association with tetraspanin-­enriched microdomains. Nat Cell Biol 11:1340–1346PubMedCrossRefGoogle Scholar
  202. Wang XQ, Yan Q, Sun P, Liu JW, Go L, McDaniel SM, Paller AS (2007) Suppression of epidermal growth factor receptor signaling by protein kinase C-alpha activation requires CD82, caveolin-­1, and ganglioside. Cancer Res 67:9986–9995PubMedCrossRefGoogle Scholar
  203. Waterhouse R, Ha C, Dveksler GS (2002) Murine CD9 is the receptor for pregnancy-specific glycoprotein 17. J Exp Med 195:277–282PubMedCrossRefGoogle Scholar
  204. Winterwood NE, Varzavand A, Meland MN, Ashman LK, Stipp CS (2006) A critical role for tetraspanin CD151 in alpha3beta1 and alpha6beta4 integrin-dependent tumor cell functions on laminin-5. Mol Biol Cell 17:2707–2721PubMedCrossRefGoogle Scholar
  205. Wright MD, Geary SM, Fitter S, Moseley GW, Lau LM, Sheng KC, Apostolopoulos V, Stanley EG, Jackson DE, Ashman LK (2004a) Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol 24:5978–5988PubMedCrossRefGoogle Scholar
  206. Wright MD, Moseley GW, van Spriel AB (2004b) Tetraspanin microdomains in immune cell signalling and malignant disease. Tissue Antigens 64:533–542PubMedCrossRefGoogle Scholar
  207. Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT (2009) Uroplakins in urothelial biology, function, and disease. Kidney Int 75:1153–1165PubMedCrossRefGoogle Scholar
  208. Xu H, Lee SJ, Suzuki E, Dugan KD, Stoddard A, Li HS, Chodosh LA, Montell C (2004) A lysosomal tetraspanin associated with retinal degeneration identified via a genome-wide screen. EMBO J 23:811–822PubMedCrossRefGoogle Scholar
  209. Xu D, Sharma C, Hemler ME (2009) Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein. FASEB J 23:3674–3681PubMedCrossRefGoogle Scholar
  210. Yamada M, Sumida Y, Fujibayashi A, Fukaguchi K, Sanzen N, Nishiuchi R, Sekiguchi K (2008a) The tetraspanin CD151 regulates cell morphology and intracellular signaling on laminin-511. FEBS J 275:3335–3351PubMedCrossRefGoogle Scholar
  211. Yamada M, Tamura Y, Sanzen N, Sato-Nishiuchi R, Hasegawa H, Ashman LK, Rubinstein E, Yanez-Mo M, Sanchez-Madrid F, Sekiguchi K (2008b) Probing the interaction of tetraspanin CD151 with integrin alpha 3 beta 1 using a panel of monoclonal antibodies with distinct reactivities toward the CD151-integrin alpha 3 beta 1 complex. Biochem J 415:417–427PubMedCrossRefGoogle Scholar
  212. Yanez-Mo M, Barreiro O, Gonzalo P, Batista A, Megias D, Genis L, Sachs N, Sala-Valdes M, Alonso MA, Montoya MC, Sonnenberg A, Arroyo AG, Sanchez-Madrid F (2008) MT1-MMP collagenolytic activity is regulated through association with tetraspanin CD151 in primary endothelial cells. Blood 112:3217–3226PubMedCrossRefGoogle Scholar
  213. Yang X, Claas C, Kraeft SK, Chen LB, Wang Z, Kreidberg JA, Hemler ME (2002) Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell 13:767–781PubMedCrossRefGoogle Scholar
  214. Yang XH, Richardson AL, Torres-Arzayus MI, Zhou P, Sharma C, Kazarov AR, Andzelm MM, Strominger JL, Brown M, Hemler ME (2008) CD151 accelerates breast cancer by regulating alpha 6 integrin function, signaling, and molecular organization. Cancer Res 68:3204–3213PubMedCrossRefGoogle Scholar
  215. Yauch RL, Berditchevski F, Harler MB, Reichner J, Hemler ME (1998) Highly stoichiometric, stable, and specific association of integrin alpha3beta1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell 9:2751–2765PubMedGoogle Scholar
  216. Yauch RL, Kazarov AR, Desai B, Lee RT, Hemler ME (2000) Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151. J Biol Chem 275:9230–9238PubMedCrossRefGoogle Scholar
  217. Yoshida T, Kawano Y, Sato K, Ando Y, Aoki J, Miura Y, Komano J, Tanaka Y, Koyanagi Y (2008) A CD63 mutant inhibits T-cell tropic human immunodeficiency virus type 1 entry by disrupting CXCR4 trafficking to the plasma membrane. Traffic 9:540–558PubMedCrossRefGoogle Scholar
  218. Zevian S, Winterwood NE, Stipp CS (2011) Structure-function analysis of tetraspanin CD151 reveals distinct requirements for tumor cell behaviors mediated by α3{beta}1 versus α6{beta}4 integrin. J Biol Chem 286:7496–7506PubMedCrossRefGoogle Scholar
  219. Zhang XA, Bontrager AL, Hemler ME (2001) Transmembrane-4 superfamily proteins associate with activated Protein Kinase C (PKC) and link PKC to specific beta(1) integrins. J Biol Chem 276:25005–25013PubMedCrossRefGoogle Scholar
  220. Zhang XA, Kazarov AR, Yang X, Bontrager AL, Stipp CS, Hemler ME (2002) Function of the tetraspanin CD151-alpha6beta1 integrin complex during cellular morphogenesis. Mol Biol Cell 13:1–11PubMedCrossRefGoogle Scholar
  221. Zhang XA, Lane WS, Charrin S, Rubinstein E, Liu L (2003) EWI2/PGRL associates with the metastasis suppressor KAI1/CD82 and inhibits the migration of prostate cancer cells. Cancer Res 63:2665–2674PubMedGoogle Scholar
  222. Zhou B, Liu L, Reddivari M, Zhang XA (2004) The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity. Cancer Res 64:7455–7463PubMedCrossRefGoogle Scholar
  223. Zilber MT, Setterblad N, Vasselon T, Doliger C, Charron D, Mooney N, Gelin C (2005) MHC class ­II/CD38/CD9: a lipid-raft-dependent signaling complex in human monocytes. Blood 106:3074–3081PubMedCrossRefGoogle Scholar
  224. Zoller M (2009) Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer 9:40–55PubMedCrossRefGoogle Scholar
  225. Zuo HJ, Lin JY, Liu ZY, Liu WF, Liu T, Yang J, Liu Y, Wang DW, Liu ZX (2010) Activation of the ERK signaling pathway is involved in CD151-induced angiogenic effects on the formation of CD151-integrin complexes. Acta Pharmacol Sin 31:805–812PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Inserm U1004Villejuif CedexFrance
  2. 2.Institut André LwoffUniversity Paris-SudVillejuif CedexFrance
  3. 3.School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUK

Personalised recommendations