Tetraspanins pp 257-298 | Cite as

Tetraspanins in Cancer

Chapter
Part of the Proteins and Cell Regulation book series (PROR, volume 9)

Abstract

Tetraspanins play important roles in cancer, especially in metastasis. CD82 and CD9 are frequently down-regulated on progression of epithelial cancers in humans and this has been associated with poor prognosis. In contrast, high levels of CD151 and Tspan 8 are often observed on tumour progression and have also been linked to poor patient outcome. These observations are supported by a large body of evidence from studies in vitro and in animal models. Considerable insights into the mechanisms by which tetraspanins influence tumour behaviour are now emerging. These include effects on cell-matrix and cell-cell interactions which influence migration and invasion of surrounding tissues, as well as angiogenesis. Several tetraspanins influence the function of platelets which can promote metastasis. Tetraspanins are constitutive components of exosomes, which are most important in intercellular communication. This widens the range of tetraspanin activities in physiology and pathology and may well be particularly important during spread and settlement of metastasizing tumor cells. There is hope that the understanding of how tetraspanins contribute to tumour progression indicates novel approaches to therapy.

References

  1. Abache T, Le Naour F, Planchon S, Harper F, Boucheix C, Rubinstein E (2007) The transferrin receptor and the tetraspanin web molecules CD9, CD81, and CD9P-1 are differentially sorted into exosomes after TPA treatment of K562 cells. J Cell Biochem 102:650–664PubMedGoogle Scholar
  2. Aharon A, Brenner B (2009) Microparticles, thrombosis and cancer. Best Pract Res Clin Haematol 22:61–69PubMedGoogle Scholar
  3. Albini A, Mirisola V, Pfeffer U (2008) Metastasis signatures: genes regulating tumor-­microenvironment interactions predict metastatic behavior. Cancer Metastasis Rev 27:75–83PubMedGoogle Scholar
  4. Al-Nedawi K, Meehan B, Rak J (2009) Microvesicles: messengers and mediators of tumor progression. Cell Cycle 8:2014–2018PubMedGoogle Scholar
  5. André F, Schartz NE, Chaput N, Flament C, Raposo G, Amigorena S, Angevin E, Zitvogel L (2002) Tumor-derived exosomes: a new source of tumor rejection antigens. Vaccine 20(Suppl 4):A28–A31PubMedGoogle Scholar
  6. Ang J, Lijovic M, Ashman LK, Kan K, Frauman AG (2004) CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator? Cancer Epidemiol Biomarkers Prev 13:1717–1721PubMedGoogle Scholar
  7. Arduise C, Abache T, Li L, Billard M, Chabanon A, Ludwig A, Mauduit P, Boucheix C, Rubinstein E, Le Naour F (2008) Tetraspanins regulate ADAM10-mediated cleavage of TNF-alpha and epidermal growth factor. J Immunol 181:7002–7013PubMedGoogle Scholar
  8. Arencibia JM, Martin S, Perez-Rodriguez FJ, Bonnin A (2009) Gene expression profiling reveals overexpression of TSPAN13 in prostate cancer. Int J Oncol 34:457–463PubMedGoogle Scholar
  9. Atkinson B, Ernst CS, Ghrist BF, Herlyn M, Blaszczyk M, Ross AH, Herlyn D, Steplewski Z, Koprowski H (1984) Identification of melanoma-associated antigens using fixed tissue screening of antibodies. Cancer Res 44:2577–2581PubMedGoogle Scholar
  10. Avin E, Haimovich J, Hollander N (2004) Anti-idiotype x anti-CD44 bispecific antibodies inhibit invasion of lymphoid organs by B cell lymphoma. J Immunol 173:4736–4743PubMedGoogle Scholar
  11. Bahi A, Boyer F, Kolira M, Dreyer JL (2005) In vivo gene silencing of CD81 by lentiviral expression of small interference RNAs suppresses cocaine-induced behaviour. J Neurochem 92:1243–1255PubMedGoogle Scholar
  12. Baldwin G, Novitskaya V, Sadej R, Pochec E, Litynska A, Hartmann C, Williams J, Ashman L, Eble JA, Berditchevski F (2008) Tetraspanin CD151 regulates glycosylation of (alpha)3(beta)1 integrin. J Biol Chem 283:35445–35454PubMedGoogle Scholar
  13. Bandyopadhyay S, Zhan R, Chaudhuri A, Watabe M, Pai SK, Hirota S, Hosobe S, Tsukada T, Miura K, Takano Y, Saito K, Pauza ME, Hayashi S, Wang Y, Mohinta S, Mashimo T, Iiizumi M, Furuta E, Watabe K (2006) Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 12:933–938PubMedGoogle Scholar
  14. Bari R, Zhang YH, Zhang F, Wang NX, Stipp CS, Zheng JJ, Zhang XA (2009) Transmembrane interactions are needed for KAI1/CD82-mediated suppression of cancer invasion and metastasis. Am J Pathol 174:647–660PubMedGoogle Scholar
  15. Barreiro O, Yáñez-Mó M, Sala-Valdés M, Gutiérrez-López MD, Ovalle S, Higginbottom A, Monk PN, Cabañas C, Sánchez-Madrid F (2005) Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 105:2852–2861PubMedGoogle Scholar
  16. Bass R, Werner F, Odintsova E, Sugiura T, Berditchevski F, Ellis V (2005) Regulation of urokinase receptor proteolytic function by the tetraspanin CD82. J Biol Chem 280:14811–14818PubMedGoogle Scholar
  17. Belting M, Wittrup A (2008) J nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. Cell Biol 183:1187–1191Google Scholar
  18. Berckmans RJ, Neiuwland R, Böing AN, Romijn FP, Hack CE, Sturk A (2001) Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 85:639–646PubMedGoogle Scholar
  19. Berditchevski F (2001) Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 114:4143–4151PubMedGoogle Scholar
  20. Berditchevski F, Odintsova E (2007) Tetraspanins as regulators of protein trafficking. Traffic 8:89–96PubMedGoogle Scholar
  21. Berditchevski F, Odintsova E, Sawada S, Gilbert E (2002) Expression of the palmitoylation-­deficient CD151 weakens the association of alpha 3 beta 1 integrin with the tetraspanin-­enriched microdomains and affects integrin-dependent signaling. J Biol Chem 277:36991–37000PubMedGoogle Scholar
  22. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744PubMedGoogle Scholar
  23. Bissell MJ, Labarge MA (2005) Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7:17–23PubMedGoogle Scholar
  24. Boismenu R, Rhein M, Fischer WH, Havran WL (1996) A role for CD81 in early T cell development. Science 271:198–200PubMedGoogle Scholar
  25. Bouras T, Frauman AG (1999) Expression of the prostate cancer metastasis suppressor gene KAI1 in primary prostate cancers: a biphasic relationship with tumour grade. J Pathol 188:382–388PubMedGoogle Scholar
  26. Boyiadzis M, Foon KA (2008) Approved monoclonal antibodies for cancer therapy. Expert Opin Biol Ther 8:1151–1158PubMedGoogle Scholar
  27. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005) Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749PubMedGoogle Scholar
  28. Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD, Sikic BI (2005) Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res 65:8679–8689PubMedGoogle Scholar
  29. Burghoff S, Ding Z, Gödecke S, Assmann A, Wirrwar A, Buchholz D, Sergeeva O, Leurs C, Hanenberg H, Müller HW, Bloch W, Schrader J (2008) Horizontal gene transfer from human endothelial cells to rat cardiomyocytes after intracoronary transplantation. Cardiovasc Res 77:534–543PubMedGoogle Scholar
  30. Calaluce R, Gubin MM, Davis JW, Magee JD, Chen J, Kuwano Y, Gorospe M, Atasoy U (2010) The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer. BMC Cancer 10:126PubMedGoogle Scholar
  31. Caswell P, Norman J (2008) Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol 18:257–263PubMedGoogle Scholar
  32. Charrin S, Manié S, Oualid M, Billard M, Boucheix C, Rubinstein E (2002) Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett 516:139–144PubMedGoogle Scholar
  33. Chen Z, Mustafa T, Trojanowicz B, Brauckhoff M, Gimm O, Schmutzler C, Kohrle J, Holzhausen HJ, Kehlen A, Klonisch T, Finke R, Dralle H, Hoang-Vu C (2004) CD82, and CD63 in thyroid cancer. Int J Mol Med 14:517–527PubMedGoogle Scholar
  34. Chen L, Li X, Wang GL, Wang Y, Zhu YY, Zhu J (2008) Clinicopathological significance of overexpression of TSPAN1, Ki67 and CD34 in gastric carcinoma. Tumori 94:531–538PubMedGoogle Scholar
  35. Chen L, Zhu YY, Zhang XJ, Wang GL, Li XY, He S, Zhang JB, Zhu JW (2009) TSPAN1 Protein expression: a significant prognostic indicator for patients with colorectal adenocarcinoma. World J Gastroenterol 15:2270–2276PubMedGoogle Scholar
  36. Chen L, Zhu Y, Li H, Wang GL, Wu YY, Lu YX, Qin J, Tuo J, Wang JL, Zhu J (2010) Knockdown of TSPAN1 by RNA silencing and antisense technique inhibits proliferation and infiltration of human skin squamous carcinoma cells. Tumori 96:289–295PubMedGoogle Scholar
  37. Chien CW, Lin SC, Lai YY, Lin BW, Lin SC, Lee JC, Tsai SJ (2008) Regulation of CD151 by hypoxia controls cell adhesion and metastasis in colorectal cancer. Clin Cancer Res 14:8043–8051PubMedGoogle Scholar
  38. Christgen M, Bruchhardt H, Ballmaier M, Krech T, Langer F, Kreipe H, Lehmann U (2008) KAI1/CD82 is a novel target of estrogen receptor-mediated gene repression and downregulated in primary human breast cancer. Int J Cancer 123:2239–2246PubMedGoogle Scholar
  39. Christgen M, Christgen H, Heil C, Krech T, Langer F, Kreipe H, Lehmann U (2009) Expression of KAI1/CD82 in distant metastases from estrogen receptor-negative breast cancer. Cancer Sci 100:1767–1771PubMedGoogle Scholar
  40. Claas C, Seiter S, Claas A, Savelyeva L, Schwab M, Zöller M (1998) Association between the rat homologue of CO-029, a metastasis-associated tetraspanin molecule and consumption coagulopathy. J Cell Biol 141:267–280PubMedGoogle Scholar
  41. Claas C, Wahl J, Orlicky DJ, Karaduman H, Schnölzer M, Kempf T, Zöller M (2005) The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. Biochem J 389:99–110PubMedGoogle Scholar
  42. Coombs GS, Covey TM, Virshup DM (2008) Wnt signaling in development, disease and translational medicine. Curr Drug Targets 9:513–531PubMedGoogle Scholar
  43. De Bruyne E, Andersen TL, De Raeve H, Van Valckenborgh E, Caers J, Van Camp B, Delaisse JM, Van Riet I, Vanderkerken K (2006) Endothelial cell-driven regulation of CD9 or motility-­related protein-1 expression in multiple myeloma cells within the murine 5T33MM model and myeloma patients. Leukemia 20:1870–1879PubMedGoogle Scholar
  44. De Bruyne E, Bos TJ, Asosingh K, Vande Broek I, Menu E, Van Valckenborgh E, Atadja P, Coiteux V, Leleu X, Thielemans K, Van Camp B, Vanderkerken K, Van Riet I (2008) Epigenetic silencing of the tetraspanin CD9 during disease progression in multiple myeloma cells and correlation with survival. Clin Cancer Res 14:2918–2926PubMedGoogle Scholar
  45. De Cicco M (2004) The prothrombotic state in cancer: pathogenic mechanisms. Crit Rev Oncol Hematol 50:187–196PubMedGoogle Scholar
  46. de Gassart A, Géminard C, Hoekstra D, Vidal M (2004) Exosome secretion: the art of reutilizing nonrecycled proteins? Traffic 5:896–903PubMedGoogle Scholar
  47. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110:2440–2448PubMedGoogle Scholar
  48. Dev KK (2004) Making protein interactions druggable: targeting PDZ domains. Nat Rev Drug Discov 3:1047–1056PubMedGoogle Scholar
  49. Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, Barrett JC (1995) KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268:884–886PubMedGoogle Scholar
  50. Dong JT, Suzuki H, Pin SS, Bova GS, Schalken JA, Isaacs WB, Barrett JC, Isaacs JT (1996) Down-­regulation of the KAI1 metastasis suppressor gene during the progression of human prostatic cancer infrequently involves gene mutation or allelic loss. Cancer Res 56:4387–4390PubMedGoogle Scholar
  51. Drucker L, Tohami T, Tartakover-Matalon S, Zismanov V, Shapiro H, Radnay J, Lishner M (2006) Promoter hypermethylation of tetraspanin members contributes to their silencing in myeloma cell lines. Carcinogenesis 27:197–204PubMedGoogle Scholar
  52. Dumartin L, Quemener C, Laklai H, Dumartin L, Quemener C, Laklai H (2010) Netrin-1 mediates early events in pancreatic adenocarcinoma progression, acting on tumor and endothelial cells. Gastroenterology 138:1595–1606PubMedGoogle Scholar
  53. Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273:20121–20127PubMedGoogle Scholar
  54. Fan J, Zhu GZ, Niles RM (2010) Expression and function of CD9 in melanoma cells. Mol Carcinog 49:85–93PubMedGoogle Scholar
  55. Fang Y, Wu N, Gan X, Yan W, Morrell JC, Gould SJ (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5:e158PubMedGoogle Scholar
  56. Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16:415–421PubMedGoogle Scholar
  57. Fitter S, Tetaz T, Berndt MC, Ashman LK (1995) Molecular cloning of cDNA encoding a novel platelet, endothelial tetraspan antigen, PETA-3. Blood 86:1348–1355PubMedGoogle Scholar
  58. Flaumenhaft R (2006) Formation and fate of platelet microparticles. Blood Cells Mol Dis 36:182–187PubMedGoogle Scholar
  59. Folkman J (2004) Endogenous angiogenesis inhibitors. APMIS 112:496–507PubMedGoogle Scholar
  60. Fraley TS, Tran TC, Corgan AM, Nash CA, Hao J, Critchley DR, Greenwood JA (2003) Phosphoinositide binding inhibits alpha-actinin bundling activity. J Biol Chem 278:24039–24045PubMedGoogle Scholar
  61. Franchini M, Montagnana M, Targher G, Lippi G (2007) Reduced von Willebrand factor-cleaving protease levels in secondary thrombotic microangiopathies and other diseases. J Thromb Thrombolysis 24:29–38PubMedGoogle Scholar
  62. Furuya M, Kato H, Nishimura N, Ishiwata I, Ikeda H, Ito R, Yoshiki T, Ishikura H (2005) Down-­regulation of CD9 in human ovarian carcinoma cell might contribute to peritoneal dissemination: morphologic alteration and reduced expression of beta1 integrin subsets. Cancer Res 65:2617–2625PubMedGoogle Scholar
  63. Gao AC, Lou W, Dong JT, Barrett JC, Danielpour D, Isaacs JT (2003) Defining regulatory elements in the human KAI1 (CD 82) metastasis suppressor gene. Prostate 57:256–260PubMedGoogle Scholar
  64. Garcia-Lopez MA, Barreiro O, Garcia-Diez A, Sanchez-Madrid F, Penas PF (2005) Role of tetraspanins CD9 and CD151 in primary melanocyte motility. J Invest Dermatol 125:1001–1009PubMedGoogle Scholar
  65. Geary SM, Cambareri AC, Sincock PM, Fitter S, Ashman LK et al (2001) Differential tissue expression of epitopes of the tetraspanin CD151 recognised by monoclonal antibodies. Tissue Antigens 58:141–153PubMedGoogle Scholar
  66. Geiger TR, Peeper DS (2009) Metastasis mechanisms. Biochim Biophys Acta 1796:293–308PubMedGoogle Scholar
  67. Gesierich S, Paret C, Hildebrand D, Weitz J, Zgraggen K, Schmitz-Winnenthal FH, Horejsi V, Yoshie O, Herlyn D, Ashman LK, Zöller M (2005) Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clin Cancer Res 11:2840–2852PubMedGoogle Scholar
  68. Gesierich S, Berezovskiy I, Ryschich E, Zöller M (2006) Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res 66:7083–7094PubMedGoogle Scholar
  69. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11:1143–1149PubMedGoogle Scholar
  70. Greco C, Bralet MP, Ailane N, Dubart-Kupperschmitt A, Rubinstein E, Le Naour F, Boucheix C (2010) E-cadherin/p120-catenin and tetraspanin Co-029 cooperate for cell motility control in human colon carcinoma. Cancer Res 70:7674–7683PubMedGoogle Scholar
  71. Griffith L, Slupsky J, Seehafer J, Boshkov L, Shaw AR (1991) Platelet activation by immobilized monoclonal antibody: evidence for a CD9 proximal signal. Blood 78:1753–1759PubMedGoogle Scholar
  72. Gruenberg J, Stenmark H (2004) The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol 5:317–323PubMedGoogle Scholar
  73. Grünwald V, Soltau J, Ivanyi P, Rentschler J, Reuter C, Drevs J (2009) Molecular targeted therapies for solid tumors: management of side effects. Onkologie 32:129–138PubMedGoogle Scholar
  74. Gutiérrez-López MD, Gilsanz A, Yáñez-Mó M, Ovalle S, Lafuente EM, Domínguez C, Monk PN, González-Alvaro I, Sánchez-Madrid F, Cabañas C (2011) The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9. Cell Mol Life Sci 68:3275–3292PubMedGoogle Scholar
  75. Hakomori SI (2010) Glycosynaptic microdomains controlling tumor cell phenotype through alteration of cell growth, adhesion, and motility. FEBS Lett 584:1901–1906PubMedGoogle Scholar
  76. Hao S, Ye Z, Li F, Meng Q, Qureshi M, Yang J, Xiang J (2006) Epigenetic transfer of metastatic activity by uptake of highly metastatic B16 melanoma cell-released exosomes. Exp Oncol 28:126–131PubMedGoogle Scholar
  77. Hasegawa M, Furuya M, Kasuya Y, Nishiyama M, Sugiura T, Nikaido T, Momota Y, Ichinose M, Kimura S (2007) CD151 dynamics in carcinoma-stroma interaction: integrin expression, adhesion strength and proteolytic activity. Lab Invest 87:882–892PubMedGoogle Scholar
  78. Hashida H, Takabayashi A, Tokuhara T, Hattori N, Taki T, Hasegawa H, Satoh S, Kobayashi N, Yamaoka Y, Miyake M (2003) Clinical significance of transmembrane 4 superfamily in colon cancer. Br J Cancer 89:158–167PubMedGoogle Scholar
  79. He B, Liu L, Cook GA, Grgurevich S, Jennings LK, Zhang XA (2005) Tetraspanin CD82 attenuates cellular morphogenesis through down-regulating integrin alpha6-mediated cell adhesion. J Biol Chem 280:3346–3354PubMedGoogle Scholar
  80. Heinonen M, Bono P, Narko K, Chang SH, Lundin J, Joensuu H, Furneaux H, Hla T, Haglund C, Ristimaki A (2005) Cytoplasmic HuR expression is a prognostic factor in invasive ductal breast carcinoma. Cancer Res 65:2157–2161PubMedGoogle Scholar
  81. Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422PubMedGoogle Scholar
  82. Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811PubMedGoogle Scholar
  83. Hemler ME (2008) Targeting of tetraspanin proteins-potential benefits and strategies. Nat Rev Drug Discov 7:747–758PubMedGoogle Scholar
  84. Herlevsen M, Schmidt DS, Miyazaki K, Zöller M (2003) The association of the tetraspanin D6.1A with the alpha6beta4 integrin supports cell motility and liver metastasis formation. J Cell Sci 116:4373–4390PubMedGoogle Scholar
  85. Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Metastasis Rev 26:489–502Google Scholar
  86. Hirano C, Nagata M, Noman AA, Kitamura N, Ohnishi M, Ohyama T, Kobayashi T, Suzuki K, Yoshizawa M, Izumi N, Fujita H, Takagi R (2009) Tetraspanin gene expression levels as potential biomarkers for malignancy of gingival squamous cell carcinoma. Int J Cancer 124:2911–2916PubMedGoogle Scholar
  87. Holderfield MT, Hughes CC (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102:637–652PubMedGoogle Scholar
  88. Hong IK, Jin YJ, Byun HJ, Jeoung DI, Kim YM, Lee H (2006) Homophilic interactions of tetraspanin CD151 up-regulate motility and matrix metalloproteinase-9 expression of human melanoma cells through adhesion-dependent c-Jun activation signaling pathways. J Biol Chem 281:24279–24292PubMedGoogle Scholar
  89. Hori H, Yano S, Koufuji K, Takeda J, Shirouzu K (2004) CD9 expression in gastric cancer and its significance. J Surg Res 117:208–215PubMedGoogle Scholar
  90. Hotta H, Ross AH, Huebner K, Isobe M, Wendeborn S, Chao MV, Ricciardi RP, Tsujimoto Y, Croce CM, Koprowski H (1988) Molecular cloning and characterization of an antigen associated with early stages of melanoma tumor progression. Cancer Res 48:2955–2962PubMedGoogle Scholar
  91. Huang CI, Kohno N, Ogawa E, Adachi M, Taki T, Miyake M (1998) Correlation of reduction in MRP-1/CD9 and KAI1/CD82 expression with recurrences in breast cancer patients. Am J Pathol 153:973–983PubMedGoogle Scholar
  92. Huang CL, Liu D, Masuya D, Kameyama K, Nakashima T, Yokomise H, Ueno M, Miyake M (2004) MRP-1/CD9 gene transduction downregulates Wnt signal pathways. Oncogene 23:7475–7483PubMedGoogle Scholar
  93. Huang H, Groth J, Sossey-Alaoui K, Hawthorn L, Beall S, Geradts J (2005) Aberrant expression of novel and previously described cell membrane markers in human breast cancer cell lines and tumors. Clin Cancer Res 11:4357–4364PubMedGoogle Scholar
  94. Huang CL, Ueno M, Liu D, Masuya D, Nakano J, Yokomise H, Nakagawa T, Miyake M (2006) MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2. Oncogene 25:6480–6488PubMedGoogle Scholar
  95. Huang H, Sossey-Alaoui K, Beachy SH, Geradts J (2007) The tetraspanin superfamily member NET-6 is a new tumor suppressor gene. J Cancer Res Clin Oncol 133:761–769PubMedGoogle Scholar
  96. Huang XY, Ke AW, Shi GM, Ding ZB, Devbhandari RP, Gu FM, Li QL, Dai Z, Zhou J, Fan J (2010) Overexpression of CD151 as an adverse marker for intrahepatic cholangiocarcinoma patients. Cancer 116:5440–5451PubMedGoogle Scholar
  97. Huerta S, Harris DM, Jazirehi A, Bonavida B, Elashoff D, Livingston EH, Heber D (2003) Gene expression profile of metastatic colon cancer cells resistant to cisplatin-induced apoptosis. Int J Oncol 22:663–670PubMedGoogle Scholar
  98. Hurley JH, Emr SD (2006) The ESCRT complexes: structure and mechanism of a membrane-­trafficking network. Annu Rev Biophys Biomol Struct 35:277–298PubMedGoogle Scholar
  99. Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L (2008) Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15:80–88PubMedGoogle Scholar
  100. Ikeyama S, Koyama M, Yamaoko M, Sasada R, Miyake M (1993) Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA. J Exp Med 177:1231–1237PubMedGoogle Scholar
  101. Jackson P, Millar D, Kingsley E, Yardley G, Ow K, Clark S, Russell PJ (2000) Methylation of a CpG island within the promoter region of the KAI1 metastasis suppressor gene is not responsible for down-regulation of KAI1 expression in invasive cancers or cancer cell lines. Cancer Lett 157:169–176PubMedGoogle Scholar
  102. Jackson P, Marreiros A, Russell PJ (2005) KAI1 tetraspanin and metastasis suppressor. Int J Biochem Cell Biol 37:530–534PubMedGoogle Scholar
  103. Jackson P, Rowe A, Grimm MO (2007) An alternatively spliced KAI1 mRNA is expressed at low levels in human bladder cancers and bladder cancer cell lines and is not associated with invasive behaviour. Oncol Rep 18:1357–1363PubMedGoogle Scholar
  104. Jankowski SA, De Jong P, Meltzer PS (1995) Genomic structure of SAS, a member of the transmembrane 4 superfamily amplified in human sarcomas. Genomics 25:501–506PubMedGoogle Scholar
  105. Janmey PA, Lindberg U (2004) Cytoskeletal regulation: rich in lipids. Nat Rev Mol Cell Biol 5:658–666PubMedGoogle Scholar
  106. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, Ratajczak MZ (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113:752–760PubMedGoogle Scholar
  107. Johnson JL, Winterwood N, DeMali KA, Stipp CS (2009) Tetraspanin CD151 regulates RhoA activation and the dynamic stability of carcinoma cell-cell contacts. J Cell Sci 122:2263–2273PubMedGoogle Scholar
  108. Johnstone RM (2006) Exosomes biological significance: a concise review. Blood Cells Mol Dis 36:315–321PubMedGoogle Scholar
  109. Joshi B, Li L, Nabi IR (2010) A role for KAI1 in promotion of cell proliferation and mammary gland hyperplasia by the gp78 ubiquitin ligase. J Biol Chem 285:8830–8839PubMedGoogle Scholar
  110. Jung T, Castellana D, Klingbeil P, Cuesta Hernández I, Vitacolonna M, Orlicky DJ, Roffler SR, Brodt P, Zöller M (2009) CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia 11:1093–1105PubMedGoogle Scholar
  111. Kanetaka K, Sakamoto M, Yamamoto Y, Yamasaki S, Lanza F, Kanematsu T, Hirohashi S (2001) Overexpression of tetraspanin CO-029 in hepatocellular carcinoma. J Hepatol 35:637–642PubMedGoogle Scholar
  112. Kanetaka K, Sakamoto M, Yamamoto Y, Takamura M, Kanematsu T, Hirohashi S et al (2003) Possible involvement of tetraspanin CO-029 in hematogenous intrahepatic metastasis of liver cancer cells. J Gastroenterol Hepatol 18:1309–1314PubMedGoogle Scholar
  113. Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093PubMedGoogle Scholar
  114. Karamatic Crew V, Burton N, Kagan A, Green CA, Levene C, Flinter F, Brady RL, Daniels G, Anstee DJ (2004) CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood 104:2217–2223PubMedGoogle Scholar
  115. Ke AW, Shi GM, Zhou J, Wu FZ, Ding ZB, Hu MY, Xu Y, Song ZJ, Wang ZJ, Wu JC, Bai DS, Li JC, Liu KD, Fan J (2009) Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma. Hepatology 49:491–503PubMedGoogle Scholar
  116. Kim YJ, Yu JM, Joo HJ, Kim HK, Cho HH, Bae YC, Jung JS (2007) Role of CD9 in proliferation and proangiogenic action of human adipose-derived mesenchymal stem cells. Pflugers Arch 455:283–296PubMedGoogle Scholar
  117. Kim B, Boo K, Lee JS, Kim KI, Kim WH, Cho HJ, Park YB, Kim HS, Baek SH (2010) Identification of the KAI1 metastasis suppressor gene as a hypoxia target gene. Biochem Biophys Res Commun 393:179–184PubMedGoogle Scholar
  118. Klosek SK, Nakashiro K, Hara S, Shintani S, Hasegawa H, Hamakawa H (2005) CD151 forms a functional complex with c-Met in human salivary gland cancer cells. Biochem Biophys Res Commun 336:408–416PubMedGoogle Scholar
  119. Kohmo S, Kijima T, Otani Y, Mori M, Minami T, Takahashi R, Nagatomo I, Takeda Y, Kida H, Goya S, Yoshida M, Kumagai T, Tachibana I, Yokota S, Kawase I (2010) Cell surface ­tetraspanin CD9 mediates chemoresistance in small cell lung cancer. Cancer Res 70:8025–8035PubMedGoogle Scholar
  120. Kohno M, Hasegawa H, Miyake M, Yamamoto T, Fujita S (2002) CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase. Int J Cancer 97:336–343PubMedGoogle Scholar
  121. Kovalenko OV, Metcalf DG, DeGrado WF, Hemler ME (2005) Structural organization and interactions of transmembrane domains in tetraspanin proteins. BMC Struct Biol 5:11PubMedGoogle Scholar
  122. Kuhn S, Koch M, Nübel T, Ladwein M, Antolovic D, Klingbeil P, Hildebrand D, Moldenhauer G, Langbein L, Franke WW, Weitz J, Zöller M (2007) A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Mol Cancer Res 5:553–567PubMedGoogle Scholar
  123. Kwon MS, Shin SH, Yim SH, Lee KY, Kang HM, Kim TM, Chung YJ (2007) CD63 as a biomarker for predicting the clinical outcomes in adenocarcinoma of lung. Lung Cancer 57:46–53PubMedGoogle Scholar
  124. Lafleur MA, Xu D, Hemler ME (2009) Tetraspanin proteins regulate membrane type-1 matrix metalloproteinase-dependent pericellular proteolysis. Mol Biol Cell 20:2030–2040PubMedGoogle Scholar
  125. Lakkaraju A, Rodriguez-Boulan E (2008) Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol 18:199–209PubMedGoogle Scholar
  126. Lan RF, Liu ZX, Liu XC, Song YE, Wang DW (2005) CD151 promotes neovascularization and improves blood perfusion in a rat hind-limb ischemia model. J Endovasc Ther 12:469–478PubMedGoogle Scholar
  127. Latysheva N, Muratov G, Rajesh S, Padgett M, Hotchin NA, Overduin M, Berditchevski F (2006) Syntenin-1 is a new component of tetraspanin-enriched microdomains: mechanisms and consequences of the interaction of syntenin-1 with CD63. Mol Cell Biol 26:7707–7718PubMedGoogle Scholar
  128. Lau LM, Wee JL, Wright MD, Moseley GW, Hogarth PM, Ashman LK, Jackson DE (2004) The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function. Blood 104:2368–2375PubMedGoogle Scholar
  129. Le Naour F, André M, Boucheix C, Rubinstein E (2006) Membrane microdomains and proteomics: lessons from tetraspanin microdomains and comparison with lipid rafts. Proteomics 6:6447–6454PubMedGoogle Scholar
  130. Le Tonqueze O, Gschloessl B, Namanda-Vanderbeken A, Legagneux V, Paillard L, Audic Y (2010) Chromosome wide analysis of CUGBP1 binding sites identifies the tetraspanin CD9 mRNA as a target for CUGBP1-mediated down-regulation. Biochem Biophys Res Commun 394:884–889PubMedGoogle Scholar
  131. Lee JH, Seo YW, Park SR, Kim YJ, Kim KK (2003) Expression of a splice variant of KAI1, a tumor metastasis suppressor gene, influences tumor invasion and progression. Cancer Res 63:7247–7255PubMedGoogle Scholar
  132. Lee JH, Park SR, Chay KO, Seo YW, Kook H, Ahn KY, Kim YJ, Kim KK (2004) KAI1 COOH-terminal interacting tetraspanin (KITENIN), a member of the tetraspanin family, interacts with KAI1, a tumor metastasis suppressor, and enhances metastasis of cancer. Cancer Res 64:4235–4243PubMedGoogle Scholar
  133. Lee JH, Bae JA, Lee JH, Seo YW, Kho DH, Sun EG, Lee SE, Cho SH, Joo YE, Ahn KY, Chung IJ, Kim KK (2010) Glycoprotein 90 K, downregulated in advanced colorectal cancer tissues, interacts with CD9/CD82 and suppresses the Wnt/beta-catenin signal via ISGylation of beta-catenin. Gut 59:907–917PubMedGoogle Scholar
  134. Lekishvili T, Fromm E, Mujoomdar M, Berditchevski F (2008) The tumour-associated antigen L6 (L6-Ag) is recruited to the tetraspanin-enriched microdomains: implication for tumour cell motility. J Cell Sci 121:685–694PubMedGoogle Scholar
  135. Levy S, Shoham T (2005) Protein-protein interactions in the tetraspanin web. Physiology (Bethesda) 20:218–224Google Scholar
  136. Levy S, Todd SC, Maecker HT (1998) CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Annu Rev Immunol 16:89–109PubMedGoogle Scholar
  137. Lewis TB, Robison JE, Bastien R, Milash B, Boucher K, Samlowski WE, Leachman SA, Dirk Noyes R, Wittwer CT, Perreard L, Bernard PS (2005) Molecular classification of melanoma using real-­time quantitative reverse transcriptase-polymerase chain reaction. Cancer 104:1678–1686PubMedGoogle Scholar
  138. Li Q, Li L, Shi W, Jiang X, Xu Y, Gong F, Zhou M, Edwards CK III, Li Z (2006) Mechanism of action differences in the antitumor effects of transmembrane and secretory tumor necrosis factor-­alpha in vitro and in vivo. Cancer Immunol Immunother 55:1470–1479PubMedGoogle Scholar
  139. Lineberry N, Su L, Soares L, Fathman CG (2008) The single subunit transmembrane E3 ligase gene related to anergy in lymphocytes (GRAIL) captures and then ubiquitinates transmembrane proteins across the cell membrane. J Biol Chem 283:28497–28505PubMedGoogle Scholar
  140. Little KD, Hemler ME, Stipp CS (2004) Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-galpha q/11 association. Mol Biol Cell 15:2375–2387PubMedGoogle Scholar
  141. Liu WM, Zhang XA (2006) KAI1/CD82, a tumor metastasis suppressor. Cancer Lett 240:183–194PubMedGoogle Scholar
  142. Liu FS, Dong JT, Chen JT, Hsieh YT, Ho ES, Hung MJ (2000) Frequent down-regulation and lack of mutation of the KAI1 metastasis suppressor gene in epithelial ovarian carcinoma. Gynecol Oncol 78:10–15PubMedGoogle Scholar
  143. Liu L, He B, Liu WM, Zhou D, Cox JV, Zhang XA (2007) Tetraspanin CD151 promotes cell migration by regulating integrin trafficking. J Biol Chem 282:31631–31642PubMedGoogle Scholar
  144. Liu WF, Zuo HJ, Chai BL, Peng D, Fei YJ, Lin JY, Yu XH, Wang DW, Liu ZX (2011) Role of tetraspanin CD151-α3/α6 integrin complex: implication in angiogenesis CD151-integrin complex in angiogenesis. Int J Biochem Cell Biol 43:642–650PubMedGoogle Scholar
  145. Lombardi DP, Geradts J, Foley JF, Chiao C, Lamb PW, Barrett JC (1999) Loss of KAI1 expression in the progression of colorectal cancer. Cancer Res 59:5724–5731PubMedGoogle Scholar
  146. Longo N, Yáñez-Mó M, Mittelbrunn M, de la Rosa G, Muñoz ML, Sánchez-Madrid F, Sánchez-­Mateos P (2001) Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial invasion of melanoma cells. Blood 98:3717–3726PubMedGoogle Scholar
  147. Lopez de Silanes I, Lal A, Gorospe M (2005) HuR: post-transcriptional paths to malignancy. RNA Biol 2:11–13PubMedGoogle Scholar
  148. Louvet-Vallée S (2000) ERM proteins: from cellular architecture to cell signaling. Biol Cell 92:305–316PubMedGoogle Scholar
  149. Maecker HT, Todd SC, Levy S (1997) The tetraspanin superfamily: molecular facilitators. FASEB J 11:428–442PubMedGoogle Scholar
  150. Mangin PH, Kleitz L, Boucheix C, Gachet C, Lanza F (2009) CD9 negatively regulates integrin alphaIIbbeta3 activation and could thus prevent excessive platelet recruitment at sites of vascular injury. J Thromb Haemost 7:900–902PubMedGoogle Scholar
  151. Marks MS, Ohno H, Kirchnausen T, Bonracino JS (1997) Protein sorting by tyrosine-based signals: adapting to the Ys and wherefores. Trends Cell Biol 7:124–128PubMedGoogle Scholar
  152. Marreiros A, Czolij R, Yardley G, Crossley M, Jackson P (2003) Identification of regulatory regions within the KAI1 promoter: a role for binding of AP1, AP2 and p53. Gene 302:155–164PubMedGoogle Scholar
  153. Marreiros A, Dudgeon K, Dao V, Grimm MO, Czolij R, Crossley M, Jackson P (2005) KAI1 promoter activity is dependent on p53, junB and AP2: evidence for a possible mechanism underlying loss of KAI1 expression in cancer cells. Oncogene 24:637–649PubMedGoogle Scholar
  154. Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL, Simpson RJ (2010) Proteomic analysis of A33-­immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9:197–208PubMedGoogle Scholar
  155. Maurer CA, Graber HU, Friess H, Beyermann B, Willi D, Netzer P, Zimmermann A, Buchler MW (1999) Reduced expression of the metastasis suppressor gene KAI1 in advanced colon cancer and its metastases. Surgery 126:869–880PubMedGoogle Scholar
  156. Mazzocca A, Liotta F, Carloni V (2008) Tetraspanin CD81-regulated cell motility plays a critical role in intrahepatic metastasis of hepatocellular carcinoma. Gastroenterology 135:244–256PubMedGoogle Scholar
  157. Miranti CK (2009) Controlling cell surface dynamics and signaling: how CD82/KAI1 suppresses metastasis. Cell Signal 21:196–211PubMedGoogle Scholar
  158. Mischiati C, Natali PG, Sereni A, Sibilio L, Giorda E, Cappellacci S, Nicotra MR, Mariani G, Di Filippo F, Catricala C, Gambari R, Grammatico P, Giacomini P (2006) cDNA-array profiling of melanomas and paired melanocyte cultures. J Cell Physiol 207:697–705PubMedGoogle Scholar
  159. Mitsuzuka K, Handa K, Satoh M, Arai Y, Hakomori S (2005) A specific microdomain (“glycosynapse 3”) controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9. J Biol Chem 280:35545–35553PubMedGoogle Scholar
  160. Miura Y, Kainuma M, Jiang H, Velasco H, Vogt PK, Hakomori S (2004) Reversion of the ­Jun-­induced oncogenic phenotype by enhanced synthesis of sialosyllactosylceramide (GM3 ganglioside). Proc Natl Acad Sci USA 101:16204–16209PubMedGoogle Scholar
  161. Miyake M, Koyama M, Seno M, Ikeyama S (1991) Identification of the motility-related protein (MRP-1), recognized by monoclonal antibody M31-15, which inhibits cell motility. J Exp Med 174:1347–1354PubMedGoogle Scholar
  162. Miyazaki T, Müller U, Campbell KS (1997) Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO J 16:4217–4225PubMedGoogle Scholar
  163. Molina S, Castet V, Pichard-Garcia L, Wychowski C, Meurs E, Pascussi JM, Sureau C, Fabre JM, Sacunha A, Larrey D, Dubuisson J, Coste J, McKeating J, Maurel P, Fournier-Wirth C (2008) Serum-derived hepatitis C virus infection of primary human hepatocytes is tetraspanin CD81 dependent. J Virol 82:569–574PubMedGoogle Scholar
  164. Morel O, Hugel B, Jesel L, Mallat Z, Lanza F, Douchet MP, Zupan M, Chauvin M, Cazenave JP, Tedgui A, Freyssinet JM, Toti F (2004) Circulating procoagulant microparticles and soluble GPV in myocardial infarction treated by primary percutaneous transluminal coronary angioplasty. A possible role for GPIIb-IIIa antagonists. J Thromb Haemost 2:1118–1126PubMedGoogle Scholar
  165. Moseley GW, Elliott J, Wright MD, Partridge LJ, Monk PN (2003) Interspecies contamination of the KM3 cell line: implications for CD63 function in melanoma metastasis. Int J Cancer 105:613–616PubMedGoogle Scholar
  166. Moss ML, Bartsch JW (2004) Therapeutic benefits from targeting of ADAM family members. Biochemistry 43:7227–7235PubMedGoogle Scholar
  167. Murayama Y, Miyagawa J, Oritani K, Yoshida H, Yamamoto K, Kishida O, Miyazaki T, Tsutsui S, Kiyohara T, Miyazaki Y, Higashiyama S, Matsuzawa Y, Shinomura Y (2004) CD9-mediated activation of the p46 Shc isoform leads to apoptosis in cancer cells. J Cell Sci 117:3379–3388PubMedGoogle Scholar
  168. Murayama Y, Shinomura Y, Oritani K, Miyagawa J, Yoshida H, Nishida M, Katsube F, Shiraga M, Miyazaki T, Nakamoto T, Tsutsui S, Tamura S, Higashiyama S, Shimomura I, Hayashi N (2008) The tetraspanin CD9 modulates epidermal growth factor receptor signaling in cancer cells. J Cell Physiol 216:135–143PubMedGoogle Scholar
  169. Nakamoto T, Murayama Y, Oritani K, Boucheix C, Rubinstein E, Nishida M, Katsube F, Watabe K, Kiso S, Tsutsui S, Tamura S, Shinomura Y, Hayashi N (2009) A novel therapeutic strategy with anti-CD9 antibody in gastric cancers. J Gastroenterol 44:889–896PubMedGoogle Scholar
  170. Nakazawa Y, Sato S, Naito M, Kato Y, Mishima K, Arai H, Tsuruo T, Fujita N (2008) Tetraspanin family member CD9 inhibits aggrus/podoplanin-induced platelet aggregation and suppresses pulmonary metastasis. Blood 112:1730–1739PubMedGoogle Scholar
  171. Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT, Zöller M (2010) Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 70:1668–1678PubMedGoogle Scholar
  172. Nishiuchi R, Sanzen N, Nada S, Sumida Y, Wada Y, Okada M, Takagi J, Hasegawa H, Sekiguchi K (2005) Potentiation of the ligand-binding activity of integrin alpha3beta1 via association with tetraspanin CD151. Proc Natl Acad Sci USA 102:1939–1944PubMedGoogle Scholar
  173. Novitskaya V, Romanska H, Dawoud M, Jones JL, Berditchevski F (2010) Tetraspanin CD151 regulates growth of mammary epithelial cells in three-dimensional extracellular matrix: implication for mammary ductal carcinoma in situ. Cancer Res 70:4698–4708PubMedGoogle Scholar
  174. Nübel T, Preobraschenski J, Tuncay H, Weiss T, Kuhn S, Ladwein M, Langbein L, Zöller M (2009) Claudin-7 regulates EpCAM-mediated functions in tumor progression. Mol Cancer Res 7:285–299PubMedGoogle Scholar
  175. Odintsova E, Sugiura T, Berditchevski F (2000) Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI-1. Curr Biol 10:1009–1012PubMedGoogle Scholar
  176. Odintsova E, Voortman J, Gilbert E, Berditchevski F (2003) Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. J Cell Sci 116:4557–4566PubMedGoogle Scholar
  177. Odintsova E, Butters TD, Monti E, Sprong H, van Meer G, Berditchevski F (2006) Gangliosides play an important role in the organization of CD82-enriched microdomains. Biochem J 400:315–325PubMedGoogle Scholar
  178. Ono M, Handa K, Withers DA, Hakomori S (1999) Motility inhibition and apoptosis are induced by metastasis-suppressing gene product CD82 and its analogue CD9, with concurrent glycosylation. Cancer Res 59:2335–2339PubMedGoogle Scholar
  179. Oren R, Takahashi S, Doss C, Levy R, Levy S et al (1990) TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol 10:4007–4015PubMedGoogle Scholar
  180. Orlowski E, Chand R, Yip J, Wong C, Goschnick MW, Wright MD, Ashman LK, Jackson DE (2009) Platelet tetraspanin superfamily member, CD151 is required for regulation of thrombus stability in vivo. J Thromb Haemost 7:2074–2084PubMedGoogle Scholar
  181. Ovalle S, Gutiérrez-López MD, Olmo N, Turnay J, Lizarbe MA, Majano P, Molina-Jiménez F, López-­Cabrera M, Yáñez-Mó M, Sánchez-Madrid F, Cabañas C (2007) The tetraspanin CD9 inhibits the proliferation and tumorigenicity of human colon carcinoma cells. Int J Cancer 121:2140–2152PubMedGoogle Scholar
  182. Pap E, Pállinger E, Pásztói M, Falus A (2009) Highlights of a new type of intercellular communication: microvesicle-based information transfer. Inflamm Res 58:1–8PubMedGoogle Scholar
  183. Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, Lim SK, Sze SK (2010) Hypoxia modulates tumor microenvironment to enhance angiogenic and metastastic potential by secretion of proteins and exosomes. Mol Cell Proteomics 9:1085–1099PubMedGoogle Scholar
  184. Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M (2008) Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319:627–630PubMedGoogle Scholar
  185. Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Exp Cell Res 315:1584–1592PubMedGoogle Scholar
  186. Potolicchio I, Carven GJ, Xu X, Stipp C, Riese RJ, Stern LJ, Santambrogio L (2005) Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 175:2237–2243PubMedGoogle Scholar
  187. Press OW, Eary JF, Badger CC, Martin PJ, Appelbaum FR, Levy R, Miller R, Brown S, Nelp WB, Krohn KA et al (1989) Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol 7:1027–1038PubMedGoogle Scholar
  188. Prince S, Carreira S, Vance KW, Abrahams A, Goding CR (2004) Tbx2 directly represses the expression of the p21(WAF1) cyclin-dependent kinase inhibitor. Cancer Res 64:1669–1674PubMedGoogle Scholar
  189. Radford KJ, Thorne RF, Hersey P (1997) Regulation of tumor cell motility and migration by CD63 in a human melanoma cell line. J Immunol 158:3353–3358PubMedGoogle Scholar
  190. Rana S, Claas C, Kretz CC, Nazarenko I, Zöller M et al (2011) Activation-induced internalization differs for the tetraspanins CD9 and Tspan8: impact on tumor cell motility. Int J Biochem Cell Biol 43:106–119PubMedGoogle Scholar
  191. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856PubMedGoogle Scholar
  192. Razmara M, Hu H, Masquelier M, Li N (2007) Glycoprotein IIb/IIIa blockade inhibits platelet aminophospholipid exposure by potentiating translocase and attenuating scramblase activity. Cell Mol Life Sci 64:999–1008PubMedGoogle Scholar
  193. Rous BA, Reaves BJ, Ihrke G, Briggs JA, Gray SR, Stephens DJ, Banting G, Luzio JP (2002) Role of adaptor complex AP-3 in targeting wild-type and mutated CD63 to lysosomes. Mol Biol Cell 13:1071–1082PubMedGoogle Scholar
  194. Rowe A, Jackson P (2006) Expression of KITENIN, a KAI1/CD82 binding protein and metastasis enhancer, in bladder cancer cell lines: relationship to KAI1/CD82 levels and invasive behaviour. Oncol Rep 16:1267–1272PubMedGoogle Scholar
  195. Ruf W, Mueller BM (2006) Thrombin generation and the pathogenesis of cancer. Semin Thromb Hemost 32(Suppl 1):61–68PubMedGoogle Scholar
  196. Ruseva Z, Geiger PX, Hutzler P, Kotzsch M, Luber B, Schmitt M, Gross E, Reuning U (2009) Tumor suppressor KAI1 affects integrin alphavbeta3-mediated ovarian cancer cell adhesion, ­motility, and proliferation. Exp Cell Res 315:1759–1771PubMedGoogle Scholar
  197. Sachs N, Kreft M, van den Bergh Weerman MA, Beynon AJ, Peters TA, Weening JJ, Sonnenberg A (2006) Kidney failure in mice lacking the tetraspanin CD151. J Cell Biol 175:33–39PubMedGoogle Scholar
  198. Sadej R, Romanska H, Baldwin G, Gkirtzimanaki K, Novitskaya V, Filer AD, Krcova Z, Kusinska R, Ehrmann J, Buckley CD, Kordek R, Potemski P, Eliopoulos AG, el Lalani N, Berditchevski F (2009) CD151 regulates tumorigenesis by modulating the communication between tumor cells and endothelium. Mol Cancer Res 7:787–798PubMedGoogle Scholar
  199. Safe S, Abdelrahim M (2005) Sp transcription factor family and its role in cancer. Eur J Cancer 41:2438–2448PubMedGoogle Scholar
  200. Sakakura C, Hagiwara A, Nakanishi M, Shimomura K, Takagi T, Yasuoka R, Fujita Y, Abe T, Ichikawa Y, Takahashi S, Ishikawa T, Nishizuka I, Morita T, Shimada H, Okazaki Y, Hayashizaki Y, Yamagishi H (2002) Differential gene expression profiles of gastric cancer cells established from primary tumour and malignant ascites. Br J Cancer 87:1153–1161PubMedGoogle Scholar
  201. Sala-Valdés M, Ursa A, Charrin S, Rubinstein E, Hemler ME, Sánchez-Madrid F, Yáñez-Mó M (2006) EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J Biol Chem 281:19665–19675PubMedGoogle Scholar
  202. Sauer G, Windisch J, Kurzeder C, Heilmann V, Kreienberg R, Deissler H (2003) Progression of cervical carcinomas is associated with down-regulation of CD9 but strong local re-­expression at sites of transendothelial invasion. Clin Cancer Res 9:6426–6431PubMedGoogle Scholar
  203. Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9:871–881PubMedGoogle Scholar
  204. Schröder J, Lüllmann-Rauch R, Himmerkus N, Pleines I, Nieswandt B, Orinska Z, Koch-Nolte F, Schröder B, Bleich M, Saftig P (2009) Deficiency of the tetraspanin CD63 associated with kidney pathology but normal lysosomal function. Mol Cell Biol 29:1083–1094PubMedGoogle Scholar
  205. Seigneuret M (2006) Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily. Biophys J 90:212–227PubMedGoogle Scholar
  206. Seow Y, Wood MJ (2009) Biological gene delivery vehicles: beyond viral vectors. Mol Ther 17:767–777PubMedGoogle Scholar
  207. Serru V, Le Naour F, Billard M, Azorsa DO, Lanza F, Boucheix C, Rubinstein E (1999) Selective tetraspan-­integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions. Biochem J 340:103–111PubMedGoogle Scholar
  208. Sharma C, Yang XH, Hemler ME (2008) DHHC2 affects palmitoylation, stability, and functions of tetraspanins CD9 and CD151. Mol Biol Cell 19:3415–3425PubMedGoogle Scholar
  209. Shet AS, Aras O, Gupta K, Hass MJ, Rausch DJ, Saba N, Koopmeiners L, Key NS, Hebbel RP (2003) Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 102:2678–2683PubMedGoogle Scholar
  210. Shi W, Fan H, Shum L, Derynck R (2000) The tetraspanin CD9 associates with transmembrane TGF-alpha and regulates TGF-alpha-induced EGF receptor activation and cell proliferation. J Cell Biol 148:591–602PubMedGoogle Scholar
  211. Shi GM, Ke AW, Zhou J, Wang XY, Xu Y, Ding ZB, Devbhandari RP, Huang XY, Qiu SJ, Shi YH, Dai Z, Yang XR, Yang GH, Fan J (2010) CD151 modulates expression of matrix metalloproteinase 9 and promotes neoangiogenesis and progression of hepatocellular carcinoma. Hepatology 52:183–196PubMedGoogle Scholar
  212. Shiomi T, Inoki I, Kataoka F, Ohtsuka T, Hashimoto G, Nemori R, Okada Y (2005) Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151. Lab Invest 85:1489–1506PubMedGoogle Scholar
  213. Sho M, Adachi M, Taki T, Hashida H, Konishi T, Huang CL, Ikeda N, Nakajima Y, Kanehiro H, Hisanaga M, Nakano H, Miyake M (1998) Transmembrane 4 superfamily as a prognostic ­factor in pancreatic cancer. Int J Cancer 79:509–516PubMedGoogle Scholar
  214. Si Z, Hersey P (1993) Expression of the neuroglandular antigen and analogues in melanoma. CD9 expression appears inversely related to metastatic potential of melanoma. Int J Cancer 54:37–43PubMedGoogle Scholar
  215. Sierko E, Wojtukiewicz MZ (2007) Inhibition of platelet function: does it offer a chance of better cancer progression control? Semin Thromb Hemost 33:712–721PubMedGoogle Scholar
  216. Sigala S, Faraoni I, Botticini D, Paez-Pereda M, Missale C, Bonmassar E, Spano P (1999) Suppression of telomerase, reexpression of KAI1, and abrogation of tumorigenicity by nerve growth factor in prostate cancer cell lines. Clin Cancer Res 5:1211–1218PubMedGoogle Scholar
  217. Simons M, Raposo G (2009) Exosomes-vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581PubMedGoogle Scholar
  218. Simpson RJ, Lim JW, Moritz RL, Mathivanan S (2009) Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6:267–283PubMedGoogle Scholar
  219. Sincock PM, Fitter S, Parton RG, Berndt MC, Gamble JR, Ashman LK (1999) PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J Cell Sci 112:833–844PubMedGoogle Scholar
  220. Smalheiser NR (2007) Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol Direct 2:35PubMedGoogle Scholar
  221. Soyuer S, Soyuer I, Unal D, Ucar K, Yildiz OG, Orhan O (2010) Prognostic significance of CD9 expression in loc.lly advanced gastric cancer treated with surgery and adjuvant chemoradiotherapy. Pathol Res Pract 206:607–610PubMedGoogle Scholar
  222. Sridhar SC, Miranti CK (2006) Tetraspanin KAI1/CD82 suppresses invasion by inhibiting integrin-­dependent crosstalk with c-Met receptor and Src kinases. Oncogene 25:2367–2378PubMedGoogle Scholar
  223. Stipp CS (2010) Laminin-binding integrins and their tetraspanin partners as potential antimetastatic targets. Expert Rev Mol Med 18(12):e3Google Scholar
  224. Stipp CS, Kolesnikova TV, Hemler ME (2003) Functional domains in tetraspanin proteins. Trends Biochem Sci 28:106–112PubMedGoogle Scholar
  225. Stoeck A, Keller S, Riedle S, Sanderson MP, Runz S, Le Naour F, Gutwein P, Ludwig A, Rubinstein E, Altevogt P (2006) A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem J 393:609–618PubMedGoogle Scholar
  226. Su JS, Arima K, Hasegawa M, Franco OE, Umeda Y, Yanagawa M, Sugimura Y, Kawamura J (2004) Decreased expression of KAI1 metastasis suppressor gene is a recurrence predictor in primary pTa and pT1 urothelial bladder carcinoma. Int J Urol 11:74–82PubMedGoogle Scholar
  227. Subra C, Laulagnier K, Perret B, Record M (2007) Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89:205–212PubMedGoogle Scholar
  228. Suzuki S, Miyazaki T, Tanaka N, Sakai M, Sano A, Inose T, Sohda M, Nakajima M, Kato H, Kuwano H (2011) Prognostic significance of CD151 expression in esophageal squamous cell carcinoma with aggressive cell proliferation and invasiveness. Ann Surg Oncol 18:888–893PubMedGoogle Scholar
  229. Suzuki-Inoue K, Fuller GL, García A, Eble JA, Pöhlmann S, Inoue O, Gartner TK, Hughan SC, Pearce AC, Laing GD, Theakston RD, Schweighoffer E, Zitzmann N, Morita T, Tybulewicz VL, Ozaki Y, Watson SP (2006) A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107:542–549PubMedGoogle Scholar
  230. Szala S, Kasai Y, Steplewski Z, Rodeck U, Koprowski H, Linnenbach AJ (1990) Molecular cloning of cDNA for the human tumor-associated antigen CO-029 and identification of related transmembrane antigens. Proc Natl Acad Sci USA 87:6833–6837PubMedGoogle Scholar
  231. Tagawa K, Arihiro K, Takeshima Y, Hiyama E, Yamasaki M, Inai K (1999) Down-regulation of KAI1 messenger RNA expression is not associated with loss of heterozygosity of the KAI1 gene region in lung adenocarcinoma. Jpn J Cancer Res 90:970–976PubMedGoogle Scholar
  232. Takahashi M, Sugiura T, Abe M, Ishii K, Shirasuna K (2007) Regulation of c-Met signaling by the tetraspanin KAI-1/CD82 affects cancer cell migration. Int J Cancer 121:1919–1929PubMedGoogle Scholar
  233. Takeda T, Hattori N, Tokuhara T, Nishimura Y, Yokoyama M, Miyake M (2007a) Adenoviral transduction of MRP-1/CD9 and KAI1/CD82 inhibits lymph node metastasis in orthotopic lung cancer model. Cancer Res 67:1744–1749PubMedGoogle Scholar
  234. Takeda Y, Kazarov AR, Butterfield CE, Hopkins BD, Benjamin LE, Kaipainen A, Hemler ME (2007b) Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood 109:1524–1532PubMedGoogle Scholar
  235. Tanaka F, Hori N, Sato K (2002) Identification of differentially expressed genes in rat hepatoma cell lines using subtraction and microarray. J Biochem 131:39–44PubMedGoogle Scholar
  236. Tarasova NI, Rice WG, Michejda CJ (1999) Inhibition of G-protein-coupled receptor function by disruption of transmembrane domain interactions. J Biol Chem 274:34911–34915PubMedGoogle Scholar
  237. Telese F, Bruni P, Donizetti A, Gianni D, D’Ambrosio C, Scaloni A, Zambrano N, Rosenfeld MG, Russo T (2005) Transcription regulation by the adaptor protein Fe65 and the nucleosome assembly factor SET. EMBO Rep 6:77–82PubMedGoogle Scholar
  238. Testa JE, Brooks PC, Lin JM, Quigley JP (1999) Eukaryotic expression cloning with an antimetastatic monoclonal antibody identifies a tetraspanin (PETA-3/CD151) as an effector of human tumor cell migration and metastasis. Cancer Res 59:3812–3820PubMedGoogle Scholar
  239. Todeschini RA, Hakomori SI (2008) Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780:421–433Google Scholar
  240. Todeschini AR, Dos Santos JN, Handa K, Hakomori SI (2008) Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway. Proc Natl Acad Sci USA 105:1925–1930PubMedGoogle Scholar
  241. Tohami T, Drucker L, Shapiro H, Radnay J, Lishner M (2007) Overexpression of tetraspanins affects multiple myeloma cell survival and invasive potential. FASEB J 21:691–699PubMedGoogle Scholar
  242. Tokuhara T, Hasegawa H, Hattori N, Ishida H, Taki T, Tachibana S, Sasaki S, Miyake M (2001) Clinical significance of CD151 gene expression in non-small cell lung cancer. Clin Cancer Res 7:4109–4114PubMedGoogle Scholar
  243. Tonoli H, Barrett JC (2005) CD82 metastasis suppressor gene: a potential target for new therapeutics? Trends Mol Med 11:563–570PubMedGoogle Scholar
  244. Tsai YC, Mendoza A, Mariano JM, Zhou M, Kostova Z, Chen B, Veenstra T, Hewitt SM, Helman LJ, Khanna C, Weissman AM (2007) The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat Med 13:1504–1509PubMedGoogle Scholar
  245. Tsitsikov EN, Gutierrez-Ramos JC, Geha RS (1997) Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice. Proc Natl Acad Sci USA 94:10844–10849PubMedGoogle Scholar
  246. Tsopanoglou NE, Maragoudakis ME (2007) Inhibition of angiogenesis by small-molecule antagonists of protease-activated receptor-1. Semin Thromb Hemost 33:680–687PubMedGoogle Scholar
  247. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659PubMedGoogle Scholar
  248. Wang JC, Begin LR, Berube NG, Chevalier S, Aprikian AG, Gourdeau H, Chevrette M (2007a) Down-regulation of CD9 expression during prostate carcinoma progression is associated with CD9 mRNA modifications. Clin Cancer Res 13:2354–2361PubMedGoogle Scholar
  249. Wang XQ, Yan Q, Sun P, Liu JW, Go L, McDaniel SM, Paller AS (2007b) Suppression of epidermal growth factor receptor signaling by protein kinase C-alpha activation requires CD82, caveolin-­1, and ganglioside. Cancer Res 67:9986–9995PubMedGoogle Scholar
  250. Wang J, Liu X, Ni P, Gu Z, Fan Q (2010) SP1 is required for basal activation and chromatin accessibility of CD151 promoter in liver cancer cells. Biochem Biophys Res Commun 393:291–296PubMedGoogle Scholar
  251. Weigelt B, Peterse JL, van ’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602PubMedGoogle Scholar
  252. Wilson KS, Roberts H, Leek R, Harris AL, Geradts J (2002) Differential gene expression patterns in HER2/neu-positive and -negative breast cancer cell lines and tissues. Am J Pathol 161:1171–1185PubMedGoogle Scholar
  253. Winterwood NE, Varzavand A, Meland MN, Ashman LK, Stipp CS (2006) A critical role for tetraspanin CD151 in alpha3beta1 and alpha6beta4 integrin-dependent tumor cell functions on laminin-5. Mol Biol Cell 17:2707–2721PubMedGoogle Scholar
  254. Woegerbauer M, Thurnher D, Houben R, Pammer J, Kloimstein P, Heiduschka G, Petzelbauer P, Erovic BM (2010) Expression of the tetraspanins CD9, CD37, CD63, and CD151 in Merkel cell carcinoma: strong evidence for a posttranscriptional fine-tuning of CD9 gene expression. Mod Pathol 23:751–762PubMedGoogle Scholar
  255. Wollscheid V, Kuhne-Heid R, Stein I, Jansen L, Kollner S, Schneider A, Durst M (2002) Identification of a new proliferation-associated protein NET-1/C4.8 characteristic for a subset of high-­grade cervical intraepithelial neoplasia and cervical carcinomas. Int J Cancer 99:771–775PubMedGoogle Scholar
  256. Wright MD, Tomlinson MG (1994) The ins and outs of the transmembrane 4 superfamily. Immunol Today 15:588–594PubMedGoogle Scholar
  257. Wright MD, Geary SM, Fitter S, Moseley GW, Lau LM, Sheng KC, Apostolopoulos V, Stanley EG, Jackson DE, Ashman LK (2004) Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol 24:5978–5988PubMedGoogle Scholar
  258. Xiao Z, Blonder J, Zhou M, Veenstra TD (2009) Proteomic analysis of extracellular matrix and vesicles. J Proteomics 72:34–45PubMedGoogle Scholar
  259. Xu L, Hynes RO (2007) GPR56 and TG2: possible roles in suppression of tumor growth by the microenvironment. Cell Cycle 6:160–165PubMedGoogle Scholar
  260. Yamamoto H, Vinitketkumnuen A, Adachi Y, Taniguchi H, Hirata T, Miyamoto N, Nosho K, Imsumran A, Fujita M, Hosokawa M, Hinoda Y, Imai K (2004) Association of matrilysin-2 (MMP-26) expression with tumor progression and activation of MMP-9 in esophageal squamous cell carcinoma. Carcinogenesis 25:2353–2360PubMedGoogle Scholar
  261. Yamane H, Tachibana I, Takeda Y, Saito Y, Tamura Y, He P, Suzuki M, Shima Y, Yoneda T, Hoshino S, Inoue K, Kijima T, Yoshida M, Kumagai T, Osaki T, Eishi Y, Kawase I (2005) Propionibacterium acnes-induced hepatic granuloma formation is impaired in mice lacking tetraspanin CD9. J Pathol 206:486–492PubMedGoogle Scholar
  262. Yanez-Mo M, Barreiro O, Gonzalo P, Batista A, Megías D, Genís L, Sachs N, Sala-Valdés M, Alonso MA, Montoya MC, Sonnenberg A, Arroyo AG, Sánchez-Madrid F (2008) MT1-MMP collagenolytic activity is regulated through association with tetraspanin CD151 in primary endothelial cells. Blood 112:3217–3226PubMedGoogle Scholar
  263. Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829PubMedGoogle Scholar
  264. Yang X, Claas C, Kraeft SK, Chen LB, Wang Z, Kreidberg JA, Hemler ME (2002) Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell 13:767–781PubMedGoogle Scholar
  265. Yang X, Kovalenko OV, Tang W, Claas C, Stipp CS, Hemler ME (2004) Palmitoylation supports assembly and function of integrin-tetraspanin complexes. J Cell Biol 167:1231–1240PubMedGoogle Scholar
  266. Yang XH, Kovalenko OV, Kolesnikova TV, Andzelm MM, Rubinstein E, Strominger JL, Hemler ME (2006) Contrasting effects of EWI proteins, integrins, and protein palmitoylation on cell surface CD9 organization. J Biol Chem 281:12976–12985PubMedGoogle Scholar
  267. Yang XH, Richardson AL, Torres-Arzayus MI, Zhou P, Sharma C, Kazarov AR, Andzelm MM, Strominger JL, Brown M, Hemler ME (2008) CD151 accelerates breast cancer by regulating alpha 6 integrin function, signaling, and molecular organization. Cancer Res 68:3204–3213PubMedGoogle Scholar
  268. Yauch RL, Kazarov AR, Desai B, Lee RT, Hemler ME (2000) Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151. J Biol Chem 275:9230–9238PubMedGoogle Scholar
  269. Yoo SH, Lee K, Chae JY, Moon KC (2011) CD151 expression can predict cancer progression in clear cell renal cell carcinoma. Histopathology 58:191–197PubMedGoogle Scholar
  270. Yoon SO, Zhang X, Freedman AS, Zahrieh D, Lossos IS, Li L, Choi YS (2010) Down-regulation of CD9 expression and its correlation to tumor progression in B lymphomas. Am J Pathol 177:377–386PubMedGoogle Scholar
  271. Zakharova L, Svetlova M, Fomina AF (2007) T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. J Cell Physiol 212:174–181PubMedGoogle Scholar
  272. Zevian S, Winterwood NE, Stipp CS (2011) Structure-function analysis of tetraspanin CD151 reveals distinct requirements for tumor cell behaviors mediated by alpha3beta1 versus alpha6beta4 integrin. J Biol Chem 286:7496–7506PubMedGoogle Scholar
  273. Zhang XA, Kazarov AR, Yang X, Bontrager AL, Stipp CS, Hemler ME (2002) Function of the tetraspanin CD151-alpha6beta1 integrin complex during cellular morphogenesis. Mol Biol Cell 13:1–11PubMedGoogle Scholar
  274. Zhang XA, He B, Zhou B, Liu L (2003a) Requirement of the p130CAS-Crk coupling for metastasis suppressor KAI1/CD82-mediated inhibition of cell migration. J Biol Chem 278:27319–27328PubMedGoogle Scholar
  275. Zhang XA, Lane WS, Charrin S, Rubinstein E, Liu L (2003b) EWI2/PGRL associates with the metastasis suppressor KAI1/CD82 and inhibits the migration of prostate cancer cells. Cancer Res 63:2665–2674PubMedGoogle Scholar
  276. Zhang F, Kotha J, Jennings LK, Zhang XA (2009) Tetraspanins and vascular functions. Cardiovasc Res 83:7–15PubMedGoogle Scholar
  277. Zhao X, Lapalombella R, Joshi T, Cheney C, Gowda A, Hayden-Ledbetter MS, Baum PR, Lin TS, Jarjoura D, Lehman A, Kussewitt D, Lee RJ, Caligiuri MA, Tridandapani S, Muthusamy N, Byrd JC (2007) Targeting CD37-positive lymphoid malignancies with a novel engineered small modular immunopharmaceutical. Blood 110:2569–2577PubMedGoogle Scholar
  278. Zheng Z, Liu Z (2006) CD151 gene delivery activates PI3K/Akt pathway and promotes neovascularization after myocardial infarction in rats. Mol Med 12:214–220PubMedGoogle Scholar
  279. Zheng ZZ, Liu ZX (2007) Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates CD151-induced endothelial cell proliferation and cell migration. Int J Biochem Cell Biol 39:340–348PubMedGoogle Scholar
  280. Zheng R, Yano S, Zhang H, Nakataki E, Tachibana I, Kawase I, Hayashi S, Sone S (2005) CD9 overexpression suppressed the liver metastasis and malignant ascites via inhibition of proliferation and motility of small-cell lung cancer cells in NK cell-depleted SCID mice. Oncol Res 15:365–372PubMedGoogle Scholar
  281. Zhijun X, Shulan Z, Zhuo Z (2007) Expression and significance of the protein and mRNA of metastasis suppressor gene ME491/CD63 and integrin alpha5 in ovarian cancer tissues. Eur J Gynaecol Oncol 28:179–183PubMedGoogle Scholar
  282. Zhong S, Fields CR, Su N, Pan YX, Robertson KD (2007) Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene 26:2621–2634PubMedGoogle Scholar
  283. Zhou B, Liu L, Reddivari M, Zhang XA (2004) The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity. Cancer Res 64:7455–7463PubMedGoogle Scholar
  284. Zhou Z, Ran YL, Hu H, Pan J, Li ZF, Chen LZ, Sun LC, Peng L, Zhao XL, Yu L, Sun LX, Yang ZH (2008) TM4SF3 promotes esophageal carcinoma metastasis via upregulating ADAM12m expression. Clin Exp Metastasis 25:537–548PubMedGoogle Scholar
  285. Zhu GZ, Miller BJ, Boucheix C, Rubinstein E, Liu CC, Hynes RO, Myles DG, Primakoff P (2002) Residues SFQ (173–175) in the large extracellular loop of CD9 are required for gamete fusion. Development 129:1995–2002PubMedGoogle Scholar
  286. Zhu GH, Huang C, Qiu ZJ, Liu J, Zhang ZH, Zhao N, Feng ZZ, Lv XH (2010) Expression and prognostic significance of CD151, c-Met, and integrin alpha3/alpha6 in pancreatic ductal adenocarcinoma. Dig Dis Sci 56(4):1090–1098, Oct 7—Epub ahead of printPubMedGoogle Scholar
  287. Zijlstra A, Lewis J, Degryse B, Stuhlmann H, Quigley JP (2008) The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 13:221–234PubMedGoogle Scholar
  288. Zöller M (2006) Gastrointestinal tumors: metastasis and tetraspanins. Z Gastroenterol 44:573–586PubMedGoogle Scholar
  289. Zöller M (2009) Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer 9:40–55PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Biomedical SciencesUniversity of NewcastleCallaghanAustralia
  2. 2.Department of Tumor Cell BiologyUniversity Hospital of SurgeryHeidelbergGermany

Personalised recommendations