Structural Bases for Tetraspanin Functions

  • Michel Seigneuret
  • Hélène Conjeaud
  • Hui-Tang Zhang
  • Xiang-Peng Kong
Part of the Proteins and Cell Regulation book series (PROR, volume 9)


The tetraspanin transmembrane glycoproteins are considered as “molecular facilitators” which simultaneously interact with, and thereby bring into close proximity specific proteins involved in cellular activation and transduction processes. Elucidation of the 3D structure of tetraspanins is an essential step in understanding of their facilitator function and of the molecular basis of their partner specificity. Although there are currently no experimental atomic resolution structures of a whole tetraspanin molecule, recent information gained from three different approaches has led to a rather comprehensive picture of the structural organization of tetraspanins. These include: (1) crystallographic structures of the main extracellular domain of the ubiquitous tetraspanin CD81; (2) a 6 Å-resolution cryo-EM structure of the tetraspanins uroplakin UPIa and UPIb in the urothelial plaque of mammalian urothelium; (3) molecular modeled-structures of the complete CD81 tetraspanin. On the basis of such structural data, a qualitative view of tetraspanin structure-function relationship is emerging, including a delineation of regions of the molecule involved in specific interactions with partners, as well as an understanding of the structural basis of the multilevel partner specificity of tetraspanins and of the tetraspanin network organization.



Asymmetric unit membrane (AUM)


Cryo-electron microscopy


First tetraspanin extracellular region


Second tetraspanin extracellular region


Electron microscopy




Tetraspanin-enriched microdomain






Uropathogenic E. coli


Uroplakin Ia


Uroplakin Ib


Uroplakin II


Uroplakin IIIa


Urinary tract infection



The work done in the authors’ laboratories was supported by grants from the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale, SIDACTION, the Association National pour la Recherche Contre le SIDA (to HC and MS) and NIH grant DK52206 (to HTZ and XPK).


  1. Bari R, Zhang YH, Zhang F, Wang NX, Stipp CS, Zheng JJ, Zhang XA (2009) Transmembrane interactions are needed for KAI1/CD82-mediated suppression of cancer invasion and metastasis. Am J Pathol 174:647–660PubMedCrossRefGoogle Scholar
  2. Berditchevski F, Gilbert E, Griffiths MR, Fitter S, Ashman L, Jenner SJ (2001) Analysis of the CD151-alpha3beta1 integrin and CD151-tetraspanin interactions by mutagenesis. J Biol Chem 276:41165–41174PubMedCrossRefGoogle Scholar
  3. Berditchevski F, Odintsova E, Sawada S, Gilbert E (2002) Expression of the palmitoylation-deficient CD151 weakens the association of alpha 3 beta 1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling. J Biol Chem 277(40):36991–37000, Oct 4PubMedCrossRefGoogle Scholar
  4. Bowie JU (1997a) Helix packing angle preferences. Nat Struct Biol 4:915–917PubMedCrossRefGoogle Scholar
  5. Bowie JU (1997b) Helix packing in membrane proteins. J Mol Biol 272:780–789PubMedCrossRefGoogle Scholar
  6. Brisson A, Wade RH (1983) Three-dimensional structure of luminal plasma membrane protein from urinary bladder. J Mol Biol 166:21–36PubMedCrossRefGoogle Scholar
  7. Charrin S, Le Naour F, Oualid M, Billard M, Faure G, Hanash SM, Boucheix C, Rubinstein E (2001) The major CD9 and CD81 molecular partner. Identification and characterization of the complexes. J Biol Chem 276:14329–14337PubMedGoogle Scholar
  8. Charrin S, Manie S, Oualid M, Billard M, Boucheix C, Rubinstein E (2002) Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett 516:139–144PubMedCrossRefGoogle Scholar
  9. Charrin S, Le Naour F, Labas V, Billard M, Le Caer JP, Emile JF, Petit MA, Boucheix C, Rubinstein E (2003) EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem J 373:409–421PubMedCrossRefGoogle Scholar
  10. Charrin S, le Naour F, Silvie O, Milhiet PE, Boucheix C, Rubinstein E (2009a) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420:133–154PubMedCrossRefGoogle Scholar
  11. Charrin S, Yalaoui S, Bartosch B, Cocquerel L, Franetich JF, Boucheix C, Mazier D, Rubinstein E, Silvie O (2009b) The Ig domain protein CD9P-1 down-regulates CD81 ability to support plasmodium yoelii infection. J Biol Chem 284:31572–31578PubMedCrossRefGoogle Scholar
  12. Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ (1998) JPred: a consensus secondary structure prediction server. Bioinformatics 14:892–893PubMedCrossRefGoogle Scholar
  13. Delaguillaumie A, Harriague J, Kohanna S, Bismuth G, Rubinstein E, Seigneuret M, Conjeaud H (2004) Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation. J Cell Sci 117:5269–5282PubMedCrossRefGoogle Scholar
  14. Drummer HE, Wilson KA, Poumbourios P (2002) Identification of the hepatitis C virus E2 glycoprotein binding site on the large extracellular loop of CD81. J Virol 76:11143–11147PubMedCrossRefGoogle Scholar
  15. Drummer HE, Wilson KA, Poumbourios P (2005) Determinants of CD81 dimerization and interaction with hepatitis C virus glycoprotein E2. Biochem Biophys Res Commun 328:251–257PubMedCrossRefGoogle Scholar
  16. Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179:125–142Google Scholar
  17. Eilers M, Patel AB, Liu W, Smith SO (2002) Comparison of helix interactions in membrane and soluble alpha-bundle proteins. Biophys J 82:2720–2736PubMedCrossRefGoogle Scholar
  18. Gobel U, Sander C, Schneider R, Valencia A (1994) Correlated mutations and residue contacts in proteins. Proteins 18:309–317PubMedCrossRefGoogle Scholar
  19. Hasuwa H, Shishido Y, Yamazaki A, Kobayashi T, Yu X, Mekada E (2001) CD9 amino acids critical for upregulation of diphtheria toxin binding. Biochem Biophys Res Commun 289:782–790PubMedCrossRefGoogle Scholar
  20. Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422PubMedCrossRefGoogle Scholar
  21. Hicks RM (1966) The permeability of rat transitional epithelium. Kertinization and the barrier to water. J Cell Biol 28:21–31PubMedCrossRefGoogle Scholar
  22. Hicks RM (1975) The mammalian urinary bladder: an accommodating organ. Biol Rev Camb Philos Soc 50:215–246PubMedCrossRefGoogle Scholar
  23. Hicks RM, Ketterer B (1969) Hexagonal lattice of subunits in the thick luminal membrane of the rat urinary bladder. Nature 224:1304–1305PubMedCrossRefGoogle Scholar
  24. Higginbottom A, Takahashi Y, Bolling L, Coonrod SA, White JM, Partridge LJ, Monk PN (2003) Structural requirements for the inhibitory action of the CD9 large extracellular domain in sperm/oocyte binding and fusion. Biochem Biophys Res Commun 311:208–214PubMedCrossRefGoogle Scholar
  25. Hu CC, Bachmann T, Zhou G, Liang FX, Ghiso J, Kreibich G, Sun TT (2008) Assembly of a membrane receptor complex: roles of the uroplakin II prosequence in regulating uroplakin bacterial receptor oligomerization. Biochem J 414:195–203PubMedCrossRefGoogle Scholar
  26. Jamshad M, Rajesh S, Stamataki Z, McKeating JA, Dafforn T, Overduin M, Bill RM (2008) Structural characterization of recombinant human CD81 produced in Pichia pastoris. Protein Expr Purif 57:206–216PubMedCrossRefGoogle Scholar
  27. Javadpour MM, Eilers M, Groesbeek M, Smith SO (1999) Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. Biophys J 77:1609–1618PubMedCrossRefGoogle Scholar
  28. Kachar B, Liang F, Lins U, Ding M, Wu XR, Stoffler D, Aebi U, Sun TT (1999) Three-dimensional analysis of the 16 nm urothelial plaque particle: luminal surface exposure, preferential head-to-head interaction, and hinge formation. J Mol Biol 285:595–608PubMedCrossRefGoogle Scholar
  29. Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, Grandi G, Bolognesi M (2001) CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J 20:12–18PubMedCrossRefGoogle Scholar
  30. Koss LG (1969) The asymmetric unit membranes of the epithelium of the urinary bladder of the rat. An electron microscopic study of a mechanism of epithelial maturation and function. Lab Invest 21:154–168PubMedGoogle Scholar
  31. Kovalenko OV, Metcalf DG, Degrado WF, Hemler ME (2005) Structural organization and interactions of transmembrane domains in tetraspanin proteins. BMC Struct Biol 5:11PubMedCrossRefGoogle Scholar
  32. Langosch D, Heringa J (1998) Interaction of transmembrane helices by a knobs-into-holes packing characteristic of soluble coiled coils. Proteins 31:150–159PubMedCrossRefGoogle Scholar
  33. Lee AG (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40PubMedCrossRefGoogle Scholar
  34. Levy S, Shoham T (2005) The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol 5:136–148PubMedCrossRefGoogle Scholar
  35. Liang J (2002) Experimental and computational studies of determinants of membrane-protein folding. Curr Opin Chem Biol 6:878–884PubMedCrossRefGoogle Scholar
  36. Liang FX, Riedel I, Deng FM, Zhou G, Xu C, Wu XR, Kong XP, Moll R, Sun TT (2001) Organization of uroplakin subunits: transmembrane topology, pair formation and plaque composition. Biochem J 355:13–18PubMedCrossRefGoogle Scholar
  37. Liu W, Eilers M, Patel AB, Smith SO (2004) Helix packing moments reveal diversity and conservation in membrane protein structure. J Mol Biol 337:713–729PubMedCrossRefGoogle Scholar
  38. Lomize AL, Pogozheva ID, Mosberg HI (1999) Structural organization of G-protein-coupled receptors. J Comput Aided Mol Des 13:325–353PubMedCrossRefGoogle Scholar
  39. Lupas A (1996) Coiled coils: new structures and new functions. Trends Biochem Sci 21:375–382PubMedGoogle Scholar
  40. Mahbub Hasan AK, Sato K, Sakakibara K, Ou Z, Iwasaki T, Ueda Y, Fukami Y (2005) Uroplakin III, a novel Src substrate in Xenopus egg rafts, is a target for sperm protease essential for fertilization. Dev Biol 286:483–492PubMedCrossRefGoogle Scholar
  41. Martin F, Roth DM, Jans DA, Pouton CW, Partridge LJ, Monk PN, Moseley GW (2005) Tetraspanins in viral infections: a fundamental role in viral biology? J Virol 79:10839–10851PubMedCrossRefGoogle Scholar
  42. Min G, Stolz M, Zhou G, Liang F, Sebbel P, Stoffler D, Glockshuber R, Sun TT, Aebi U, Kong XP (2002) Localization of uroplakin Ia, the urothelial receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelial plaque particle. J Mol Biol 317:697–706PubMedCrossRefGoogle Scholar
  43. Min G, Zhou G, Schapira M, Sun TT, Kong XP (2003) Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle. J Cell Sci 116:4087–4094PubMedCrossRefGoogle Scholar
  44. Min G, Wang H, Sun TT, Kong XP (2006) Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution. J Cell Biol 173:975–983PubMedCrossRefGoogle Scholar
  45. Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, Hultgren SJ (1998) Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:1494–1497PubMedCrossRefGoogle Scholar
  46. Negrete HO, Lavelle JP, Berg J, Lewis SA, Zeidel ML (1996) Permeability properties of the intact mammalian bladder epithelium. Am J Physiol 271:F886–F894PubMedGoogle Scholar
  47. Oostergetel GT, Keegstra W, Brisson A (2001) Structure of the major membrane protein complex from urinary bladder epithelial cells by cryo-electron crystallography. J Mol Biol 314:245–252PubMedCrossRefGoogle Scholar
  48. Schneider D (2004) Rendezvous in a membrane: close packing, hydrogen bonding, and the formation of transmembrane helix oligomers. FEBS Lett 577:5–8PubMedCrossRefGoogle Scholar
  49. Seigneuret M (2006) Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor cd81: conserved and variable structural domains in the tetraspanin superfamily. Biophys J 90:212–227PubMedCrossRefGoogle Scholar
  50. Seigneuret M, Delaguillaumie A, Lagaudriere-Gesbert C, Conjeaud H (2001) Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem 276:40055–40064PubMedCrossRefGoogle Scholar
  51. Severs NJ, Warren RC (1978) Analysis of membrane structure in the transitional epithelium of rat urinary bladder. 1. The luminal membrane. J Ultrastruct Res 64:124–140PubMedCrossRefGoogle Scholar
  52. Staehelin LA, Chlapowski FJ, Bonneville MA (1972) Lumenal plasma membrane of the urinary bladder. I. Three-dimensional reconstruction from freeze-etch images. J Cell Biol 53:73–91PubMedCrossRefGoogle Scholar
  53. Stipp CS, Kolesnikova TV, Hemler ME (2003) Functional domains in tetraspanin proteins. Trends Biochem Sci 28:106–112PubMedCrossRefGoogle Scholar
  54. Takayama H, Chelikani P, Reeves PJ, Zhang S, Khorana HG (2008) High-level expression, single-step immunoaffinity purification and characterization of human tetraspanin membrane protein CD81. PLoS One 3:e2314PubMedCrossRefGoogle Scholar
  55. Taylor KA, Robertson JD (1984) Analysis of the three-dimensional structure of the urinary bladder epithelial cell membranes. J Ultrastruct Res 87:23–30PubMedCrossRefGoogle Scholar
  56. Thumbikat P, Berry RE, Zhou G, Billips BK, Yaggie RE, Zaichuk T, Sun TT, Schaeffer AJ, Klumpp DJ (2009) Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog 5:e1000415PubMedCrossRefGoogle Scholar
  57. Ulmschneider MB, Sansom MS (2001) Amino acid distributions in integral membrane protein structures. Biochim Biophys Acta 1512:1–14PubMedCrossRefGoogle Scholar
  58. Vergara J, Longley W, Robertson JD (1969) A hexagonal arrangement of subunits in membrane of mouse urinary bladder. J Mol Biol 46:593–596PubMedCrossRefGoogle Scholar
  59. Vos WL, Vaughan S, Lall PY, McCaffrey JG, Wysocka-Kapcinska M, Findlay JB (2010) Expression and structural characterization of peripherin/RDS, a membrane protein implicated in photoreceptor outer segment morphology. Eur Biophys J 39:679–688PubMedCrossRefGoogle Scholar
  60. Walshaw J, Woolfson DN (2001) Socket: a program for identifying and analysing coiled-coil motifs within protein structures. J Mol Biol 307:1427–1450PubMedCrossRefGoogle Scholar
  61. Walz T, Haner M, Wu XR, Henn C, Engel A, Sun TT, Aebi U (1995) Towards the molecular architecture of the asymmetric unit membrane of the mammalian urinary bladder epithelium: a closed “twisted ribbon” structure. J Mol Biol 248:887–900PubMedCrossRefGoogle Scholar
  62. Wang H, Liang FX, Kong XP (2008) Characteristics of the phagocytic cup induced by uropathogenic Escherichia coli. J Histochem Cytochem 56:597–604PubMedCrossRefGoogle Scholar
  63. Wang H, Min G, Glockshuber R, Sun TT, Kong XP (2009) Uropathogenic E. coli adhesin-induced host cell receptor conformational changes: implications in transmembrane signaling transduction. J Mol Biol 392(2):352–361PubMedCrossRefGoogle Scholar
  64. Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT (2009) Uroplakins in urothelial biology, function, and disease. Kidney Int 75:1153–1165PubMedCrossRefGoogle Scholar
  65. Xie B, Zhou G, Chan SY, Shapiro E, Kong XP, Wu XR, Sun TT, Costello CE (2006) Distinct glycan structures of uroplakins Ia and Ib: structural basis for the selective binding of FimH adhesin to uroplakin Ia. J Biol Chem 281:14644–14653PubMedCrossRefGoogle Scholar
  66. Xu C, Zhang YH, Thangavel M, Richardson MM, Liu L, Zhou B, Zheng Y, Ostrom RS, Zhang XA (2009) CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts. FASEB J 23:3273–3288PubMedCrossRefGoogle Scholar
  67. Yalaoui S, Zougbede S, Charrin S, Silvie O, Arduise C, Farhati K, Boucheix C, Mazier D, Rubinstein E, Froissard P (2008) Hepatocyte permissiveness to Plasmodium infection is conveyed by a short and structurally conserved region of the CD81 large extracellular domain. PLoS Pathog 4:e100CrossRefGoogle Scholar
  68. Yamada M, Tamura Y, Sanzen N, Sato-Nishiuchi R, Hasegawa H, Ashman LK, Rubinstein E, Yáñez-Mó M, Sánchez-Madrid F, Sekiguchi K (2008) Probing the interaction of tetraspanin CD151 with integrin alpha 3 beta 1 using a panel of monoclonal antibodies with distinct reactivities toward the CD151-integrin alpha 3 beta 1 complex. Biochem J 415(3):417–427PubMedCrossRefGoogle Scholar
  69. Yanez-Mo M, Barreiro O, Gordon-Alonso M, Sala-Valdes M, Sanchez-Madrid F (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 19:434–446PubMedCrossRefGoogle Scholar
  70. Zhang XA, Bontrager AL, Hemler ME (2001) Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J Biol Chem 276:25005–25013PubMedCrossRefGoogle Scholar
  71. Zhou G, Mo WJ, Sebbel P, Min G, Neubert TA, Glockshuber R, Wu XR, Sun TT, Kong XP (2001) Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114:4095–4103PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Michel Seigneuret
    • 1
  • Hélène Conjeaud
    • 1
  • Hui-Tang Zhang
    • 2
  • Xiang-Peng Kong
    • 2
  1. 1.Matière et Systèmes Complexes – CNRS UMR 7057Université Paris-DiderotParis cedex 13France
  2. 2.Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUSA

Personalised recommendations