Skip to main content

“Plant Cell Wall Structure-Pretreatment” the Critical Relationship in Biomass Conversion to Fermentable Sugars

  • Chapter
  • First Online:
Green Biomass Pretreatment for Biofuels Production

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

One of the targeted research areas in implementing alternative renewable energy production is the improvement of the yield and quality of plant biomass, which consists mostly of plant cell walls (called lignocellulosic biomass). Sugars from plant biomass can be used to produce bioethanol through fermentation, but can also be used to make other hydrocarbons via direct pyrolysis or gasification. However, the conversion of lignocellulosic biomass to fermentable sugars is far from optimal due to the lack of efficient pretreatment processes, simply because the exact composition and the manner in which different cell wall components interact between each other strongly influence energy recovery. Pretreatment techniques can be grouped into three distinct categories: physical (mechanical), biological, and chemical pretreatments. Currently, pretreatment step is the most costly step in the whole process of biofuel production, and there is a positive correlation between cell walls recalcitrance and the costs in biofuel production. Because there are many different kinds of plant biomass, no single pretreatment method is expected to be the preferred universal choice. Furthermore, there is recurring debate about “food or fuel” balance, and the emerging picture from this debate is that there is a need for domestication of several feedstock crops, because none of the current available feedstock crops have all the requirements to balance our food and fuel needs. The ultimate goal is to elucidate the key structural elements of lignocellulosic biomass that would allow a balance between biofuel production, carbon sequestration, and land management. This chapter will describe the composition and structural aspects of plant cell walls found in plant biomasses, and their impact on pretreatment of biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alder PR, Del Grosso SJ, Parton WJ (2007) Life cycle assessment of net greenhouse gas flux for bioenergy cropping systems. Ecol Appl 17:675–691

    Google Scholar 

  • Alizadeh H, Teymouri F, Gilbert TI, Dale BE (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 121:1133–1141

    Google Scholar 

  • Araujo GS, Matos LJ, Gonçalves LR, Fernandes FA, Farias WR (2011) Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains. Bioresour Technol 102:5248–5250

    Google Scholar 

  • Atalla RH, Hackney JM, Uhlin I, Thompson NS (1993) Hemicelluloses as structure regulators in the aggregation of native cellulose. Int J Biol Macromol 15:109–112

    Google Scholar 

  • Aziz S, Sarkanen K (1989) Organosolv pulping-a review. Tappi J 72:169–175

    Google Scholar 

  • Bayer EA, Shimon LJ, Shoham Y, Lamed R (1998) Cellulosomes-structure and ultrastructure. J Struct Biol 124:221–234

    Google Scholar 

  • Besombes S, Mazeau K (2005) The cellulose/lignin assembly assessed by molecular modeling. Part 2: seeking for evidence of organization of lignin molecules at the interface with cellulose. Plant Physiol Biochem 43:277–286

    Google Scholar 

  • Binder B, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985

    Google Scholar 

  • Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217

    Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Google Scholar 

  • Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75:2304–2311

    Google Scholar 

  • Brosse N, Sannigrahi P, Ragauskas A (2009) Pretreatment of Miscanthus x giganteus using the ethanol organosolv process for ethanol production. Ind Eng Chem Res 48:8328–8334

    Google Scholar 

  • Brown RM Jr, Saxena IM, Kudlicka K (1996) Cellulose biosynthesis in higher plants. Trends Plant Sci 1:149–156

    Google Scholar 

  • Buckeridge MS (2010) Seed cell wall storage polysaccharides: models to understand cell wall biosynthesis and degradation. Plant Physiol 154:1017–1023

    Google Scholar 

  • Burton RA, Fincher GB (2009) (1,3;1,4)-beta-D-glucans in cell walls of the poaceae, lower plants, and fungi: a tale of two linkages. Mol Plant 2:873–882

    Google Scholar 

  • Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-D-glucans. Science 311:1940–1942

    Google Scholar 

  • Campbell CJ (2006) The Rimini protocol an oil depletion protocol: heading off economic chaos and political conflict during the second half of the age of oil. Energy Policy 34:1319–1325

    Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Google Scholar 

  • Carvalheiro F, Silva-Fernandes T, Duarte LC, Gírio FM (2009) Wheat straw autohydrolysis: process optimization and products characterization. Appl Biochem Biotechnol 153:84–93

    Google Scholar 

  • Chaliaud E, Burrows KM, Jeronimidis G, Gidley MJ (2002) Mechanical properties of primary plant cell wall analogues. Planta 215:989–996

    Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Google Scholar 

  • Chundawat SPS, Venkatesh B, Dale BE (2007) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng 96:219–231

    Google Scholar 

  • Cocuron J-C, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K, Raikhel NV, Wilkerson CG (2007) A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase. Proc Natl Acad Sci U S A 140:8550–8555

    Google Scholar 

  • Cosgrove DJ (1993) How do plant cell walls extend? Plant Physiol 102:1–6

    MathSciNet  Google Scholar 

  • Davin LB, Lewis NG (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol 123:453–462

    Google Scholar 

  • De Bari I, Nanna F, Braccio G (2007) SO2-catalyzed steam fractionation of aspen chips for bioethanol production: optimization of the catalyst impregnation. Ind Eng Chem Res 46:7711–7720

    Google Scholar 

  • Deguchi S, Tsujii K, Horikoshi K (2006) Cooking cellulose in hot and compressed water. Chem Commun 31:3293–3295

    Google Scholar 

  • Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS, Dolan M, Kinney A, Tomes D, Nichols S, Anderson P (2004) Guar seed β-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363–366

    Google Scholar 

  • Dien BS, Jung HG, Vogel KP, Casler MD, Lamb JFS, Iten L, Mitchell RB, Sarath G (2006) Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and a switchgrass. Biomass Bioenergy 30:880–891

    Google Scholar 

  • Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606

    Google Scholar 

  • Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, Newbigin E, Bacic A (2009) A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-D-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci U S A 106:5996–6001

    Google Scholar 

  • Duree P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534

    Google Scholar 

  • Ebringerova A, Heinze T (2000) Xylan and xylan derivativesbiopolymers with valuable properties, 1—naturally occurring xylans structures, procedures and properties. Macromol Rapid Commun 21:542–556

    Google Scholar 

  • Edwards ME, Dickson CA, Chengappa S, Sidebottom C, Gidley MJ, Reid JSG (1999) Molecular characterization of a membrane-bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis. Plant J 19:691–697

    Google Scholar 

  • Eglund J, Peterson BL, Motawia MS, Damager I, Faik A, Olsen CE, Ishii T, Clausen H, Ulvskov P, Geshi N (2006) Biosynthesis of pectic rhamnogalacturonan II: molecular cloning and characterization of golgi-localized alpha(1, 3) xylosyltransferases encoded by RGXT1 and RGXT2 genes of Arabidopsis thaliana. Plant Cell 18:2593–2607

    Google Scholar 

  • EIA (2007) International Energy Outlook 2007 with projection to 2030. http://www.eia.doe.gov///oiaf/aeo/index.html. Accessed 12 March 2009

  • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386

    Google Scholar 

  • Erickson M, Miksche GE, Somfai I (1973) Holz- and forschung 271:13–119

    Google Scholar 

  • Erilkssen O, Goring DAI, Lindgren BO (1980) Structural studies on chemical bonds between lignins and carbohydrates in spruce wood. Wood Sci Technol 14:267–279

    Google Scholar 

  • Faik A (2010) Xylan biosynthesis: news from the grass. Plant Physiol 153:396–402

    Google Scholar 

  • Faik A, Bar-Peled M, Derocher E, Zeng W, Perrin RM, Wilkerson C, Raikhel NV, Keegstra K (2000) Biochemical characterization and molecular cloning of an α(1,2)Fucosyltransferase that catalyzes the last step of cell wall xyloglucan biosynthesis in pea. J Biol Chem 275:15082–15089

    Google Scholar 

  • Faik A, Price NJ, Raikhel NV, Keegstra K (2002) An Arabidopsis gene encoding an α-xylosyltransferase involved in xyloglucan biosynthesis. Proc Natl Acad Sci U S A 99:7797–7802

    Google Scholar 

  • Fales S, Fritz JO (2007) Factors affecting forage quality. In: Barnes RF, Nelson CJ, Moore KJ, Collins M, (eds) Forages, the science of grassland agriculture, vol 2. Blackwell Publishing, Ames, pp 569–580

    Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell-walls of angiosperms. Annu Rev Plant Physiol Plant Mol Biol 37:165–186

    Google Scholar 

  • Hall DO (1979) Solar energy use through biology—past, present and future. Sol Energy 22:307–328

    Google Scholar 

  • Hayashi T, Maclachlan G (1984) Pea xyloglucan and cellulose. I. Macromolecular organization. Plant Physiol 75:596–604

    Google Scholar 

  • He L, Terashima N (1989) Formation and structure of lignin in monocotyledons. I. Selective labeling of the structural units of lignin in rice plant ( Oryza sativa ) with 3H and visualization of their distribution in the tissue by microautoradiography. Mokuzai Gakkaishi 35:116–122

    Google Scholar 

  • Hector RE, Qureshi N, Hughes SR, Cotta MA (2008) Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 80:675–684

    Google Scholar 

  • Hemschemeier A, Melis A, Happe T (2009) Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynth Res 102:523–540

    Google Scholar 

  • Higuchi T (1985) Biosynthesis of lignin. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Orlando Academic Press, Orlando, pp 141–160

    Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103:11206–11210

    Google Scholar 

  • Ho NWY (1998) Genetically engineered Saccharomyces yeast capable of effective co-fermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    Google Scholar 

  • Howard R (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–619

    Google Scholar 

  • Hsieh Y (2009) Alkaline pre-treatment of rice hulls for hydrothermal production of acetic acid. Chem Eng Res Des 87:13–18

    Google Scholar 

  • Hsu TA (1996) Pretreatment of biomass. In: Wyman CE (ed) Handbook on bioethanol, production and utilization. Taylor & Francis, Washington, pp 179–212

    Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks fir biofuel production: perspectives and advances. Plant J 54:621–639

    Google Scholar 

  • Hwang SS, Lee SJ, Kim HK, Ka JO, Kim KJ, Song HG (2008) Biodegradation and saccharification of wood chips of Pinus strobus and Liriodendron tulipifera by white rot fungi. J Microbiol Biotechnol 18:1819–1825

    Google Scholar 

  • Jarvis M (2003) Cellulose stacks up. Nature 426:611–612

    Google Scholar 

  • Jensen JK, Kim H, Cocuron J-C, Orler R, Ralph J, Wilkerson CG (2011) The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. Plant J 66:387–400

    Google Scholar 

  • Jin SY, Chen HZ (2007) Near-infrared analysis of the chemical composition of rice straw. Ind Crops Prod 26:207–211

    Google Scholar 

  • Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass Bioenerg 18:189–199

    Google Scholar 

  • Kabel MA (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour Technol 98:2034–2042

    Google Scholar 

  • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368

    Google Scholar 

  • Kataeva IA, Yang S-J, Dam P, Poole II PF, Yin Y, Zhou F, Chou W-C, Xu Y, Goodwin L, Sims DR, Detter JC, Hauser LJ, Westpheling J, Adams MWW (2009) Genome sequence of the anaerobic, thermophilic and cellulolytic bacterium “Anaerocellum thermophilum” DSM 6725. J Bacteriol 191:3760–3761

    Google Scholar 

  • Keegstra K, Talmadge KW, Bauer WD, Albersheim P (1973) The structure of plant cell walls III. A model of the wall of suspension-cultured sycamore cells based on interconnections of the macromolecular components. Plant Physiol 51:188–197

    Google Scholar 

  • Kennedy CJ, Cameron GJ, Sturcova A, Apperley DC, Altaner C, Wess TJ, Jarvis MC (2007) Microfibril diameter in celery collenchyma cellulose: X-ray scattering and NMR evidence. Cellulose 14:235–246

    Google Scholar 

  • Kim SB, Yum DM, Park SC (2000) Step-change variation of acid concentration in a percolation reactor for hydrolysis of hardwood hemicellulose. Bioresour Technol 72:289–294

    Google Scholar 

  • Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47

    Google Scholar 

  • Kim SR, Ha S-J, Wei N, Oh EJ, Jin Y-S (2012) Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trend Biotechnol. doi:10,1016/j.tibtech.2012.01.005

    Google Scholar 

  • Kishimoto T, Chiba W, Saito K, Fukushima K, Uraki Y, Ubukata M (2010) Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins. J Agric Food Chem 58:895–901

    Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. ChemInform 36. doi:10.1002/chin.200536238

  • Kraakman L, Lemaire K, Ma P, Teunissen AW, Donaton MC, Van Dijck P, Winderickx J, de Winde JH, Thevelein JM (1999) A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32:1002–1012

    Google Scholar 

  • Kuhar S, Nair LM, Kuhad RC (2008) Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Can J Microbiol 54:305–313

    Google Scholar 

  • Kurakake M, Ide N, Komaki T (2007) Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper. Curr Microbiol 54:424–428

    Google Scholar 

  • Larkum AW, Ross IL, Kruse O, Hankamer B (2011) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30:198–205

    Google Scholar 

  • Lee JW, Gwak KS, Park JY, Park MJ, Choi DH, Kwon M, Choi IG (2007) Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J Microbiol 45:485–491

    Google Scholar 

  • Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13:1567–1585

    Google Scholar 

  • Liu E, Hu Y (2011) Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng J 48:204–210

    Google Scholar 

  • Lynd L, Cushman J, Nichols R, Wyman C (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323

    Google Scholar 

  • Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793

    Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Google Scholar 

  • Mabee WE, Gregg DJ, Arato C, Berlin A, Bura R, Gilkes N, Mirochnik O, Pan X, Pye EK, Saddler JN (2006) Updates on softwood-to-ethanol process development. Appl Biochem Biotechnol 129–132:55–70

    Google Scholar 

  • Mackie KL, Brownell HH, West KL (1985) Effect of sulfur dioxide and sulfuric acid on steam explosion of aspen wood. J Wood Chem Technol 5:405–425

    Google Scholar 

  • Majid J, Luxhoi J, Lyshede OB (2004) Decomposition of plant residues at low temperatures separates turnover of nitrogen and energy rich tissue components in time. Plant Soil 258:351–365

    Google Scholar 

  • Manthey FA, Hareland GA, Huseby DJ (1999) Soluble and insoluble dietary fiber content and composition in oat. Cereal Chem 76:417–420

    Google Scholar 

  • McCann MC, Roberts K (1991) Architecture of the primary cell wall. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, Toronto, pp 109–129

    Google Scholar 

  • McCann MC, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96:323–334

    Google Scholar 

  • McCann MC, Wells B, Roberts K (1992) Complexity in the spatial localization and length distribution of plant cell-wall matrix polysaccharides. J Microsc 166:123–136

    Google Scholar 

  • McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, pp 292–324

    Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135

    Google Scholar 

  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unraveling cell wall formation in the woody dicot stem. Plant Mol Biol 47:239–274

    Google Scholar 

  • Michalowicz G, Toussaint B, Vignon MR (1991) Ultrastructural-changing in poplar cell wall during steam explosion treatment. Holzforschung 45:175–179

    Google Scholar 

  • Miller SS, Fulcher RG (1995) Oat endosperm cell walls: II. hot-water solubilization and enzymatic digestion of the wall. Cereal Chem 72:428–432

    Google Scholar 

  • Miller S, Hester R (2007) Concentrated acid conversion of pine softwood to sugars. Part 1: use of a twin-screw reactor for hydrolysis pretreatment. Chem Eng Commun 194:85–102

    Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Google Scholar 

  • Mueller SC, Brown RM Jr (1980) Evidence for an intramembranous component associated with a cellulose microfibril synthesizing complex in higher plants. J Cell Biol 84:315–326

    Google Scholar 

  • Muller PR (1974) Look back without anger: a reappraisal of William A. Dunning. J Am Hist 61:325–338

    Google Scholar 

  • Nakamura N, Yamada R, Katahira S, Tanaka T, Fukuda H, Kondo A (2008) Effective xylose/cellobiose co-fermentation and ethanol production of xylose-assimilating S. cerevisiae via expression of β-glucosidase on its cell surface. Enzym Microb Technol 43:233–236

    Google Scholar 

  • Narayanaswamy N, Faik A, Goetz DJ, Gu T (2011) Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresour Technol 102:6995–7000

    Google Scholar 

  • Ni H, Laplaza JM, Jeffries TW (2007) Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on xylose. Appl Environ Microbiol 73:2061–2066

    Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900

    Google Scholar 

  • Pan X, Xie D, Kang KY, Yoon SL, Saddler JN (2007) Effect of organosolv ethanol pretreatment variables on physical characteristics of hybrid poplar substrates. Appl Biochem Biotechnol 136–140:367–377

    Google Scholar 

  • Peng B, Shen Y, Li X, Chen X, Hou J, Bao X (2012) Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab Eng 14:9–18

    Google Scholar 

  • Perrin RM, Derocher AE, Bar-Peled M, Zeng W, Norambuena L, Orellana A, Raikhel NV, Keegstra K (1999) Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis. Science 284:1976–1979

    Google Scholar 

  • Persson S, Caffall KH, Freshour G, Hilley MT, Bauer S, Poindexter P, Hahn MG, Mohnen D, Somerville C (2007) The Arabidopsis irregular xylem8 Mutant is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity. Plant Cell 19:237–255

    Google Scholar 

  • Persson T, Ren JL, Joelsson E, Jönsson AS (2009) Fractionation of wheat and barley straw to access high molecular-mass hemicelluloses prior to ethanol production. Bioresour Technol 100:3906–3913

    Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177

    Google Scholar 

  • Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochemistry 3:29–60

    Google Scholar 

  • Ralph J, Brunow G, Harris PJ, Dixon RA, Schatz PF, Boerjan W (2008) Lignification: are lignins biosynthesized via simple combinatorial chemistry or via proteinaceous control and template replication? In: Daayf F, Hadrami A El, Adam L, Ballance GM (eds), Recent advances in polyphenol research, Vol 1. Wiley-Blackwell Publishing, Oxford, pp 36–66

    Google Scholar 

  • Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet A-M, Deborah G (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol 129:145–155

    Google Scholar 

  • Regalbuto JR (2009) Cellulosic biofuels—got gasoline? Science 325:822–824

    Google Scholar 

  • Reiter W-D, Chapple CCS, Somerville CR (1993) Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science 261:1032–1035

    Google Scholar 

  • Rogalinski T, Ingram T, Brunner GJ (2008) Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures. J Supercrit Fluids 47:54–63

    Google Scholar 

  • Rosgaard L, Pedersen S, Meyer AS (2007) Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw. Appl Biochem Biotechnol 143:284–296

    Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Google Scholar 

  • Saha BC, Cotta MA (2010) Comparison of pretreatment strategies for enzymatic saccharification of barley straw to ethanol. New Biotechnol 27:10–16

    Google Scholar 

  • Saulnier L, Marot C, Chanliaud E, Thibault JF (1995) Cell wall polysaccharide interactions in maize bran. Carbohydr Polym 26:279–287

    Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Google Scholar 

  • Service RF (2011) Algae’s second try. Science 333:1238–1239

    Google Scholar 

  • Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998) Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. National Renewable Energy Lab., Golden, NREL Publ. No. SR-580-24089

    Google Scholar 

  • Sheehan J, Aden A, Paustian K, Killian K, Brenner J, Walsh M, Nelson R (2003) Energy and environmental aspects of using corn stover for fuel ethanol. J Ind Ecol 7:117–146. http://mitpress.mit.edu/jie

    Google Scholar 

  • Sjostrom E (1993) Wood chemistry: fundamentals and applications, 2nd edn. Academic press, San Diego, p 292

    Google Scholar 

  • Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31:401–408

    Google Scholar 

  • Somerville C (2006) The billion-ton biofuels vision. Science 312:1277

    Google Scholar 

  • Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS (2011) Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol 29:615–623

    Google Scholar 

  • Sterjiades R, Dean JFD, Eriksson K-EL (1992) Laccase from sycamore maple ( Acev pseudoplatnnus) polymerizes monolignols. Plant Physiol 99:1162–1168

    Google Scholar 

  • Sterling JD, Atmodjo MA, Inwood SE, Kolli VSK, Quigley HF, Hahn MG, Mohnen D (2006) Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galactosyltransferase. Proc Natl Acad Sci U S A 103:5236–5241

    Google Scholar 

  • Sun Y, Cheng JJ (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Google Scholar 

  • Svetlichnyi VA, Svetlichnaya TP, Chernykh NA, Zavarzin GA (1990) Anaerocellum thermophilum gen. nov., sp. nov., an extremely thermophilic cellulolytic eubacterium isolated from hot-springs in the valley of Geysers. Microbiology 59:598–604

    Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Google Scholar 

  • Thomsen MH, Thygesen A, Thomsen AB (2008) Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis. Bioresour Technol 99:4221–4228

    Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600

    Google Scholar 

  • Touzel J-P, Chabbert B, Monties B, Debeire P, Cathala B (2003) Synthesis and characterisation of dehydrogenation polymers in Gluconacetobacter xylinus cellulose and cellulose/pectin composite. J Agri Food Chem 51:981–986

    Google Scholar 

  • Trumbly RJ (1992) Glucose repression in the yeast Saccharomyces cerevisiae. Mol Microbiol 6:15–21

    Google Scholar 

  • Tsekos I (1999) The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol 35:635–655

    Google Scholar 

  • U. S. DOE (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC/EE-0095, U.S. Department of Energy Office of Science and Office of Energy Efficiency and Renewable Energy

    Google Scholar 

  • van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcohol fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae, current status. Anttonie Van Leeuwenhoek 90:391–418

    Google Scholar 

  • Versele M, Thevelein JM, Van Dijck P (2004) The high general stress resistance of the Saccharomyces cerevisiae fill adenylate cyclase mutant (CyrI(Lys1682)) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes. Yeast 21:75–86

    Google Scholar 

  • Walfridsson M, Bao X, Anderlund M, Lilius G, Bülow L, Hahn-Hägerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilis xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62:4648–4651

    Google Scholar 

  • Watanabe T, Koshijima T (1988) Evidence for an ester linkage between lignin and glucuronic-acid in lignin carbohydrate complexes by DDQ-oxidation. Agric Biol Chem 52:2953–2955

    Google Scholar 

  • Whitney SEC, Brigham JE, Darke A, Reid JSG, Gidley MJ (1995) In vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects. Plant J 8:491–504

    Google Scholar 

  • Whitney SEC, Brigham JE, Darke A, Reid JSG, Gidley MJ (1998) Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydr Res 307:299–309

    Google Scholar 

  • Whitney SEC, Gothard MGE, Mitchell JT, Gidley MJ (1999) Roles of cellulose and xyloglucan in determining the mechanical properties of plant cell walls. Plant Physiol 121:657–663

    Google Scholar 

  • Whitney SEC, Wilson E, Webster J, Bacic A, Gidley MJ (2006) Effects of structural variation in xyloglucan polymers on interactions with bacterial cellulose. Am J Bot 93:1402–1414

    Google Scholar 

  • Wightman R, Turner S (2010) Trafficking of the plant cellulose synthase complex. Plant Physiol 153:427–432

    Google Scholar 

  • Wu AM, Rihouey C, Seveno M, Hornblad E, Singh SK, Matsunaga T, Ishii T, Lerouge P, Marchant A (2009) The Arabidopsis IRX10 and IRX10-like glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation. Plant J 57:718–731

    Google Scholar 

  • Wu Y, Williams M, Bernard S, Driouich A, Showalter AM, Faik A (2010a) Functional identification of two nonredundant Arabidopsis α(1,2)fucosyltransferases specific to arabinogalactan proteins. J Biol Chem 285:13638–13645

    Google Scholar 

  • Wu AM, Hornblad E, Voxeur A, Gerber L, Rihouey C, Lerouge P, Marchant A (2010b) Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiol 153:542–554

    Google Scholar 

  • Xu P, Donaldson LA, Gergely ZR, Staehelin LA (2007) Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci Technol 41:101–116

    Google Scholar 

  • Yang S-J, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Davis M, Westpheling J, Adams MWW (2009) Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the Thermophilic Anaerobe “Anaerocellum thermophilum” DSM 6725. Appl Envir Microbiol 75:4762–4769

    Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart NC (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429

    Google Scholar 

  • Zandleven J, Beldman G, Bosveld M, Schols HA, Voragen AGJ (2006) Enzymatic degradation studies of xylogalacturonans from apple and potato, using xylogalacturonan hydrolase. Carbohydr Polym 65:495–503

    Google Scholar 

  • Zhang YHP, Ding ST, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97:214–223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Faik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Faik, A. (2013). “Plant Cell Wall Structure-Pretreatment” the Critical Relationship in Biomass Conversion to Fermentable Sugars. In: Gu, T. (eds) Green Biomass Pretreatment for Biofuels Production. SpringerBriefs in Molecular Science(). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6052-3_1

Download citation

Publish with us

Policies and ethics