Skip to main content

Biotechnology Principles of Solid State Fermentation

  • Chapter
  • First Online:

Abstract

As discussed in Chap. 1, solid-state fermentation is an important bioprocess. In this process, microorganisms are the most important participant. Because of the unique characteristics of the solid matrix and the rich interface environment it forms, microorganisms in solid-state fermentation show some different features compared with liquid culture. This chapter mainly discusses the relationship of solid-state fermentation and the solid matrix, the physiological metabolism and growth characteristics of microorganisms in the solid matrix, and the interactions between the microorganisms and the solid matrix. The aseptic techniques and inoculation techniques for large-scale solid-state fermentation are discussed in the last part of this chapter. Note that the dynamics model of fractal dimension established in my laboratory can quantitatively characterize the variation law of morphology with the microbial growth in solid-state fermentation and can be used as indicators for biomass yield in the solid-state fermentation process, which provides a new way to automate process control for solid-state fermentation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Chen HZ. Cellulose biological technology. Beijing: Chemical Industry Press; 2005.

    Google Scholar 

  • Chen HZ, Li ZH. Asepsis fermentation method for solid state fermentation and its special device. Chinese Patent CN02126042.7; 2002.

    Google Scholar 

  • Chen HZ, Liu LY. Principle and application of steam explosion technology. Beijing: Chemical Industry Press; 2007.

    Google Scholar 

  • Chen HZ, Xu J. Principles and applications of modern solid state fermentation. Beijing: Chemical Industry Press; 2004.

    Google Scholar 

  • Cheng YF, Cheng YF, Che XL. Hollow ball fermentator for sterilization and cooling inoculation. Chinese Patent CN200610150843.5; 2006.

    Google Scholar 

  • Costerton JW, Cheng K, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, et al. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–64.

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–45.

    Article  PubMed  CAS  Google Scholar 

  • Desgranges C, Vergoignan C, Lereec A, Riba G, Durand A. Use of solid state fermentation to produce Beauveria bassiana for the biological control of European corn borer. Biotechnol Adv. 1993;11(3):577–87.

    Article  PubMed  CAS  Google Scholar 

  • Dominguez M, Mejia A, Revah S, Barrios-Gonzalez J. Optimization of bagasse, nutrients and initial moisture ratios on the yield of penicillin in solid-state fermentation. World J Microbiol Biotechnol. 2001;17:751–6.

    Article  CAS  Google Scholar 

  • Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881.

    Article  PubMed  Google Scholar 

  • Gelmi C, Pérez-Correa R, Agosin E. Modelling Gibberella fujikuroi growth and GA 3 production in solid-state fermentation. Process Biochem. 2002;37:1033–40.

    Article  CAS  Google Scholar 

  • Gervais P, Molin P. The role of water in solid-state fermentation. Biochem Eng J. 2003;13:85–101.

    Article  CAS  Google Scholar 

  • Gnansounou E, Dauriat A, Wyman C. Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour Technol. 2005;96(9):985–1002.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Rojas M, Cordova J, Auria R, Revah S, Favela-Torres E. Citric acid and polyols production by Aspergillus niger at high glucose concentration in solid state fermentation on inert support. Biotechnol Lett. 1995;17:219–24.

    Article  CAS  Google Scholar 

  • Han J, Xiang X, Li X. Rapid preparation of fluid inocula and application for solid state fermentation. Chinese Patent CN200810111502.6; 2008.

    Google Scholar 

  • Kolter R, Greenberg EP. Microbial sciences: the superficial life of microbes. Nature. 2006;441(7091):300–2.

    Article  PubMed  CAS  Google Scholar 

  • Kreth J, Zhang Y, Herzberg MC. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol. 2008;190:4632–40.

    Article  PubMed  CAS  Google Scholar 

  • Li DJ. Studies on sustainable agro-ecology system of sweet sorghum. Sci Agric Sin. 2002;35:1021–4.

    Google Scholar 

  • Li GX, Zhang FS. Solid waste composting and production of organic compound fertilizer. Beijing: Chemical Industry Press; 2000.

    Google Scholar 

  • Loh W, Hubbard A. Encyclopedia of surface and colloid science. New York: Dekker; 2002.

    Google Scholar 

  • Mitchell DA, von Meien OF, Krieger N, Dalsenter FDH. A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochem Eng J. 2004;17(1):15–26.

    Article  CAS  Google Scholar 

  • Modenbach AA, Nokes SE. The use of high-solids loadings in biomass pretreatment-a review. Biotechnol Bioeng. 1956;109:1430–42.

    Article  Google Scholar 

  • Neufeld R, Zajic J, Gerson D. Cell surface measurements in hydrocarbon and carbohydrate fermentations. Appl Environ Microbiol. 1980;39(3):511–7.

    PubMed  CAS  Google Scholar 

  • Ooijkaas LP, Weber FJ, Buitelaar RM, Tramper J, Rinzema A. Defined media and inert supports: their potential as solid-state fermentation production systems. Trends Biotechnol. 2000;18:356–60.

    Article  PubMed  CAS  Google Scholar 

  • Otsu N. A threshold selection method from gray-level histograms. Automatica. 1975;11:23–7.

    Google Scholar 

  • Rahardjo YSP, Jolink F, Haemers S, Tramper J, Rinzema A. Significance of bed porosity, bran and specific surface area in solid-state cultivation of Aspergillus oryzae. Biomol Eng. 2005;22:133–9.

    Article  PubMed  CAS  Google Scholar 

  • Rahardjo YSP, Tramper J, Rinzema A. Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol Adv. 2006;24(2):161–79.

    Article  PubMed  CAS  Google Scholar 

  • Shen P, Chen XD, Wei YB. Microbiology. Beijing: Higher Education Press; 2009.

    Google Scholar 

  • Song JP, Chen HZ, Ma RY. Research on production of ethanol from sweet sorghum stalk by solid-state fermentation. Liquor Marking. 2007;34:81–3.

    CAS  Google Scholar 

  • Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N. Acid‐neutralizing activity during amino acid fermentation by Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum. Oral Microbiol Immunol. 2003;18:109–13.

    Article  PubMed  CAS  Google Scholar 

  • Van Loosdrecht M, Lyklema J, Norde W, Zehnder A. Influence of interfaces on microbial activity. Microbiol Rev. 1990;54:75–87.

    PubMed  Google Scholar 

  • Wakelin SA, Anand RR, Reith F, Gregg AL, Noble RRP, Goldfarb KC, et al. Bacterial communities associated with a mineral weathering profile at a sulphidic mine tailings dump in arid Western Australia. FEMS Microbiol Ecol. 2012;79:298–311.

    Article  PubMed  CAS  Google Scholar 

  • Weber FJ, Tramper J, Rinzema A. A simplified material and energy balance approach for process development and scale-up of Coniothyrium minitans conidia production by solid‐state cultivation in a packed‐bed reactor. Biotechnol Bioeng. 1999;65:447–58.

    Article  PubMed  CAS  Google Scholar 

  • Xin LJ, Li MC. Ordinary mycology. Beijing: Higher Education Press; 1999.

    Google Scholar 

  • Xin BC, Xu YL, Li YL, Liu TJ, Yang DQ. Communication and cooperation of different microorganisms within biofilms. Scientia Sincia Vitae. 2010;40:1002–13.

    Google Scholar 

  • Yang SH. Chemistry of plant fiber. Beijing: China Light Industry Press; 2001.

    Google Scholar 

  • Yu HY, Ding WX, Luo JF, Donnison A, Zhang JB. Long-term effect of compost and inorganic fertilizer on activities of carbon-cycle enzymes in aggregates of an intensively cultivated sandy loam. Soil Use Manag. 2012;28:347–60.

    Article  Google Scholar 

  • Zhu BY, Zhao ZG. Chemical basis of interface. Beijing: Chemical Industry Press; 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, H. (2013). Biotechnology Principles of Solid State Fermentation. In: Modern Solid State Fermentation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6043-1_2

Download citation

Publish with us

Policies and ethics