Skip to main content

Cationic Liposome-Based Systems for Nucleic Acid Delivery: From the Formulation Development to Therapeutic Applications

  • Chapter
  • First Online:
Book cover Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment

Abstract

Significant progress has been made in the development of different types of nucleic acids, including plasmid DNA, siRNA and oligonucleotides with the potential to form the basis of new treatment options for genetic and acquired diseases. However, the lack of suitable vectors for efficient delivery of nucleic acids into target cells represents a major hurdle for the successful application of gene therapy.

Since they were first described by Felgner et al. in the late 1980s, cationic liposomes have been considered one of the most promising carriers for nucleic acid delivery to mammalian cells in vitro and in vivo. Nevertheless, cationic liposomes suffer from relatively low levels of gene expression, thus the drive to improve these vectors continues.

Here, we describe crucial physicochemical parameters of cationic liposome-based systems that modulate their biological activity. Moreover, we provide an overview of different strategies that have been explored to surpass cellular barriers towards improving the efficacy of these systems to mediate nucleic acid delivery and therapeutic activity. Finally, examples illustrating the application of cationic liposome-based systems in clinical trials are presented.

Graphical Abstract

Following binding to the plasma membrane of the target cell, lipoplexes are internalized by the endocytotic pathway. Once inside the endosome, lipoplexes promote endosomal membrane destabilization allowing nucleic acid delivery into the cytoplasm and subsequent nuclear translocation. All these steps are crucial for achieving efficient therapeutic activity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-FC:

5-fluorocytosine

AD:

Atopic dermatitis

Apo B:

Apolipoprotein B

ASO:

Antisense oligonucleotide

BBB:

Blood brain barrier

BCR-ABL:

Break cluster region-Abelson

CD:

Cytosine deaminase

CD4+ T lymphocytes:

T lymphocytes expressing the cluster differentiation 4

CD8+ T lymphocytes:

T lymphocytes expressing the cluster differentiation 8

CF:

Cystic fibrosis

CFTR:

Cystic fibrosis transmembrane conductance regulator

Chol:

Cholesterol

c-myc:

Myelocytomotosis oncogene

CNS:

Central nervous system

CpG:

Cytosine-phosphate-guanine motifs

CPP:

Cell-penetrating peptide

ctDNA:

Calf timus DNA

DC-Chol:

3ß-[N-(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol

DLS:

Delivery liposomal system

DMPE-PEG5000 :

Dimyristoylphosphatidylethanolamine-polyethylene glycol5000

DMRIE:

1,2-dimyristyloxypropyl-3-dimethyl-hydroxy ethyl ammonium bromide

DMTAP:

Dimyristoyl 1,2-diacyl-3-trimethylammonium-propane

DOGS:

Dioctadecyl amino glycyl spermine

DOPE:

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

DOSPA:

2,3 dioleyloxy-N-[2[sperminecarboxaminino]ethyl]-N,N-dimethyl-1-propanaminium trifluroacetate

DOTAP:

1,2-dioleoyl-3-trimethylammonium-propane

DOTIM:

Octadecenoyloxy[ethyl-2-heptadecenyl-3-hydroxyethyl] imidazolinium chloride

DOTMA:

2,3-bis[oleyl]oxipropyltrimethylammoniumchloride

DSPE:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine

EBV:

Epstein-Barr virus

EGFR:

Endothelial growth factor receptor

ePC:

Egg yolk phosphatidylcholine

EPOPC:

1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine

eSph:

Egg yolk sphingomyelin

FA:

Folic acid

FR:

Folate receptor

GCV:

Ganciclovir

HA2:

Hemagglutinin subunit 2

HBV:

Hepatitis B virus

HER-2/neu:

Human epidermal growth factor receptor 2 proto-oncogene

HIV-1:

Human immunodeficiency virus type 1

HSA:

Human serum albumin

HSV-tk:

Herpes simplex virus-tymidine kinase

hTR:

Human telomerase RNA component

HVJ:

Hemagglutinating virus of Japan

IC50 :

Half maximal inhibitory concentration

IFN-α:

Interferon-alpha

IFN-β:

Interferon-beta

IFN-γ:

Interferon-gamma

IL-12:

Interleukin-12

IL-13:

Interleukin-13

IL-18:

Interleukin-18

IL-4:

Interleukin-4

LMO2:

LIM domain only 2

LPS:

Lipopolysaccharide

MAbs:

Monoclonal antibodies

Man-liposomes:

Mannosylated liposomes

md-LErafAON:

Modified formulation of antisense oligonucleotide targeting Raf-1

MDM2:

Murine double minute oncogene

MEND:

Multifunctional envelope-type nanodevices

MIP-1β:

Macrophage inflammatory protein-1β

miRNA:

microRNA

mRNA:

Messenger RNA

NFκB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NK:

Natural killer

ON:

Oligonucleotide

PC:

Phosphatidylcholine

pDNA:

Plasmid DNA

PEG:

Polyethylene glycol

Raf-1:

Proto-oncogene serine/threonine-protein kinase

RNAi:

RNA interference

shRNA:

Short hairpin RNA

siRNA:

Small interference RNA

SNALPs:

Stabilized nucleic acid lipid particles

SSO:

Splice-switching oligonucleotide

SV40:

Simian vacuolating virus 40

Tf-lipoplexes:

Transferrin-associated lipoplexes

TfR:

Transferrin receptor

THL:

Trojan Horse liposomes

TIL:

Tumor infiltrating lymphocytes

TNF-α:

Tumor necrosis factor-alpha

TSA:

Mouse mammary adenocarcinoma

UCL:

Ultradeformable cationic liposomes

VEGF:

Vascular endothelial growth factor

References

  1. Meade BR, Dowdy SF (2007) Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv Drug Deliv Rev 59:134–140

    Article  PubMed  CAS  Google Scholar 

  2. Opalinska JB, Gewirtz AM (2002) Nucleic-acid therapeutics: basic principles and recent applications. Nat Rev Drug Discov 1:503–514

    Article  PubMed  CAS  Google Scholar 

  3. Pedroso de Lima MC, Simoes S, Pires P, Faneca H, Duzgunes N (2001) Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev 47:277–294

    Article  PubMed  CAS  Google Scholar 

  4. Somia N, Verma IM (2000) Gene therapy: trials and tribulations. Nat Rev Genet 1:91–99

    Article  PubMed  CAS  Google Scholar 

  5. Torchilin VP (2008) Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Biopolymers 90:604–610

    Article  PubMed  CAS  Google Scholar 

  6. Veldhoen S, Laufer SD, Restle T (2008) Recent developments in peptide-based nucleic acid delivery. Int J Mol Sci 9:1276–1320

    Article  PubMed  CAS  Google Scholar 

  7. Wiethoff CM, Middaugh CR (2003) Barriers to nonviral gene delivery. J Pharm Sci 92:203–217

    Article  PubMed  CAS  Google Scholar 

  8. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138

    Article  PubMed  CAS  Google Scholar 

  9. Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157:195–206

    Article  PubMed  CAS  Google Scholar 

  10. Pfeifer A, Verma IM (2001) Gene therapy: promises and problems. Annu Rev Genomics Hum Genet 2:177–211

    Article  PubMed  CAS  Google Scholar 

  11. Robbins PD, Tahara H, Ghivizzani SC (1998) Viral vectors for gene therapy. Trends Biotechnol 16:35–40

    Article  PubMed  CAS  Google Scholar 

  12. Mountain A (2000) Gene therapy: the first decade. Trends Biotechnol 18:119–128

    Article  PubMed  CAS  Google Scholar 

  13. Pedroso de Lima MC, Simoes S, Pires P, Gaspar R, Slepushkin V, Duzgunes N (1999) Gene delivery mediated by cationic liposomes: from biophysical aspects to enhancement of transfection. Mol Membr Biol 16:103–109

    Article  PubMed  Google Scholar 

  14. El-Aneed A (2004) An overview of current delivery systems in cancer gene therapy. J Control Release 94:1–14

    Article  PubMed  CAS  Google Scholar 

  15. Lechardeur D, Verkman AS, Lukacs GL (2005) Intracellular routing of plasmid DNA during non-viral gene transfer. Adv Drug Deliv Rev 57:755–767

    Article  PubMed  CAS  Google Scholar 

  16. Simoes S, Filipe A, Faneca H, Mano M, Penacho N, Duzgunes N, Pedroso de Lima MC (2005) Cationic liposomes for gene delivery. Expert Opin Drug Deliv 2:237–254

    Article  PubMed  CAS  Google Scholar 

  17. Li S, Huang L (2000) Nonviral gene therapy: promises and challenges. Gene Ther 7:31–34

    Article  PubMed  CAS  Google Scholar 

  18. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    Article  PubMed  CAS  Google Scholar 

  19. Montier T, Benvegnu T, Jaffres PA, Yaouanc JJ, Lehn P (2008) Progress in cationic lipid-mediated gene transfection: a series of bio-inspired lipids as an example. Curr Gene Ther 8:296–312

    Article  PubMed  CAS  Google Scholar 

  20. Gene Therapy Clinical Trials Worldwide (2011) [cited; The journal of gene medicine website for Gene Therapy Clinical Trials Worldwide]. Available from: http://www.wiley.co.uk/genmed/clinical/. Accessed 7 Jan 2013

  21. Pedroso de Lima MC, Neves S, Filipe A, Duzgunes N, Simoes S (2003) Cationic liposomes for gene delivery: from biophysics to biological applications. Curr Med Chem 10:1221–1231

    Article  PubMed  CAS  Google Scholar 

  22. Tros de Ilarduya C, Sun Y, Duzgunes N (2010) Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 40:159–170

    Article  PubMed  CAS  Google Scholar 

  23. Marshall J, Yew NS, Eastman SJ, Jian C, Schelue RK, Cheng SH (1999) Cationic lipid-mediated gene delivery to the airways. In: Huang L, Hung M-C, Wagner E (eds) Nonviral vectors for gene therapy. Academic Press, San Diego

    Google Scholar 

  24. Felgner JH, Kumar R, Sridhar CN, Wheeler CJ, Tsai YJ, Border R, Ramsey P, Martin M, Felgner PL (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269:2550–2561

    PubMed  CAS  Google Scholar 

  25. Koynova R, Tenchov B (2010) Cationic lipids: molecular structure/transfection activity relationships and interactions with biomembranes. Top Curr Chem 296:51–93

    Article  PubMed  CAS  Google Scholar 

  26. MacDonald RC, Rakhmanova VA, Choi KL, Rosenzweig HS, Lahiri MK (1999) O-ethylphosphatidylcholine: a metabolizable cationic phospholipid which is a serum-compatible DNA transfection agent. J Pharm Sci 88:896–904

    Article  PubMed  CAS  Google Scholar 

  27. Faneca H, Simoes S, Pedroso de Lima MC (2002) Evaluation of lipid-based reagents to mediate intracellular gene delivery. Biochim Biophys Acta 1567:23–33

    Article  PubMed  CAS  Google Scholar 

  28. Faneca H, Simoes S, Pedroso de Lima MC (2004) Association of albumin or protamine to lipoplexes: enhancement of transfection and resistance to serum. J Gene Med 6:681–692

    Article  PubMed  CAS  Google Scholar 

  29. Koltover I, Salditt T, Radler JO, Safinya CR (1998) An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281:78–81

    Article  PubMed  CAS  Google Scholar 

  30. Zuidam NJ, Barenholz Y (1998) Electrostatic and structural properties of complexes involving plasmid DNA and cationic lipids commonly used for gene delivery. Biochim Biophys Acta 1368:115–128

    Article  PubMed  CAS  Google Scholar 

  31. Harvie P, Wong FM, Bally MB (1998) Characterization of lipid DNA interactions. I. Destabilization of bound lipids and DNA dissociation. Biophys J 75:1040–1051

    Article  PubMed  CAS  Google Scholar 

  32. Smith JG, Wedeking T, Vernachio JH, Way H, Niven RW (1998) Characterization and in vivo testing of a heterogeneous cationic lipid-DNA formulation. Pharm Res 15:1356–1363

    Article  PubMed  CAS  Google Scholar 

  33. Duarte S, Faneca H, Pedroso de Lima MC (2011) Non-covalent association of folate to lipoplexes: a promising strategy to improve gene delivery in the presence of serum. J Control Release 149:264–272

    Article  PubMed  CAS  Google Scholar 

  34. Faneca H, Faustino A, Pedroso de Lima MC (2008) Synergistic antitumoral effect of vinblastine and HSV-Tk/GCV gene therapy mediated by albumin-associated cationic liposomes. J Control Release 126:175–184

    Article  PubMed  CAS  Google Scholar 

  35. Pires P, Simoes S, Nir S, Gaspar R, Duzgunes N, Pedroso de Lima MC (1999) Interaction of cationic liposomes and their DNA complexes with monocytic leukemia cells. Biochim Biophys Acta 1418:71–84

    Article  PubMed  CAS  Google Scholar 

  36. Radler JO, Koltover I, Salditt T, Safinya CR (1997) Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275:810–814

    Article  PubMed  CAS  Google Scholar 

  37. Lasic DD (1996) Doxorubicin in sterically stabilized liposomes. Nature 380:561–562

    Article  PubMed  CAS  Google Scholar 

  38. Zelphati O, Nguyen C, Ferrari M, Felgner J, Tsai Y, Felgner PL (1998) Stable and monodisperse lipoplex formulations for gene delivery. Gene Ther 5:1272–1282

    Article  PubMed  CAS  Google Scholar 

  39. Lundberg D, Faneca H, Moran Mdel C, Pedroso de Lima MC, Miguel Mda G, Lindman B (2011) Inclusion of a single-tail amino acid-based amphiphile in a lipoplex formulation: effects on transfection efficiency and physicochemical properties. Mol Membr Biol 28:42–53

    Article  PubMed  CAS  Google Scholar 

  40. Li S, Tseng WC, Stolz DB, Wu SP, Watkins SC, Huang L (1999) Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection. Gene Ther 6:585–594

    Article  PubMed  CAS  Google Scholar 

  41. Sternberg B, Hong K, Zheng W, Papahadjopoulos D (1998) Ultrastructural characterization of cationic liposome-DNA complexes showing enhanced stability in serum and high transfection activity in vivo. Biochim Biophys Acta 1375:23–35

    Article  PubMed  CAS  Google Scholar 

  42. da Cruz MT, Cardoso AL, de Almeida LP, Simoes S, Pedroso de Lima MC (2005) Tf-lipoplex-mediated NGF gene transfer to the CNS: neuronal protection and recovery in an excitotoxic model of brain injury. Gene Ther 12:1242–1252

    Article  PubMed  CAS  Google Scholar 

  43. Cardoso AL, Costa P, de Almeida LP, Simoes S, Plesnila N, Culmsee C, Wagner E, Pedroso de Lima MC (2010) Tf-lipoplex-mediated c-Jun silencing improves neuronal survival following excitotoxic damage in vivo. J Control Release 142:392–403

    Article  PubMed  CAS  Google Scholar 

  44. Zhang Y, Zhang YF, Bryant J, Charles A, Boado RJ, Pardridge WM (2004) Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 10:3667–3677

    Article  PubMed  CAS  Google Scholar 

  45. Lu Y, Low PS (2002) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 54:675–693

    Article  PubMed  CAS  Google Scholar 

  46. Reddy JA, Low PS (1998) Folate-mediated targeting of therapeutic and imaging agents to cancers. Crit Rev Ther Drug Carrier Syst 15:587–627

    Article  PubMed  CAS  Google Scholar 

  47. Saba NF, Wang X, Muller S, Tighiouart M, Cho K, Nie S, Chen Z, Shin DM (2009) Examining expression of folate receptor in squamous cell carcinoma of the head and neck as a target for a novel nanotherapeutic drug. Head Neck 31:475–481

    Article  PubMed  Google Scholar 

  48. Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162

    Article  PubMed  CAS  Google Scholar 

  49. Meier R, Henning TD, Boddington S, Tavri S, Arora S, Piontek G, Rudelius M, Corot C, Daldrup-Link HE (2010) Breast cancers: MR imaging of folate-receptor expression with the folate-specific nanoparticle P1133. Radiology 255:527–535

    Article  PubMed  Google Scholar 

  50. Campbell IG, Jones TA, Foulkes WD, Trowsdale J (1991) Folate-binding protein is a marker for ovarian cancer. Cancer Res 51:5329–5338

    PubMed  CAS  Google Scholar 

  51. Laine C, Mornet E, Lemiegre L, Montier T, Cammas-Marion S, Neveu C, Carmoy N, Lehn P, Benvegnu T (2008) Folate-equipped pegylated archaeal lipid derivatives: synthesis and transfection properties. Chemistry 14:8330–8340

    Article  PubMed  CAS  Google Scholar 

  52. Li H, Piao L, Yu B, Yung BC, Zhang W, Wang PG, Lee JL, Lee RJ (2011) Delivery of calf thymus DNA to tumor by folate receptor targeted cationic liposomes. Biomaterials 32:6614–6620

    Article  PubMed  CAS  Google Scholar 

  53. Hofland HE, Masson C, Iginla S, Osetinsky I, Reddy JA, Leamon CP, Scherman D, Bessodes M, Wils P (2002) Folate-targeted gene transfer in vivo. Mol Ther 5:739–744

    Article  PubMed  CAS  Google Scholar 

  54. Rait AS, Pirollo KF, Xiang L, Ulick D, Chang EH (2002) Tumor-targeting, systemically delivered antisense HER-2 chemosensitizes human breast cancer xenografts irrespective of HER-2 levels. Mol Med 8:475–486

    PubMed  CAS  Google Scholar 

  55. Chiu SJ, Marcucci G, Lee RJ (2006) Efficient delivery of an antisense oligodeoxyribonucleotide formulated in folate receptor-targeted liposomes. Anticancer Res 26:1049–1056

    PubMed  CAS  Google Scholar 

  56. Feng C, Wang T, Tang R, Wang J, Long H, Gao X, Tang S (2010) Silencing of the MYCN gene by siRNA delivered by folate receptor-targeted liposomes in LA-N-5 cells. Pediatr Surg Int 26:1185–1191

    Article  PubMed  Google Scholar 

  57. Li P, Liu D, Sun X, Liu C, Liu Y, Zhang N (2011) A novel cationic liposome formulation for efficient gene delivery via a pulmonary route. Nanotechnology 22:245104

    Article  PubMed  CAS  Google Scholar 

  58. Medina-Kauwe LK, Xie J, Hamm-Alvarez S (2005) Intracellular trafficking of nonviral vectors. Gene Ther 12:1734–1751

    Article  PubMed  CAS  Google Scholar 

  59. Simoes S, Slepushkin V, Gaspar R, Pedroso de Lima MC, Duzgunes N (1998) Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes and transferrin or fusigenic peptides. Gene Ther 5:955–964

    Article  PubMed  CAS  Google Scholar 

  60. Simoes S, Slepushkin V, Pires P, Gaspar R, Pedroso de Lima MC, Duzgunes N (1999) Mechanisms of gene transfer mediated by lipoplexes associated with targeting ligands or pH-sensitive peptides. Gene Ther 6:1798–1807

    Article  PubMed  CAS  Google Scholar 

  61. Yamauchi J, Hayashi Y, Kajimoto K, Akita H, Harashima H (2010) Comparison between a multifunctional envelope-type nano device and lipoplex for delivery to the liver. Biol Pharm Bull 33:926–929

    Article  PubMed  CAS  Google Scholar 

  62. Hatakeyama H, Ito E, Akita H, Oishi M, Nagasaki Y, Futaki S, Harashima H (2009) A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J Control Release 139:127–132

    Article  PubMed  CAS  Google Scholar 

  63. Lundberg P, El-Andaloussi S, Sutlu T, Johansson H, Langel U (2007) Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J 21:2664–2671

    Article  PubMed  CAS  Google Scholar 

  64. Shenkman S, Araujo PS, Dijkman R, Quina FH, Chaimovich H (1981) Effects of temperature and lipid composition on the serum albumin-induced aggregation and fusion of small unilamellar vesicles. Biochim Biophys Acta 649:633–641

    Article  Google Scholar 

  65. Garcia LAM, Shenkman S, Araujo PS, Chaimovich H (1983) Fusion of small unilamellar vesicles induced by bovine serum albumin fragments. Brazil J Med Res 16:89–96

    CAS  Google Scholar 

  66. Simões S, Slepushkin V, Pires P, Gaspar R, Pedroso de Lima MC, Düzgüneş N (2000) Human serum albumin enhances DNA transfection by lipoplexes and confers resistance to inhibition by serum. Biochimica et Biophysica Acta 1463:459–469

    Article  PubMed  Google Scholar 

  67. Aronsohn AI, Hughes JA (1998) Nuclear localization signal peptides enhance cationic liposome-mediated gene therapy. J Drug Target 5:163–169

    Article  PubMed  CAS  Google Scholar 

  68. Chan CK, Jans DA (1999) Enhancement of polylysine-mediated transfer infection by nuclear localization sequences: polylysine does not function as a nuclear localization sequence. Hum Gene Ther 10:1695–1702

    Article  PubMed  CAS  Google Scholar 

  69. Zanta MA, Belguise-Valladier P, Behr JP (1999) Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA 96:91–96

    Article  PubMed  CAS  Google Scholar 

  70. Branden LJ, Mohamed AJ, Smith CI (1999) A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol 17:784–787

    Article  PubMed  CAS  Google Scholar 

  71. Subramanian A, Ranganathan P, Diamond SL (1999) Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat Biotechnol 17:873–877

    Article  PubMed  CAS  Google Scholar 

  72. Chen J, Yu Z, Chen H, Gao J, Liang W (2011) Transfection efficiency and intracellular fate of polycation liposomes combined with protamine. Biomaterials 32:1412–1418

    Article  PubMed  CAS  Google Scholar 

  73. Hyndman L, Lemoine JL, Huang L, Porteous DJ, Boyd AC, Nan X (2004) HIV-1 Tat protein transduction domain peptide facilitates gene transfer in combination with cationic liposomes. J Control Release 99:435–444

    Article  PubMed  CAS  Google Scholar 

  74. Rudolph C, Plank C, Lausier J, Schillinger U, Muller RH, Rosenecker J (2003) Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. J Biol Chem 278:11411–11418

    Article  PubMed  CAS  Google Scholar 

  75. Trabulo S, Mano M, Faneca H, Cardoso AL, Duarte S, Henriques A, Paiva A, Gomes P, Simoes S, Pedroso de Lima MC (2008) S4(13)-PV cell penetrating peptide and cationic liposomes act synergistically to mediate intracellular delivery of plasmid DNA. J Gene Med 10:1210–1222

    Article  PubMed  CAS  Google Scholar 

  76. Trabulo S, Resina S, Simoes S, Lebleu B, Pedroso de Lima MC (2010) A non-covalent strategy combining cationic lipids and CPPs to enhance the delivery of splice correcting oligonucleotides. J Control Release 145:149–158

    Article  PubMed  CAS  Google Scholar 

  77. Miyata T, Yamamoto S, Sakamoto K, Morishita R, Kaneda Y (2001) Novel immunotherapy for peritoneal dissemination of murine colon cancer with macrophage inflammatory protein-1beta mediated by a tumor-specific vector, HVJ cationic liposomes. Cancer Gene Ther 8:852–860

    Article  PubMed  CAS  Google Scholar 

  78. Asada H, Kishida T, Hirai H, Satoh E, Ohashi S, Takeuchi M, Kubo T, Kita M, Iwakura Y, Imanishi J, Mazda O (2002) Significant antitumor effects obtained by autologous tumor cell vaccine engineered to secrete interleukin (IL)-12 and IL-18 by means of the EBV/lipoplex. Mol Ther 5:609–616

    Article  PubMed  CAS  Google Scholar 

  79. Faneca H, Cabrita AS, Simoes S, Pedroso de Lima MC (2007) Evaluation of the antitumoral effect mediated by IL-12 and HSV-tk genes when delivered by a novel lipid-based system. Biochim Biophys Acta 1768:1093–1102

    Article  PubMed  CAS  Google Scholar 

  80. Neves S, Faneca H, Bertin S, Konopka K, Duzgunes N, Pierrefite-Carle V, Simoes S, Pedroso de Lima MC (2009) Transferrin lipoplex-mediated suicide gene therapy of oral squamous cell carcinoma in an immunocompetent murine model and mechanisms involved in the antitumoral response. Cancer Gene Ther 16:91–101

    Article  PubMed  CAS  Google Scholar 

  81. Li J, Li X, Zhang Y, Zhou XK, Yang HS, Chen XC, Wang YS, Wei YQ, Chen LJ, Hu HZ, Liu CY (2010) Gene therapy for psoriasis in the K14-VEGF transgenic mouse model by topical transdermal delivery of interleukin-4 using ultradeformable cationic liposome. J Gene Med 12:481–490

    Article  PubMed  CAS  Google Scholar 

  82. Troyer RM, Propst KL, Fairman J, Bosio CM, Dow SW (2009) Mucosal immunotherapy for protection from pneumonic infection with francisella tularensis. Vaccine 27:4424–4433

    Article  PubMed  CAS  Google Scholar 

  83. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  84. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  85. Morrissey DV, Blanchard K, Shaw L, Jensen K, Lockridge JA, Dickinson B, McSwiggen JA, Vargeese C, Bowman K, Shaffer CS, Polisky BA, Zinnen S (2005) Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41:1349–1356

    Article  PubMed  CAS  Google Scholar 

  86. Halder J, Kamat AA, Landen CN Jr, Han LY, Lutgendorf SK, Lin YG, Merritt WM, Jennings NB, Chavez-Reyes A, Coleman RL, Gershenson DM, Schmandt R, Cole SW, Lopez-Berestein G, Sood AK (2006) Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res 12:4916–4924

    Article  PubMed  CAS  Google Scholar 

  87. Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A, Butler D, Charisse K, Dorkin R, Fan Y, Gamba-Vitalo C, Hadwiger P, Jayaraman M, John M, Jayaprakash KN, Maier M, Nechev L, Rajeev KG, Read T, Rohl I, Soutschek J, Tan P, Wong J, Wang G, Zimmermann T, de Fougerolles A, Vornlocher HP, Langer R, Anderson DG, Manoharan M, Koteliansky V, Horton JD, Fitzgerald K (2008) Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci USA 105:11915–11920

    Article  PubMed  CAS  Google Scholar 

  88. Yokota T, Iijima S, Kubodera T, Ishii K, Katakai Y, Ageyama N, Chen Y, Lee YJ, Unno T, Nishina K, Iwasaki Y, Maki N, Mizusawa H, Akari H (2007) Efficient regulation of viral replication by siRNA in a non-human primate surrogate model for hepatitis C. Biochem Biophys Res Commun 361:294–300

    Article  PubMed  CAS  Google Scholar 

  89. Sato Y, Murase K, Kato J, Kobune M, Sato T, Kawano Y, Takimoto R, Takada K, Miyanishi K, Matsunaga T, Takayama T, Niitsu Y (2008) Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 26:431–442

    Article  PubMed  CAS  Google Scholar 

  90. Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA, Jeffs LB, John M, Judge AD, Lam K, McClintock K, Nechev LV, Palmer LR, Racie T, Rohl I, Seiffert S, Shanmugam S, Sood V, Soutschek J, Toudjarska I, Wheat AJ, Yaworski E, Zedalis W, Koteliansky V, Manoharan M, Vornlocher HP, MacLachlan I (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114

    Article  PubMed  CAS  Google Scholar 

  91. Geisbert TW, Hensley LE, Kagan E, Yu EZ, Geisbert JB, Daddario-DiCaprio K, Fritz EA, Jahrling PB, McClintock K, Phelps JR, Lee AC, Judge A, Jeffs LB, MacLachlan I (2006) Post exposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J Infect Dis 193:1650–1657

    Article  PubMed  CAS  Google Scholar 

  92. Chien PY, Wang J, Carbonaro D, Lei S, Miller B, Sheikh S, Ali SM, Ahmad MU, Ahmad I (2005) Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo. Cancer Gene Ther 12:321–328

    Article  PubMed  CAS  Google Scholar 

  93. Li SD, Chono S, Huang L (2008) Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Mol Ther 16:942–946

    Article  PubMed  CAS  Google Scholar 

  94. Mendonca LS, Firmino F, Moreira JN, Pedroso de Lima MC, Simoes S (2010) Transferrin receptor-targeted liposomes encapsulating anti-BCR-ABL siRNA or as ODN for chronic myeloid leukemia treatment. Bioconjug Chem 21:157–168

    Article  PubMed  CAS  Google Scholar 

  95. Mendonca LS, Moreira JN, Pedroso de Lima MC, Simoes S (2010) Co-encapsulation of anti-BCR-ABL siRNA and imatinib mesylate in transferrin receptor-targeted sterically stabilized liposomes for chronic myeloid leukemia treatment. Biotechnol Bioeng 107:884–893

    Article  PubMed  CAS  Google Scholar 

  96. Kumar P, Lee SK, Shankar P, Manjunath N (2006) A single siRNA suppresses fatal encephalitis induced by two different flaviviruses. PLoS Med 3:e96

    Article  PubMed  CAS  Google Scholar 

  97. Flynn MA, Casey DG, Todryk SM, Mahon BP (2004) Efficient delivery of small interfering RNA for inhibition of IL-12p40 expression in vivo. J Inflamm 1:4

    Article  CAS  Google Scholar 

  98. Sorensen DR, Leirdal M, Sioud M (2003) Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 327:761–766

    Article  PubMed  CAS  Google Scholar 

  99. Khoury M, Louis-Plence P, Escriou V, Noel D, Largeau C, Cantos C, Scherman D, Jorgensen C, Apparailly F (2006) Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor alpha in experimental arthritis. Arthritis Rheum 54:1867–1877

    Article  PubMed  CAS  Google Scholar 

  100. Palliser D, Chowdhury D, Wang QY, Lee SJ, Bronson RT, Knipe DM, Lieberman J (2006) An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439:89–94

    Article  PubMed  CAS  Google Scholar 

  101. Zhang Y, Cristofaro P, Silbermann R, Pusch O, Boden D, Konkin T, Hovanesian V, Monfils PR, Resnick M, Moss SF, Ramratnam B (2006) Engineering mucosal RNA interference in vivo. Mol Ther 14:336–342

    Article  PubMed  CAS  Google Scholar 

  102. Jarver P, Langel U (2004) The use of cell-penetrating peptides as a tool for gene regulation. Drug Discov Today 9:395–402

    Article  PubMed  CAS  Google Scholar 

  103. Laufer SD, Restle T (2008) Peptide-mediated cellular delivery of oligonucleotide-based therapeutics in vitro: quantitative evaluation of overall efficacy employing easy to handle reporter systems. Curr Pharm Des 14:3637–3655

    Article  PubMed  CAS  Google Scholar 

  104. Gleave ME, Monia BP (2005) Antisense therapy for cancer. Nat Rev Cancer 5:468–479

    Article  PubMed  CAS  Google Scholar 

  105. Sazani P, Kole R (2003) Modulation of alternative splicing by antisense oligonucleotides. Prog Mol Subcell Biol 31:217–239

    Article  PubMed  CAS  Google Scholar 

  106. Tazi J, Bakkour N, Stamm S (2009) Alternative splicing and disease. Biochim Biophys Acta 1792:14–26

    Article  PubMed  CAS  Google Scholar 

  107. Kole R, Williams T, Cohen L (2004) RNA modulation, repair and remodeling by splice switching oligonucleotides. Acta Biochim Pol 51:373–378

    PubMed  CAS  Google Scholar 

  108. Mercatante DR, Mohler JL, Kole R (2002) Cellular response to an antisense-mediated shift of Bcl-x pre-mRNA splicing and antineoplastic agents. J Biol Chem 277:49374–49382

    Article  PubMed  CAS  Google Scholar 

  109. Ko YT, Falcao C, Torchilin VP (2009) Cationic liposomes loaded with proapoptotic peptide D-(KLAKLAK)(2) and Bcl-2 antisense oligodeoxynucleotide G3139 for enhanced anticancer therapy. Mol Pharm 6:971–977

    Article  PubMed  CAS  Google Scholar 

  110. Resina S, Abes S, Turner JJ, Prevot P, Travo A, Clair P, Gait MJ, Thierry AR, Lebleu B (2007) Lipoplex and peptide-based strategies for the delivery of steric-block oligonucleotides. Int J Pharm 344:96–102

    Article  PubMed  CAS  Google Scholar 

  111. Resina S, Kole R, Travo A, Lebleu B, Thierry AR (2007) Switching on transgene expression by correcting aberrant splicing using multi-targeting steric-blocking oligonucleotides. J Gene Med 9:498–510

    Article  PubMed  CAS  Google Scholar 

  112. Thierry AR, Abes S, Resina S, Travo A, Richard JP, Prevot P, Lebleu B (2006) Comparison of basic peptides- and lipid-based strategies for the delivery of splice correcting oligonucleotides. Biochim Biophys Acta 1758:364–374

    Article  PubMed  CAS  Google Scholar 

  113. Thierry AR, Vives E, Richard JP, Prevot P, Martinand-Mari C, Robbins I, Lebleu B (2003) Cellular uptake and intracellular fate of antisense oligonucleotides. Curr Opin Mol Ther 5:133–138

    PubMed  CAS  Google Scholar 

  114. Kim ST, Lee KM, Park HJ, Jin SE, Ahn WS, Kim CK (2009) Topical delivery of interleukin-13 antisense oligonucleotides with cationic elastic liposome for the treatment of atopic dermatitis. J Gene Med 11:26–37

    Article  PubMed  CAS  Google Scholar 

  115. Zhang C, Newsome JT, Mewani R, Pei J, Gokhale PC, Kasid UN (2009) Systemic delivery and pre-clinical evaluation of nanoparticles containing antisense oligonucleotides and siRNAs. Methods Mol Biol 480:65–83

    Article  PubMed  CAS  Google Scholar 

  116. Beisner J, Dong M, Taetz S, Piotrowska K, Kleideiter E, Friedel G, Schaefer U, Lehr CM, Klotz U, Murdter TE (2009) Efficient telomerase inhibition in human non-small cell lung cancer cells by liposomal delivery of 2′-O-methyl-RNA. J Pharm Sci 98:1765–1774

    Article  PubMed  CAS  Google Scholar 

  117. Dinh TD, Higuchi Y, Kawakami S, Yamashita F, Hashida M (2011) Evaluation of osteoclastogenesis via NFkappaB decoy/mannosylated cationic liposome-mediated inhibition of pro-inflammatory cytokine production from primary cultured macrophages. Pharm Res 28:742–751

    Article  PubMed  CAS  Google Scholar 

  118. Kohn DB, Hershfield MS, Carbonaro D, Shigeoka A, Brooks J, Smogorzewska EM, Barsky LW, Chan R, Burotto F, Annett G, Nolta JA, Crooks G, Kapoor N, Elder M, Wara D, Bowen T, Madsen E, Snyder FF, Bastian J, Muul L, Blaese RM, Weinberg K, Parkman R (1998) T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates. Nat Med 4:775–780

    Article  PubMed  CAS  Google Scholar 

  119. Baum BJ, Goldsmith CM, Kok MR, Lodde BM, van Mello NM, Voutetakis A, Wang J, Yamano S, Zheng C (2003) Advances in vector-mediated gene transfer. Immunol Lett 90:145–149

    Article  PubMed  CAS  Google Scholar 

  120. Raper SE, Yudkoff M, Chirmule N, Gao GP, Nunes F, Haskal ZJ, Furth EE, Propert KJ, Robinson MB, Magosin S, Simoes H, Speicher L, Hughes J, Tazelaar J, Wivel NA, Wilson JM, Batshaw ML (2002) A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther 13:163–175

    Article  PubMed  CAS  Google Scholar 

  121. Cavazzana-Calvo M, Hacein-Bey S, de Saint BG, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672

    Article  PubMed  CAS  Google Scholar 

  122. Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP, Thrasher AJ, Wulffraat N, Sorensen R, Dupuis-Girod S, Fischer A, Davies EG, Kuis W, Leiva L, Cavazzana-Calvo M (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193

    Article  PubMed  CAS  Google Scholar 

  123. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  PubMed  CAS  Google Scholar 

  124. Edelstein ML, Abedi MR, Wixon J (2007) Gene therapy clinical trials worldwide to 2007 – an update. J Gene Med 9:833–842

    Article  PubMed  Google Scholar 

  125. Alton EW, Stern M, Farley R, Jaffe A, Chadwick SL, Phillips J, Davies J, Smith SN, Browning J, Davies MG, Hodson ME, Durham SR, Li D, Jeffery PK, Scallan M, Balfour R, Eastman SJ, Cheng SH, Smith AE, Meeker D, Geddes DM (1999) Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial. Lancet 353:947–954

    Article  PubMed  CAS  Google Scholar 

  126. Hyde SC, Southern KW, Gileadi U, Fitzjohn EM, Mofford KA, Waddell BE, Gooi HC, Goddard CA, Hannavy K, Smyth SE, Egan JJ, Sorgi FL, Huang L, Cuthbert AW, Evans MJ, Colledge WH, Higgins CF, Webb AK, Gill DR (2000) Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Gene Ther 7:1156–1165

    Article  PubMed  CAS  Google Scholar 

  127. Yoshida J, Mizuno M, Fujii M, Kajita Y, Nakahara N, Hatano M, Saito R, Nobayashi M, Wakabayashi T (2004) Human gene therapy for malignant gliomas (glioblastoma multiforme and anaplastic astrocytoma) by in vivo transduction with human interferon beta gene using cationic liposomes. Hum Gene Ther 15:77–86

    Article  PubMed  CAS  Google Scholar 

  128. Bedikian AY, Richards J, Kharkevitch D, Atkins MB, Whitman E, Gonzalez R (2010) A phase 2 study of high-dose Allovectin-7 in patients with advanced metastatic melanoma. Melanoma Res 20:218–226

    PubMed  CAS  Google Scholar 

  129. Hortobagyi GN, Ueno NT, Xia W, Zhang S, Wolf JK, Putnam JB, Weiden PL, Willey JS, Carey M, Branham DL, Payne JY, Tucker SD, Bartholomeusz C, Kilbourn RG, De Jager RL, Sneige N, Katz RL, Anklesaria P, Ibrahim NK, Murray JL, Theriault RL, Valero V, Gershenson DM, Bevers MW, Huang L, Lopez-Berestein G, Hung MC (2001) Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial. J Clin Oncol 19:3422–3433

    PubMed  CAS  Google Scholar 

  130. Voges J, Reszka R, Gossmann A, Dittmar C, Richter R, Garlip G, Kracht L, Coenen HH, Sturm V, Wienhard K, Heiss WD, Jacobs AH (2003) Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann Neurol 54:479–487

    Article  PubMed  CAS  Google Scholar 

  131. Cavazzana-Calvo M, Thrasher A, Mavilio F (2004) The future of gene therapy. Nature 427:779–781

    Article  PubMed  CAS  Google Scholar 

  132. Hyde SC, Gill DR, Higgins CF, Trezise AE, MacVinish LJ, Cuthbert AW, Ratcliff R, Evans MJ, Colledge WH (1993) Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Nature 362:250–255

    Article  PubMed  CAS  Google Scholar 

  133. McLachlan G, Ho LP, Davidson-Smith H, Samways J, Davidson H, Stevenson BJ, Carothers AD, Alton EW, Middleton PG, Smith SN, Kallmeyer G, Michaelis U, Seeber S, Naujoks K, Greening AP, Innes JA, Dorin JR, Porteous DJ (1996) Laboratory and clinical studies in support of cystic fibrosis gene therapy using pCMV-CFTR-DOTAP. Gene Ther 3:1113–1123

    PubMed  CAS  Google Scholar 

  134. Griesenbach U, Ferrari S, Geddes DM, Alton EW (2002) Gene therapy progress and prospects: cystic fibrosis. Gene Ther 9:1344–1350

    Article  PubMed  CAS  Google Scholar 

  135. Hyde SC, Pringle IA, Abdullah S, Lawton AE, Davies LA, Varathalingam A, Nunez-Alonso G, Green AM, Bazzani RP, Sumner-Jones SG, Chan M, Li H, Yew NS, Cheng SH, Boyd AC, Davies JC, Griesenbach U, Porteous DJ, Sheppard DN, Munkonge FM, Alton EW, Gill DR (2008) CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol 26:549–551

    Article  PubMed  CAS  Google Scholar 

  136. Griesenbach U, Alton EW (2009) Gene transfer to the lung: lessons learned from more than 2 decades of CF gene therapy. Adv Drug Deliv Rev 61:128–139

    Article  PubMed  CAS  Google Scholar 

  137. Wakabayashi T, Natsume A, Hashizume Y, Fujii M, Mizuno M, Yoshida J (2008) A phase I clinical trial of interferon-beta gene therapy for high-grade glioma: novel findings from gene expression profiling and autopsy. J Gene Med 10:329–339

    Article  PubMed  CAS  Google Scholar 

  138. Hung MC, Chang JY, Xing X (1998) Pre-clinical and clinical study of HER-2/neu-targeting cancer gene therapy. Adv Drug Deliv Rev 30:219–227

    Article  PubMed  CAS  Google Scholar 

  139. Villaret D, Glisson B, Kenady D, Hanna E, Carey M, Gleich L, Yoo GH, Futran N, Hung MC, Anklesaria P, Heald AE (2002) A multicenter phase II study of tgDCC-E1A for the intratumoral treatment of patients with recurrent head and neck squamous cell carcinoma. Head Neck 24:661–669

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Pedro Carvalho for the artwork included in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria C. Pedroso de Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Faneca, H., Cardoso, A.L., Trabulo, S., Duarte, S., de Lima, M.C.P. (2013). Cationic Liposome-Based Systems for Nucleic Acid Delivery: From the Formulation Development to Therapeutic Applications. In: Coelho, J. (eds) Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment. Advances in Predictive, Preventive and Personalised Medicine, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6010-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6010-3_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6009-7

  • Online ISBN: 978-94-007-6010-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics