Skip to main content

Abstract

With the increasing incidence of diabetes, it is urgent to develop a reliable and safe source of insulin production. Conventional transplantation of pancreatic tissue has been demonstrated to be an efficacious method of restoring glycaemic control in type 1 diabetes. However, the lack of donors, the use of immunosuppressants and the early β-cell failure limit the use of this approach. Regenerative medicine has focused on the design and application of bioartificial pancreas to treat this disease. Islet microencapsulation technique enables the transplantation in the absence of immunosuppression by protecting the cells through an immunoisolative membrane. This membrane should be able to protect transplanted allo- and xenogenic cells from the host, while facilitating adequate transport of oxygen, nutrients, and secreted hormones. Although many different materials and immunoisolation devices build-up processes have been studied, their viability in in vivo applications has been compromised. With clarification of all obstacles to the clinical application, new strategies will be developed that would increase the islet performance after transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alsahli M, Gerich JE (2010) Abnormalities of insulin secretion and β-cell defects in type 2 diabetes. In: Holt RIG, Cockram C, Flyvbjerg A, Glodstein BJ (eds) Textbook of diabetes. Wiley-Blackwell, Chichester

    Google Scholar 

  2. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    Article  PubMed  CAS  Google Scholar 

  3. Marshall SM, Flyvbjerg A (2010) Diabetic nephropathy. In: Holt RIG, Cockram C, Flyvbjerg A, Glodstein BJ (eds) Textbook of diabetes. Wiley-Blackwell, Chichester

    Google Scholar 

  4. Nilsson PM, Viljoen A, Wierzbicki AS (2010) Cardiovascular risk factors. In: Holt RIG, Cockram C, Flyvbjerg A, Glodstein BJ (eds) Textbook of diabetes. Wiley-Blackwell, Chichester

    Google Scholar 

  5. Scanlon PH (2010) Diabetic retinopathy. In: Holt RIG, Cockram C, Flyvbjerg A, Glodstein BJ (eds) Textbook of diabetes. Wiley-Blackwell, Chichester

    Google Scholar 

  6. Ziegler D (2010) Diabetic peripheral neuropathy. In: Holt RIG, Cockram C, Flyvbjerg A, Glodstein BJ (eds) Textbook of diabetes. Wiley-Blackwell, Chichester

    Google Scholar 

  7. Rathmann W, Giani G (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030—response to Rathman and Giani. Diabetes Care 27:2568–2569

    Article  PubMed  Google Scholar 

  8. American Diabetes Association (1997) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20:1183–1197

    Google Scholar 

  9. Alberti KGMM (2010) The classification and diagnosis of diabetes mellitus. In: Holt RIG, Cockram C, Flyvbjerg A, Glodstein BJ (eds) Textbook of diabetes. Wiley-Blackwell, Chichester

    Google Scholar 

  10. Toeller M (2010) Lifestyle issues: diet. In: Holt RIG, Cockram C, Flyvbjerg A, Glodstein BJ (eds) Textbook of diabetes. Wiley-Blackwell, Chichester

    Google Scholar 

  11. Yardley JE, Alberga A, Kenny GP, Sigal RJ (2010) Lifestyle issues: exercise. In: Holt RIG, Cockram C, Flyvbjerg A, Glodstein BJ (eds) Textbook of diabetes. Wiley-Blackwell, Chichester

    Google Scholar 

  12. Gough S, Narendran P (2010) Insulin and insulin treatment. In: Holt RIG, Cockram C, Flyvbjerg A, Glodstein BJ (eds) Textbook of diabetes. Wiley-Blackwell, Chichester

    Google Scholar 

  13. Bailey CJ, Krentz AJ (2010) Oral antidiabetic agents. In: Textbook of diabetes. Wiley-Blackwell, Chichester, pp 452–477

    Google Scholar 

  14. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464:1293–1300

    Article  PubMed  CAS  Google Scholar 

  15. Cryer PE (2010) Hypoglycemia in type 1 diabetes mellitus. Endocrinol Metab Clin North Am 39:641–654

    Article  PubMed  CAS  Google Scholar 

  16. Williams P (1894) Notes on diabetes treated with extract and by grafts of sheep’s pancreas. Br Med J 2:1303–1304

    Google Scholar 

  17. Ballinge WF, Lacy PE (1972) Transplantation of intact pancreatic islets in rats. Surgery 72:175–186

    Google Scholar 

  18. Pirsch JD, Miller J, Deierhoi MH, Vincenti F, Filo RS (1997) A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. Transplantation 63:977–983

    Article  PubMed  CAS  Google Scholar 

  19. Sutherland DE, Gruessner RW, Dunn DL, Matas AJ, Humar A, Kandaswamy R, Mauer SM, Kennedy WR, Goetz FC, Robertson RP, Gruessner AC, Najarian JS (2001) Lessons learned from more than 1,000 pancreas transplants at a single institution. Ann Surg 233:463–501

    Article  PubMed  CAS  Google Scholar 

  20. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238

    Article  PubMed  CAS  Google Scholar 

  21. Oberholzer J, Triponez F, Mage R, Andereggen E, Bühler L, Crétin N, Fournier B, Goumaz C, Lou J, Philippe J, Morel P (2000) Human islet transplantation – lessons from 13 autologous and 13 allogeneic transplantations. Transplantation 69:1115–1123

    Article  PubMed  CAS  Google Scholar 

  22. Agudelo CA, Teramura Y, Iwata H (2009) Cryopreserved agarose-encapsulated islets as bioartificial pancreas: a feasibility study. Transplantation 87:29–34

    Article  PubMed  Google Scholar 

  23. Prokop A, Davidson JM (2005) Bioartificial pancreas: an update. Appl Cell Immobil Biotechnol 8B:39–54

    Article  CAS  Google Scholar 

  24. Sumi S (2011) Regenerative medicine for insulin deficiency: creation of pancreatic islets and bioartificial pancreas. J Hepatobiliary Pancreat Sci 18:6–12

    Article  PubMed  Google Scholar 

  25. Wilson JT, Chaikof EL (2008) Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv Drug Deliv Rev 60:124–145

    Article  PubMed  CAS  Google Scholar 

  26. Teramura Y, Iwata H (2010) Bioartificial pancreas microencapsulation and conformal coating of islet of Langerhans. Adv Drug Deliv Rev 62:827–840

    Article  PubMed  CAS  Google Scholar 

  27. Nostro MC, Keller G (2012) Generation of beta cells from human pluripotent stem cells: potential for regenerative medicine. Semin Cell Dev Biol 23:701–710

    Article  PubMed  CAS  Google Scholar 

  28. Borowiak M, Melton DA (2009) How to make beta cells? Curr Opin Cell Biol 21:727–732

    Article  PubMed  CAS  Google Scholar 

  29. Bowie KM, Chang PL (1998) Development of engineered cells for implantation in gene therapy. Adv Drug Deliv Rev 33:31–43

    Article  PubMed  Google Scholar 

  30. Chick WL, Like AA, Lauris V (1975) Beta cell-culture on synthetic capillaries: artificial endocrine pancreas. Science 187:847–849

    Article  PubMed  CAS  Google Scholar 

  31. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910

    Article  PubMed  CAS  Google Scholar 

  32. Li RH (1998) Materials for immunoisolated cell transplantation. Adv Drug Deliv Rev 33:87–109

    Article  PubMed  Google Scholar 

  33. Nafea EH, Marson A, Poole-Warren LA, Martens PJ (2011) Immunoisolating semi-permeable membranes for cell encapsulation: focus on hydrogels. J Control Release 154:110–122

    Article  PubMed  CAS  Google Scholar 

  34. Desmangles AI, Jordan O, Marquis-Weible F (2001) Interfacial photopolymerization of beta-cell clusters: approaches to reduce coating thickness using ionic and lipophilic dyes. Biotechnol Bioeng 72:634–641

    Article  PubMed  CAS  Google Scholar 

  35. Teramura Y, Kaneda Y, Iwata H (2007) Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)-lipids in the cell membrane. Biomaterials 28:4818–4825

    Article  PubMed  CAS  Google Scholar 

  36. Krol S, del Guerra S, Grupillo M, Diaspro A, Gliozzi A, Marchetti P (2006) Multilayer nanoencapsulation. New approach for immune protection of human pancreatic islets. Nano Lett 6:1933–1939

    Article  PubMed  CAS  Google Scholar 

  37. Miura S, Teramura Y, Iwata H (2006) Encapsulation of islets with ultra-thin polyion complex membrane through poly(ethylene glycol)-phospholipids anchored to cell membrane. Biomaterials 27:5828–5835

    Article  PubMed  CAS  Google Scholar 

  38. Teramura Y, Kaneda Y, Totani T, Iwata H (2008) Behavior of synthetic polymers immobilized on a cell membrane. Biomaterials 29:1345–1355

    Article  PubMed  CAS  Google Scholar 

  39. Teramura Y, Iwata H (2008) Islets surface modification prevents blood-mediated inflammatory responses. Bioconjug Chem 19:1389–1395

    Article  PubMed  CAS  Google Scholar 

  40. Totani T, Teramura Y, Iwata H (2008) Immobilization of urokinase on the islet surface by amphiphilic poly(vinyl alcohol) that carries alkyl side chains. Biomaterials 29:2878–2883

    Article  PubMed  CAS  Google Scholar 

  41. Teramura Y, Lwata H (2009) Islet encapsulation with living cells for improvement of biocompatibility. Biomaterials 30:2270–2275

    Article  PubMed  CAS  Google Scholar 

  42. Smith C, Kirk R, West T, Bratzel M, Cohen M, Martin F, Boiarski A, Rampersaud AA (2005) Diffusion characteristics of microfabricated silicon nanopore membranes as immunoisolation membranes for use in cellular therapeutics. Diabetes Technol Ther 7:151–162

    Article  PubMed  CAS  Google Scholar 

  43. van Dijk M, Rijkers DT, Liskamp RM, van Nostrum CF, Hennink WE (2009) Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies. Bioconjug Chem 20:2001–2016

    Article  PubMed  Google Scholar 

  44. Silva AI, Mateus M (2009) Development of a polysulfone hollow fiber vascular bio-artificial pancreas device for in vitro studies. J Biotechnol 139:236–249

    Article  PubMed  CAS  Google Scholar 

  45. Kadam SS, Sudhakar M, Nair PD, Bhonde RR (2010) Reversal of experimental diabetes in mice by transplantation of neo-islets generated from human amnion-derived mesenchymal stromal cells using immuno-isolatory macrocapsules. Cytotherapy 12:982–991

    Article  PubMed  CAS  Google Scholar 

  46. Kessler L, Legeay G, Jesser C, Damgé C, Pinget M (1995) Influence of corona surface-treatment on the properties of an artificial membrane used for Langerhans islets encapsulation-permeability and biocompatibility studies. Biomaterials 16:185–191

    Article  PubMed  CAS  Google Scholar 

  47. Soon-Shiong P, Heintz RE, Merideth N, Yao QX, Yao Z, Zheng T, Murphy M, Moloney MK, Schmehl M, Harris M, Mendez R, Mendez R, Sandford PA (1994) Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343:950–951

    Article  PubMed  CAS  Google Scholar 

  48. Teramura Y, Iwata H (2009) Surface modification of islets with PEG-lipid for improvement of graft survival in intraportal transplantation. Transplantation 88:624–630

    Article  PubMed  Google Scholar 

  49. Weber LM, He J, Bradley B, Haskins K, Anseth KS (2006) PEG-based hydrogels as an in vitro encapsulation platform for testing controlled beta-cell microenvironments. Acta Biomater 2:1–8

    Article  PubMed  Google Scholar 

  50. Leung A, Nielsen LK, Trau M, Timmins NE (2010) Tissue transplantation by stealth – coherent alginate microcapsules for immunoisolation. Biochem Eng J 48:337–347

    Article  CAS  Google Scholar 

  51. Brandenberger H, Widmer F (1998) A new multinozzle encapsulation/immobilisation system to produce uniform beads of alginate. J Biotechnol 63:73–80

    Article  CAS  Google Scholar 

  52. Basta G, Osticioli L, Rossodivita ME, Sarchielli P, Tortoioli C, Brunetti P, Calafiore R (1995) Method for fabrication of coherent microcapsules—a new potential immunoisolatory barrier for pancreatic-islet transplantation. Diabetes Nutr Metab 8:105–112

    Google Scholar 

  53. Zekorn T, Siebers U, Horcher A, Schnettler R, Zimmermann U, Bretzel RG, Federlin K (1992) Alginate coating of islets of Langerhans—in vitro studies on a new method for microencapsulation for immunoisolated transplantation. Acta Diabetol 29:41–45

    Article  PubMed  CAS  Google Scholar 

  54. de Groot M, Schuurs TA, van Schilfgaarde R (2004) Causes of limited survival of microencapsulated pancreatic islet grafts. J Surg Res 121:141–150

    Article  PubMed  Google Scholar 

  55. Valdés-González RA, Dorantes LM, Garibay GN, Bracho-Blanchet E, Mendez AJ, Dávila-Pérez R, Elliott RB, Terán L, White DJ (2005) Xenotransplantation of porcine neonatal islets of Langerhans and sertoli cells: a 4-year study. Eur J Endocrinol 153:419–427

    Article  PubMed  Google Scholar 

  56. Bretzel RG, Jahr H, Eckhard M, Martin I, Winter D, Brendel MD (2007) Islet cell transplantation today. Langenbecks Arch Surg 392:239–253

    Article  PubMed  Google Scholar 

  57. de Vos P, de Haan BJ, de Haan A, van Zanten J, Faas MM (2004) Factors influencing functional survival of microencapsulated islet grafts. Cell Transplant 13:515–524

    Article  PubMed  Google Scholar 

  58. Trivedi N, Keegan M, Steil GM, Hollister-Lock J, Hasenkamp WM, Colton CK, Bonner-Weir S, Weir GC (2001) Islets in alginate macrobeads reverse diabetes despite minimal acute insulin secretory responses. Transplantation 71:203–211

    Article  PubMed  CAS  Google Scholar 

  59. Chicheportiche D, Reach G (1988) In vitro kinetics of insulin release by microencapsulated rat islets—effect of the size of the microcapsules. Diabetologia 31:54–57

    PubMed  CAS  Google Scholar 

  60. Canaple L, Rehor A, Hunkeler D (2002) Improving cell encapsulation through size control. J Biomater Sci Polym 13:783–796

    Article  CAS  Google Scholar 

  61. Calafiore R, Basta G, Luca G, Lemmi A, Montanucci MP, Calabrese G, Racanicchi L, Mancuso F, Brunetti P (2006) Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care 29:137–138

    Article  PubMed  Google Scholar 

  62. Barshes NR, Wyllie S, Goss JA (2005) Inflammation-mediated dysfunction and apoptosis in pancreatic islet transplantation: implications for intrahepatic grafts. J Leukoc Biol 77:587–597

    Article  PubMed  CAS  Google Scholar 

  63. Gibly RF, Graham JG, Luo X, Lowe WL Jr, Hering BJ, Shea LD (2011) Advancing islet transplantation: from engraftment to the immune response. Diabetologia 54:2494–2505

    Article  PubMed  CAS  Google Scholar 

  64. Dufrane D, Steenberghe M, Goebbels RM, Saliez A, Guiot Y, Gianello P (2006) The influence of implantation site on the biocompatibility and survival of alginate encapsulated pig islets in rats. Biomaterials 27:3201–3208

    Article  PubMed  CAS  Google Scholar 

  65. Sun Y, Ma X, Zhou D, Vacek I, Sun AM (1996) Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest 98:1417–1422

    Article  PubMed  CAS  Google Scholar 

  66. Liu XY, Nothias JM, Scavone A, Garfinkel M, Millis JM (2010) Biocompatibility investigation of polyethylene glycol and alginate-poly-L-lysine for islet encapsulation. ASAIO J 56:241–245

    Article  PubMed  CAS  Google Scholar 

  67. Yang KC, Wu CC, Qi Z, Chen JC, Sumi S, Lin FH (2010) Comparison of bioartificial pancreas performance in the bone marrow cavity and intramuscular space. Arch Med Res 41:151–153

    Article  PubMed  CAS  Google Scholar 

  68. Cabric S, Sanchez J, Lundgren T, Foss A, Felldin M, Källen R, Salmela K, Tibell A, Tufveson G, Larsson R, Korsgren O, Nilsson B (2007) Islet surface heparinization prevents the instant blood-mediated inflammatory reaction in islet transplantation. Diabetes 56:2008–2015

    Article  PubMed  CAS  Google Scholar 

  69. De Vos P, Hillebrands JL, De Haan BJ, Strubbe JH, Van Schilfgaarde R (1997) Efficacy of a prevascularized expanded polytetrafluoroethylene solid support system as a transplantation site for pancreatic islets. Transplantation 63:824–830

    Article  PubMed  Google Scholar 

  70. Wang W, Gu Y, Tabata Y, Miyamoto M, Hori H, Nagata N, Touma M, Balamurugan AN, Kawakami Y, Nozawa M, Inoue K (2002) Reversal of diabetes in mice by xenotransplantation of a bioartificial pancreas in a prevascularized subcutaneous site. Transplantation 73:122–129

    Article  PubMed  Google Scholar 

  71. Su J, Hu BH, Lowe WL Jr, Kaufman DB, Messersmith PB (2010) Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials 31:308–314

    Article  PubMed  CAS  Google Scholar 

  72. Contreras JL, Eckstein C, Smyth CA, Bilbao G, Vilatoba M, Ringland SE, Young C, Thompson JA, Fernández JA, Griffin JH, Eckhoff DE (2004) Activated protein C preserves functional islet mass after intraportal transplantation: a novel link between endothelial cell activation, thrombosis, inflammation, and islet cell death. Diabetes 53:2804–2814

    Article  PubMed  CAS  Google Scholar 

  73. Johansson H, Goto M, Dufrane D, Siegbahn A, Elgue G, Gianello P, Korsgren O, Nilsson B (2006) Low molecular weight dextran sulfate: a strong candidate drug to block IBMIR in clinical islet transplantation. Am J Transplant 6:305–312

    Article  PubMed  CAS  Google Scholar 

  74. Ozmen L, Ekdahl KN, Elgue G, Larsson R, Korsgren O, Nilsson B (2002) Inhibition of thrombin abrogates the instant blood-mediated inflammatory reaction triggered by isolated human islets: possible application of the thrombin inhibitor melagatran in clinical islet transplantation. Diabetes 51:1779–1784

    Article  PubMed  CAS  Google Scholar 

  75. Luan NM, Teramura Y, Iwata H (2010) Immobilization of the soluble domain of human complement receptor 1 on agarose-encapsulated islets for the prevention of complement activation. Biomaterials 31:8847–8853

    Article  PubMed  Google Scholar 

  76. Luan NM, Teramura Y, Iwata H (2011) Layer-by-layer co-immobilization of soluble complement receptor 1 and heparin on islets. Biomaterials 32:6487–6492

    Article  PubMed  Google Scholar 

  77. Chen H, Teramura Y, Iwata H (2011) Co-immobilization of urokinase and thrombomodulin on islet surfaces by poly(ethylene glycol)-conjugated phospholipid. J Control Release 150:229–234

    Article  PubMed  CAS  Google Scholar 

  78. Stabler CL, Sun XL, Cui W, Wilson JT, Haller CA, Chaikof EL (2007) Surface re-engineering of pancreatic islets with recombinant azido-thrombomodulin. Bioconjug Chem 18:1713–1715

    Article  PubMed  CAS  Google Scholar 

  79. Takemoto N, Teramura Y, Iwata H (2011) Islet surface modification with urokinase through DNA hybridization. Bioconjug Chem 22:673–678

    Article  PubMed  CAS  Google Scholar 

  80. Luan NM, Teramura Y, Iwata H (2011) Immobilization of soluble complement receptor 1 on islets. Biomaterials 32:4539–4545

    Article  PubMed  CAS  Google Scholar 

  81. Lin CC, Metters AT, Anseth KS (2009) Functional PEG-peptide hydrogels to modulate local inflammation induced by the pro-inflammatory cytokine TNF alpha. Biomaterials 30:4907–4914

    Article  PubMed  CAS  Google Scholar 

  82. Cheung CY, McCartney SJ, Anseth KS (2008) Synthesis of polymerizable superoxide dismutase mimetics to reduce reactive oxygen species damage in transplanted biomedical devices. Adv Funct Mater 18:3119–3126

    Article  CAS  Google Scholar 

  83. Cheung CY, Anseth KS (2006) Synthesis of immunoisolation barriers that provide localized immunosuppression for encapsulated pancreatic islets. Bioconjug Chem 17:1036–1042

    Article  PubMed  CAS  Google Scholar 

  84. Lin CC, Anseth KS (2009) Glucagon-like peptide-1 functionalized PEG hydrogels promote survival and function of encapsulated pancreatic beta-cells. Biomacromolecules 10:2460–2467

    Article  PubMed  CAS  Google Scholar 

  85. Rives CB, des Rieux A, Zelivyanskaya M, Stock SR, Lowe WL Jr, Shea LD (2009) Layered PLG scaffolds for in vivo plasmid delivery. Biomaterials 30:394–401

    Article  PubMed  CAS  Google Scholar 

  86. Chen RR, Silva EA, Yuen WW, Mooney DJ (2007) Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 24:258–264

    Article  PubMed  Google Scholar 

  87. Lai Y, Schneider D, Kidszun A, Hauck-Schmalenberger I, Breier G, Brandhorst D, Brandhorst H, Iken M, Brendel MD, Bretzel RG, Linn T (2005) Vascular endothelial growth factor increases functional beta-cell mass by improvement of angiogenesis of isolated human and murine pancreatic islets. Transplantation 79:1530–1536

    Article  PubMed  CAS  Google Scholar 

  88. Olsson R, Maxhuni A, Carlsson PO (2006) Revascularization of transplanted pancreatic islets following culture with stimulators of angiogenesis. Transplantation 82:340–347

    Article  PubMed  CAS  Google Scholar 

  89. Matsui M, Tabata Y (2012) Enhanced angiogenesis by multiple release of platelet-rich plasma contents and basic fibroblast growth factor from gelatin hydrogels. Acta Biomater 8:1792–1801

    Article  PubMed  CAS  Google Scholar 

  90. Oliviero O, Ventre M, Netti PA (2012) Functional porous hydrogels to study angiogenesis under the effect of controlled release of vascular endothelial growth factor. Acta Biomater 8:3294–3301

    Article  PubMed  CAS  Google Scholar 

  91. Balamurugan AN, Gu Y, Tabata Y, Miyamoto M, Cui W, Hori H, Satake A, Nagata N, Wang W, Inoue K (2003) Bioartificial pancreas transplantation at prevascularized intermuscular space: effect of angiogenesis induction on islet survival. Pancreas 26:279–285

    Article  PubMed  CAS  Google Scholar 

  92. Teramura Y, Minh LN, Kawamoto T, Iwata H (2010) Microencapsulation of islets with living cells using polyDNA-PEG-lipid conjugate. Bioconjug Chem 21:792–796

    Article  PubMed  CAS  Google Scholar 

  93. Dufour JM, Lord SJ, Kin T, Rayat GR, Dixon DE, Bleackley RC, Korbutt GS, Rajotte RV (2007) Comparison of successful and unsuccessful islet/sertoli cell cotransplant grafts in streptozotocin-induced diabetic mice. Cell Transplant 16:1029–1038

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Crisóstomo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Crisóstomo, J., Coelho, J.F.J., Seiça, R. (2013). Bioartificial Pancreas: In the Road to Clinical Application. In: Coelho, J. (eds) Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment. Advances in Predictive, Preventive and Personalised Medicine, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6010-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6010-3_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6009-7

  • Online ISBN: 978-94-007-6010-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics