Advertisement

The Importance of Controlled/Living Radical Polymerization Techniques in the Design of Tailor Made Nanoparticles for Drug Delivery Systems

Chapter
Part of the Advances in Predictive, Preventive and Personalised Medicine book series (APPPM, volume 4)

Abstract

Recent developments in controlled/living radical polymerization methods (CLRP) have created the opportunity to prepare polymeric based systems with site specific functionality that has significantly expanded the range of physical and chemical properties that can be generated in materials prepared by these systems. For example, CLRP prepared block copolymers can self-assemble into nanoparticles that can be used in drug delivery applications. The development of synthetic procedures for preparation of materials targeting new and more efficient drug delivery systems (DDS) is of great interest since ultimately they can mimic most of the properties of biological systems.

This chapter will initially discuss the key aspects of the development of nanotechnology for drug delivery. The cell internalization process will be described and related with the relevant properties required for the “nanocarrier systems”. Afterwards, a summary of the polymeric systems that can be used for DDS will be provided and the importance of CLRP methods in the preparation of polymer-based systems will be discussed. Finally, mechanisms of block copolymers self-assembly will be discussed and supported with some examples of CLRP-based self-assembly systems for drug delivery applications.

Keywords

Controlled/living radical polymerization Self-assembly Drug delivery systems Targeting Nanocarriers Treatment tailored to the person 

Notes

Acknowledgements

The authors gratefully acknowledge FP7-Health-2009-2.4.4-2-Project RdCVF for financial support.

References

  1. 1.
    Alonso MJ (2004) Nanomedicines for overcoming biological barriers. Biomed Pharmacother 58:168–172PubMedCrossRefGoogle Scholar
  2. 2.
    Freichels H, Jerome R, Jerome C (2011) Sugar-labeled and PEGylated (bio)degradable polymers intended for targeted drug delivery systems. Carbohydr Polym 86:1093–1106CrossRefGoogle Scholar
  3. 3.
    Bajpai AK, Shukla SK, Bhanu S, Kanjane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118CrossRefGoogle Scholar
  4. 4.
    Yoo JW, Doshi N, Mitragotri S (2011) Adaptive micro and nanoparticles: temporal control over carrier properties to facilitate drug delivery. Adv Drug Deliv Rev 63:1247–1256PubMedCrossRefGoogle Scholar
  5. 5.
    Canelas DA, Herlihy KP, DeSimone JM (2009) Top-down particle fabrication: control of size and shape for diagnostic imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:391–404PubMedCrossRefGoogle Scholar
  6. 6.
    Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145:182–195PubMedCrossRefGoogle Scholar
  7. 7.
    Wang J, Byrne JD, Napier ME, DeSimone JM (2011) More effective nanomedicines through particle design. Small 7:1919–1931PubMedCrossRefGoogle Scholar
  8. 8.
    Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623PubMedCrossRefGoogle Scholar
  9. 9.
    Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–627PubMedCrossRefGoogle Scholar
  10. 10.
    Hillaireau H, Couvreur P (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66:2873–2896PubMedCrossRefGoogle Scholar
  11. 11.
    Champion JA, Walker A, Mitragotri S (2008) Role of particle size in phagocytosis of polymeric microspheres. Pharm Res 25:1815–1821PubMedCrossRefGoogle Scholar
  12. 12.
    Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612PubMedCrossRefGoogle Scholar
  13. 13.
    Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59:748–758PubMedCrossRefGoogle Scholar
  14. 14.
    Swanson JA, Watts C (1995) Macropinocytosis. Trends Cell Biol 5:424–428PubMedCrossRefGoogle Scholar
  15. 15.
    Sharma P, Varma R, Sarasij RC, Ira, Gousset K, Krishnamoorthy G, Rao M, Mayor S (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589PubMedCrossRefGoogle Scholar
  16. 16.
    Kalia M, Kumari S, Chadda R, Hill MM, Parton RG, Mayor S (2006) Arf6-independent GPI-anchored protein-enriched early endosomal compartments fuse with sorting endosomes via a Rab5/phosphatidylinositol-3′-kinase-dependent machinery. Mol Biol Cell 17:3689–3704PubMedCrossRefGoogle Scholar
  17. 17.
    Howes MT, Kirkham M, Riches J, Cortese K, Walser PJ, Simpson F, Hill MM, Jones A, Lundmark R, Lindsay MR, Hernandez-Deviez DJ, Hadzic G, McCluskey A, Bashir R, Liu L, Pilch P, McMahon H, Robinson PJ, Hancock JF, Mayor S, Parton RG (2010) Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. J Cell Biol 190:675–691PubMedCrossRefGoogle Scholar
  18. 18.
    Ferrari M (2008) Nanogeometry: beyond drug delivery. Nat Nanotechnol 3:131–132PubMedCrossRefGoogle Scholar
  19. 19.
    Mitragotri S, Lahann J (2009) Physical approaches to biomaterial design. Nat Mater 8:15–23PubMedCrossRefGoogle Scholar
  20. 20.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392PubMedGoogle Scholar
  21. 21.
    Beningo KA, Wang YL (2002) Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J Cell Sci 115:849–856PubMedGoogle Scholar
  22. 22.
    Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21PubMedCrossRefGoogle Scholar
  23. 23.
    Doshi N, Mitragotri S (2010) Macrophages recognize size and shape of their targets. PLoS One 5:e10051PubMedCrossRefGoogle Scholar
  24. 24.
    Decuzzi P, Pasqualini R, Arap W, Ferrari M (2009) Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 26:235–243PubMedCrossRefGoogle Scholar
  25. 25.
    Yoo JW, Doshi N, Mitragotri S (2010) Endocytosis and intracellular distribution of PLGA particles in endothelial cells: effect of particle geometry. Macromol Rapid Commun 31:142–148PubMedCrossRefGoogle Scholar
  26. 26.
    Frojmovic MM, Milton JG (1982) Human platelet size, shape, and related functions in health and disease. Physiol Rev 62:185–261PubMedGoogle Scholar
  27. 27.
    Haghgooie R, Toner M, Doyle PS (2010) Squishy non-spherical hydrogel microparticles. Macromol Rapid Commun 31:128–134PubMedGoogle Scholar
  28. 28.
    Doshi N, Zahr AS, Bhaskar S, Lahann J, Mitragotri S (2009) Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci U S A 106:21495–21499PubMedCrossRefGoogle Scholar
  29. 29.
    Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255PubMedCrossRefGoogle Scholar
  30. 30.
    Merdan T, Kopecek J, Kissel T (2002) Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 54:715–758PubMedCrossRefGoogle Scholar
  31. 31.
    Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593PubMedCrossRefGoogle Scholar
  32. 32.
    He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–3666PubMedCrossRefGoogle Scholar
  33. 33.
    Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, Agarwal RG, Lam KS (2011) The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32:3435–3446PubMedCrossRefGoogle Scholar
  34. 34.
    Venkataraman S, Ong WL, Ong ZY, Joachim Loo SC, Ee PL, Yang YY (2011) The role of PEG architecture and molecular weight in the gene transfection performance of PEGylated poly(dimethylaminoethyl methacrylate) based cationic polymers. Biomaterials 32:2369–2378PubMedCrossRefGoogle Scholar
  35. 35.
    Cruz LJ, Tacken PJ, Fokkink R, Figdor CG (2011) The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells. Biomaterials 32:6791–6803PubMedCrossRefGoogle Scholar
  36. 36.
    Blit PH, McClung WG, Brash JL, Woodhouse KA, Santerre JP (2011) Platelet inhibition and endothelial cell adhesion on elastin-like polypeptide surface modified materials. Biomaterials 32:5790–5800PubMedCrossRefGoogle Scholar
  37. 37.
    Wang J, Tian S, Petros RA, Napier ME, Desimone JM (2010) The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies. J Am Chem Soc 132:11306–11313PubMedCrossRefGoogle Scholar
  38. 38.
    Spain SG, Cameron NR (2011) A spoonful of sugar: the application of glycopolymers in therapeutics. Polymer Chem 2:60–68CrossRefGoogle Scholar
  39. 39.
    Chen CK, Shiang YC, Huang CC, Chang HT (2011) Using self-assembled aptamers and fibrinogen-conjugated gold nanoparticles to detect DNA based on controlled thrombin activity. Biosens Bioelectron 26:3464–3468PubMedCrossRefGoogle Scholar
  40. 40.
    Vogelson CT (2001) Advances in drug delivery systems. Mod Drug Discov 4:49–50Google Scholar
  41. 41.
    Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798CrossRefGoogle Scholar
  42. 42.
    Grund S, Bauer M, Fischer D (2011) Polymers in drug delivery – state of the art and future trends. Adv Eng Mater 13:B61–B87CrossRefGoogle Scholar
  43. 43.
    Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci, Part B: Polym Phys 49:832–864CrossRefGoogle Scholar
  44. 44.
    Maham A, Tang Z, Wu H, Wang J, Lin Y (2009) Protein-based nanomedicine platforms for drug delivery. Small 5:1706–1721PubMedCrossRefGoogle Scholar
  45. 45.
    Pastorino L, Erokhina S, Soumetz FC, Bianchini P, Konovalov O, Diaspro A, Ruggiero C, Erokhin V (2011) Collagen containing microcapsules: smart containers for disease controlled therapy. J Colloid Interface Sci 357:56–62PubMedCrossRefGoogle Scholar
  46. 46.
    Kanematsu A, Yamamoto S, Ozeki M, Noguchi T, Kanatani I, Ogawa O, Tabata Y (2004) Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 25:4513–4520PubMedCrossRefGoogle Scholar
  47. 47.
    Nagai N, Kumasaka N, Kawashima T, Kaji H, Nishizawa M, Abe T (2010) Preparation and characterization of collagen microspheres for sustained release of VEGF. J Mater Sci Mater Med 21:1891–1898PubMedCrossRefGoogle Scholar
  48. 48.
    Holladay C, Keeney M, Greiser U, Murphy M, O’Brien T, Pandit A (2009) A matrix reservoir for improved control of non-viral gene delivery. J Control Release 136:220–225PubMedCrossRefGoogle Scholar
  49. 49.
    Viñas-Castells R, Holladay C, di Luca A, Díaz VM, Pandit A (2009) Snail1 down-regulation using small interfering RNA complexes delivered through collagen scaffolds. Bioconjug Chem 20:2262–2269PubMedCrossRefGoogle Scholar
  50. 50.
    Krebs MD, Jeon O, Alsberg E (2009) Localized and sustained delivery of silencing RNA from macroscopic biopolymer hydrogels. J Am Chem Soc 131:9204–9206PubMedCrossRefGoogle Scholar
  51. 51.
    Naidu BVK, Paulson AT (2011) A new method for the preparation of gelatin nanoparticles: encapsulation and drug release characteristics. J Appl Polym Sci 121:3495–3500CrossRefGoogle Scholar
  52. 52.
    GuhaSarkar S, Banerjee R (2010) Intravesical drug delivery: challenges, current status, opportunities and novel strategies. J Control Release 148:147–159PubMedCrossRefGoogle Scholar
  53. 53.
    Guo R, Cheng Y, Ding D, Li X, Zhang L, Jiang X, Liu B (2011) Synthesis and antitumoral activity of gelatin/polyoxometalate hybrid nanoparticles. Macromol Biosci 11:839–847PubMedCrossRefGoogle Scholar
  54. 54.
    Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18PubMedCrossRefGoogle Scholar
  55. 55.
    Yadav SC, Kumari A, Yadav R (2011) Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation. Peptides 32:173–187PubMedCrossRefGoogle Scholar
  56. 56.
    Kuijpers AJ, van Wachem PB, van Luyn MJ, Engbers GH, Krijgsveld J, Zaat SA, Dankert J, Feijen J (2000) In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. J Control Release 67:323–336PubMedCrossRefGoogle Scholar
  57. 57.
    Huang S, Fu XB (2010) Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Control Release 142:149–159PubMedCrossRefGoogle Scholar
  58. 58.
    Kim MS, Shin YM, Lee JH, Kim SI, Nam YS, Shin CS, Shin H (2011) Release kinetics and in vitro bioactivity of basic fibroblast growth factor: effect of the thickness of fibrous matrices. Macromol Biosci 11:122–130PubMedCrossRefGoogle Scholar
  59. 59.
    Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132:171–183PubMedCrossRefGoogle Scholar
  60. 60.
    Sebak S, Mirzaei M, Malhotra M, Kulamarva A, Prakash S (2011) Human serum albumin nanoparticles as an efficient noscapine drug delivery system for potential use in breast cancer: preparation and in vitro analysis. Int J Nanomedicine 5:525–532Google Scholar
  61. 61.
    Zhao D, Zhao X, Zu Y, Li J, Zhang Y, Jiang R, Zhang Z (2011) Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine 5:669–677Google Scholar
  62. 62.
    Zöphel L, Eisele K, Gropeanu R, Rouhanipour A, Koynov K, Lieberwirth I, Müllen K, Weil T (2010) Preparation of defined albumin–polymer hybrids for efficient cell transfection. Macromol Chem Phys 211:146–153CrossRefGoogle Scholar
  63. 63.
    Baldwin AD, Kiick KL (2010) Polysaccharide-modified synthetic polymeric biomaterials. Peptide Sci 94:128–140CrossRefGoogle Scholar
  64. 64.
    Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull(Tokyo) 58:1423–1430CrossRefGoogle Scholar
  65. 65.
    Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan-a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014CrossRefGoogle Scholar
  66. 66.
    Peniche H, Peniche C (2011) Chitosan nanoparticles: a contribution to nanomedicine. Polym Int 60:883–889CrossRefGoogle Scholar
  67. 67.
    Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR, Wang SL (2011) Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine 6:765–774PubMedGoogle Scholar
  68. 68.
    de la Fuente M, Raviña M, Paolicelli P, Sanchez A, Seijo B, Alonso MJ (2010) Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev 62:100–117PubMedCrossRefGoogle Scholar
  69. 69.
    Ta HT, Dass CR, Dunstan DE (2008) Injectable chitosan hydrogels for localised cancer therapy. J Control Release 126:205–216PubMedCrossRefGoogle Scholar
  70. 70.
    Bhattarai N, Gunn J, Zhang MQ (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99PubMedCrossRefGoogle Scholar
  71. 71.
    Gaspar VM, Sousa F, Queiroz JA, Correia IJ (2011) Formulation of chitosan-TPP-pDNA nanocapsules for gene therapy applications. Nanotechnology 22:015101PubMedCrossRefGoogle Scholar
  72. 72.
    Rudzinski WE, Aminabhavi TM (2010) Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm 399:1–11PubMedCrossRefGoogle Scholar
  73. 73.
    Nair LS, Laurencin CT (2006) Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv Biochem Eng Biotechnol 102:47–90PubMedGoogle Scholar
  74. 74.
    Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633PubMedCrossRefGoogle Scholar
  75. 75.
    Séchoy O, Tissié G, Sébastian C, Maurin F, Driot JY, Trinquand C (2000) A new long acting ophthalmic formulation of Carteolol containing alginic acid. Int J Pharm 207:109–116PubMedCrossRefGoogle Scholar
  76. 76.
    Hassan MA (2007) A long acting ophthalmic gel formulations of atenolol. Drug Dev Ind Pharm 33:1192–1198PubMedCrossRefGoogle Scholar
  77. 77.
    Azhdarinia A, Yang DJ, Yu DF, Mendez R, Oh C, Kohanim S, Bryant J, Kim EE (2005) Regional radiochemotherapy using in situ hydrogel. Pharm Res 22:776–783PubMedCrossRefGoogle Scholar
  78. 78.
    Hori Y, Stern PJ, Hynes RO, Irvine DJ (2009) Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy. Biomaterials 30:6757–6767PubMedCrossRefGoogle Scholar
  79. 79.
    Hori Y, Winans AM, Huang CC, Horrigan EM, Irvine DJ (2008) Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy. Biomaterials 29:3671–3682PubMedCrossRefGoogle Scholar
  80. 80.
    Freeman I, Cohen S (2009) The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials 30:2122–2131PubMedCrossRefGoogle Scholar
  81. 81.
    Han YF, Han YQ, Pan YG, Chen YL, Chai JK (2010) Transplantation of microencapsulated cells expressing VEGF improves angiogenesis in implanted xenogeneic acellular dermis on wound. Transplant Proc 42:1935–1943PubMedCrossRefGoogle Scholar
  82. 82.
    Silva EA, Mooney DJ (2010) Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials 31:1235–1241PubMedCrossRefGoogle Scholar
  83. 83.
    Tian JY, Sun XQ, Chen XG (2008) Formation and oral administration of alginate microspheres loaded with pDNA coding for lymphocystis disease virus (LCDV) to Japanese flounder. Fish Shellfish Immunol 24:592–599PubMedCrossRefGoogle Scholar
  84. 84.
    Krebs MD, Salter E, Chen E, Sutter KA, Alsberg E (2010) Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis. J Biomed Mater Res A 92:1131–1138PubMedGoogle Scholar
  85. 85.
    Hornig S, Bunjes H, Heinze T (2009) Preparation and characterization of nanoparticles based on dextran-drug conjugates. J Colloid Interface Sci 338:56–62PubMedCrossRefGoogle Scholar
  86. 86.
    Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119:5–24PubMedCrossRefGoogle Scholar
  87. 87.
    Shrivastava PK, Shrivastava SK (2009) Dextran polysaccharides: successful macromolecular carrier for drug delivery. Int J Pharm Sci 1:353–368Google Scholar
  88. 88.
    Shrivastava PK, Shrivastava SK (2010) Dextran carrier macromolecule for colon specific delivery of celecoxib. Curr Drug Deliv 7:144–151PubMedCrossRefGoogle Scholar
  89. 89.
    Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63:170–183PubMedCrossRefGoogle Scholar
  90. 90.
    Kumari A, Yadav SK, Pakade YB, Kumar V, Singh B, Chaudhary A, Yadav SC (2011) Nanoencapsulation and characterization of Albizia chinensis isolated antioxidant quercitrin on PLA nanoparticles. Colloids Surf B Biointerfaces 82:224–232PubMedCrossRefGoogle Scholar
  91. 91.
    Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly(D, L-lactide-co-glycolide) and its derivatives. J Control Release 125:193–209PubMedCrossRefGoogle Scholar
  92. 92.
    Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A (2004) Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278:1–23PubMedCrossRefGoogle Scholar
  93. 93.
    Natu MV, Gaspar MN, Ribeiro CA, Correia IJ, Silva D, de Sousa HC, Gil MH (2011) A poly(epsilon-caprolactone) device for sustained release of an anti-glaucoma drug. Biomed Mater 6:025003PubMedCrossRefGoogle Scholar
  94. 94.
    Wei X, Gong C, Gou M, Fu S, Guo Q, Shi S, Luo F, Guo G, Qiu L, Qian Z (2009) Biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system. Int J Pharm 381:1–18PubMedCrossRefGoogle Scholar
  95. 95.
    Sun TM, Du JZ, Yao YD, Mao CQ, Dou S, Huang SY, Zhang PZ, Leong KW, Song EW, Wang J (2011) Simultaneous delivery of siRNA and Paclitaxel via a ‘two-in-one’ micelleplex promotes synergistic tumor suppression. ACS Nano 5:1483–1494PubMedCrossRefGoogle Scholar
  96. 96.
    Xiong XB, Lavasanifar A (2011) Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and Doxorubicin. ACS Nano 5:5202–5213PubMedCrossRefGoogle Scholar
  97. 97.
    Heller J, Barr J (2004) Poly(ortho esters)—from concept to reality. Biomacromolecules 5:1625–1632PubMedCrossRefGoogle Scholar
  98. 98.
    Heller J, Barr J, Ng SY, Abdellauoi KS, Gurny R (2002) Poly(ortho esters): synthesis, characterization, properties and uses. Adv Drug Deliv Rev 54:1015–1039PubMedCrossRefGoogle Scholar
  99. 99.
    Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couvreur P (2003) Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release 93:151–160PubMedCrossRefGoogle Scholar
  100. 100.
    Vauthier C, Labarre D, Ponchel G (2007) Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery. J Drug Target 15:641–663PubMedCrossRefGoogle Scholar
  101. 101.
    Anguita-Alonso P, Giacometti A, Cirioni O, Ghiselli R, Orlando F, Saba V, Scalise G, Sevo M, Tuzova M, Patel R, Balaban N (2007) RNAIII-inhibiting-peptide-loaded in vivo Polymethylmethacrylate prevents in vivo Staphylococcus aureus biofilm formation. Antimicrob Agents Chemother 51:2594–2596PubMedCrossRefGoogle Scholar
  102. 102.
    Tao SL, Lubeley MW, Desai TA (2003) Bioadhesive poly(methyl methacrylate) microdevices for controlled drug delivery. J Control Release 88:215–228PubMedCrossRefGoogle Scholar
  103. 103.
    Yuksel N, Baykara M, Shirinzade H, Suzen S (2011) Investigation of triacetin effect on indomethacin release from poly(methyl methacrylate) microspheres: evaluation of interactions using FT-IR and NMR spectroscopies. Int J Pharm 404:102–109PubMedCrossRefGoogle Scholar
  104. 104.
    Dalmoro A, Lamberti G, Titomanlio G, Barba AA, d’Amore M (2010) Enteric micro-particles for targeted oral drug delivery. AAPS PharmSciTech 11:1500–1507PubMedCrossRefGoogle Scholar
  105. 105.
    Anderson EM, Noble ML, Garty S, Ma H, Bryers JD, Shen TT, Ratner BD (2009) Sustained release of antibiotic from poly(2-hydroxyethyl methacrylate) to prevent blinding infections after cataract surgery. Biomaterials 30:5675–5681PubMedCrossRefGoogle Scholar
  106. 106.
    Nyangoga H, Zecheru T, Filmon R, Baslé MF, Cincu C, Chappard D (2009) Synthesis and use of pHEMA microbeads with human EA.hy 926 endothelial cells. J Biomed Mater Res B Appl Biomater 89:501–507PubMedGoogle Scholar
  107. 107.
    Minoo-Rabeeh-Hobabi, Hassanzadeh D, Azarmi S, Entezami AA (2007) Effect of synthesis method and buffer composition on the LCST of a smart copolymer of N-isopropylacrylamide and acrylic acid. Polym Adv Technol 18:986–992CrossRefGoogle Scholar
  108. 108.
    Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146CrossRefGoogle Scholar
  109. 109.
    Matyjaszewski K, Tsarevsky NV (2009) Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1:276–288PubMedCrossRefGoogle Scholar
  110. 110.
    Qiu J, Charleux B, Matyjaszewski K (2001) Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous systems. Prog Polym Sci 26:2083–2134CrossRefGoogle Scholar
  111. 111.
    Matyjaszewski K (1996) Controlled radical polymerization. Curr Opin Solid State Mater Sci 1:769–776CrossRefGoogle Scholar
  112. 112.
    Zetterlund PB, Kagawa Y, Okubo M (2008) Controlled/living radical polymerization in dispersed systems. Chem Rev 108:3747–3794PubMedCrossRefGoogle Scholar
  113. 113.
    Matyjaszewski K (1995) Introduction to living polymerization. Living and/or controlled polymerization. J Phys Org Chem 8:197–207CrossRefGoogle Scholar
  114. 114.
    Matyjaszewski K, Gaynor S, Greszta D, Mardare D, Shigemoto T (1995) ‘Living’ and controlled radical polymerization. J Phys Org Chem 8:306–315CrossRefGoogle Scholar
  115. 115.
    Matyjaszewski K, Gaynor S, Wang JS (1995) Controlled radical polymerizations – the use of akyl iodides in degenerative transfer. Macromolecules 28:2093–2095CrossRefGoogle Scholar
  116. 116.
    Moad G, Rizzardo E, Thang SH (2008) Radical addition-fragmentation chemistry in polymer synthesis. Polymer 49:1079–1131CrossRefGoogle Scholar
  117. 117.
    Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990PubMedCrossRefGoogle Scholar
  118. 118.
    Tsarevsky NV, Matyjaszewski K (2007) “Green” atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev 107:2270–2299PubMedCrossRefGoogle Scholar
  119. 119.
    Wang JS, Matyjaszewski K (1995) Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 117:5614–5615CrossRefGoogle Scholar
  120. 120.
    di Lena F, Matyjaszewski K (2010) Transition metal catalysts for controlled radical polymerization. Prog Polym Sci 35:959–1021CrossRefGoogle Scholar
  121. 121.
    Kamigaito M, Ando T, Sawamoto M (2001) Metal-catalyzed living radical polymerization. Chem Rev 101:3689–3745PubMedCrossRefGoogle Scholar
  122. 122.
    Davis KA, Matyjaszewski K (2002) Statistical, gradient, block, and graft copolymers by controlled/living radical polymerizations. Adv Polym Sci 159:1–13CrossRefGoogle Scholar
  123. 123.
    Matyjaszewski K, Ziegler MJ, Arehart SV, Greszta D, Pakula T (2000) Gradient copolymers by atom transfer radical copolymerization. J Phys Org Chem 13:775–786CrossRefGoogle Scholar
  124. 124.
    Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J (2006) Macromolecular architectures by living and controlled/living polymerizations. Prog Polym Sci 31:1068–1132CrossRefGoogle Scholar
  125. 125.
    Gao H, Matyjaszewski K (2009) Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels. Prog Polym Sci 34:317–350CrossRefGoogle Scholar
  126. 126.
    Coessens V, Pintauer T, Matyjaszewski K (2001) Functional polymers by atom transfer radical polymerization. Prog Polym Sci 26:337–377CrossRefGoogle Scholar
  127. 127.
    Gauthier MA, Gibson MI, Klok HA (2009) Synthesis of functional polymers by post-polymerization modification. Angew Chem Int Ed Engl 48:48–58PubMedCrossRefGoogle Scholar
  128. 128.
    Lutz JF, Boerner HG (2008) Modern trends in polymer bioconjugates design. Prog Polym Sci 33:1–39CrossRefGoogle Scholar
  129. 129.
    Boyer C, Bulmus V, Davis TP, Ladmiral V, Liu J, Perrier S (2009) Bioapplications of RAFT polymerization. Chem Rev 109:5402–5436PubMedCrossRefGoogle Scholar
  130. 130.
    Fournier D, Hoogenboom R, Schubert US (2007) Clicking polymers: a straightforward approach to novel macromolecular architectures. Chem Soc Rev 36:1369–1380PubMedCrossRefGoogle Scholar
  131. 131.
    Huisgen R (1963) 1.3-Dipolare cycloadditionen – Ruckschau und ausblick. Angew Chem Int Ed Engl 75:604–637CrossRefGoogle Scholar
  132. 132.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl 41:2596–2599PubMedCrossRefGoogle Scholar
  133. 133.
    Golas PL, Tsarevsky NV, Sumerlin BS, Walker LM, Matyjaszewski K (2007) Multisegmented block copolymers by ‘click’ coupling of polymers prepared by ATRP. Aust J Chem 60:400–404CrossRefGoogle Scholar
  134. 134.
    Golas PL, Matyjaszewski K (2010) Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chem Soc Rev 39:1338–1354PubMedCrossRefGoogle Scholar
  135. 135.
    Sumerlin BS, Tsarevsky NV, Louche G, Lee RY, Matyjaszewski K (2005) Highly efficient \“click\” functionalization of Poly(3-azidopropyl methacrylate) prepared by ATRP. Macromolecules 38:7540–7545CrossRefGoogle Scholar
  136. 136.
    Tsarevsky NV, Sumerlin BS, Matyjaszewski K (2005) Step-growth “click” coupling of telechelic polymers prepared by atom transfer radical polymerization. Macromolecules 38:3558–3561CrossRefGoogle Scholar
  137. 137.
    Yan L, Ding J, Qi R, Yang L, Hu X, Huang Y, Jing X (2010) Versatile synthesis of functional biodegradable polymers by combining ring-opening polymerization and postpolymerization modification via Michael-type addition reaction. Macromolecules 43:201–207CrossRefGoogle Scholar
  138. 138.
    Schuewer N, Klok HA (2011) Tuning the pH sensitivity of poly(methacrylic acid) brushes. Langmuir 27:4789–4796CrossRefGoogle Scholar
  139. 139.
    Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry – a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319PubMedCrossRefGoogle Scholar
  140. 140.
    Rodriguez-Hernandez J, Chécot F, Gnanou Y, Lecommandoux S (2005) Toward ‘smart’ nano-objects by self-assembly of block copolymers in solution. Prog Polym Sci 30:691–724CrossRefGoogle Scholar
  141. 141.
    Lynd NA, Meuler AJ, Hillmyer MA (2008) Polydispersity and block copolymer self-assembly. Prog Polym Sci 33:875–893CrossRefGoogle Scholar
  142. 142.
    Listak J, Jakubowski W, Mueller L, Plichta A, Matyjaszewski K, Bockstaller MR (2008) Effect of symmetry of molecular weight distribution in block copolymers on formation of “metastable” morphologies. Macromolecules 41:5919–5927CrossRefGoogle Scholar
  143. 143.
    Kim JK, Yang SY, Lee Y, Kim Y (2010) Functional nanomaterials based on block copolymer self-assembly. Prog Polym Sci 35:1325–1349CrossRefGoogle Scholar
  144. 144.
    Allen C, Maysinger D, Eisenberg A (1999) Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B Biointerfaces 16:3–27CrossRefGoogle Scholar
  145. 145.
    Forster S, Antonietti M (1998) Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv Mater 10:195–217CrossRefGoogle Scholar
  146. 146.
    Israelachvili JN (1992) Intermolecular and surface forces, 2nd edn. Academic, LondonGoogle Scholar
  147. 147.
    Tsitsilianis C, Roiter Y, Katsampas I, Minko S (2008) Diversity of nanostructured self-assemblies from a pH-responsive ABC terpolymer in aqueous media. Macromolecules 41:925–934CrossRefGoogle Scholar
  148. 148.
    Xiong D, He Z, An Y, Li Z, Wang H, Chen X, Shi L (2008) Temperature-responsive multilayered micelles formed from the complexation of PNIPAM-b-P4VP block-copolymer and PS-b-PAA core-shell micelles. Polymer 49:2548–2552CrossRefGoogle Scholar
  149. 149.
    Lee HI, Wu W, Oh JK, Mueller L, Sherwood G, Peteanu L, Kowalewski T, Matyjaszewski K (2007) Light-induced reversible formation of polymeric micelles. Angew Chem Int Ed Engl 46:2453–2457PubMedCrossRefGoogle Scholar
  150. 150.
    De Clercq B, Laperre J, Ruys L (2005) The controlled radical polymerisation process as an instrument for tailor-made coating applications. Prog Org Coat 53:195–206CrossRefGoogle Scholar
  151. 151.
    Zeng J, Shi K, Zhang Y, Sun X, Zhang B (2008) Construction and micellization of a noncovalent double hydrophilic block copolymer. Chem Commun (Camb) 32:3753–3755Google Scholar
  152. 152.
    Shenhar R, Norsten TB, Rotello VM (2005) Polymer-mediated nanoparticle assembly: structural control and applications. Adv Mater 17:657–669CrossRefGoogle Scholar
  153. 153.
    Tyrrell ZL, Shen YQ, Radosz M (2010) Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog Polym Sci 35:1128–1143CrossRefGoogle Scholar
  154. 154.
    Forster S, Zisenis M, Wenz E, Antonietti M (1996) Micellization of strongly segregated block copolymers. J Chem Phys 104:9956–9970CrossRefGoogle Scholar
  155. 155.
    Azzam T, Bronstein L, Eisenberg A (2008) Water-soluble surface-anchored gold and palladium nanoparticles stabilized by exchange of low molecular weight ligands with biamphiphilic triblock copolymers. Langmuir 24:6521–6529PubMedCrossRefGoogle Scholar
  156. 156.
    Yu S, Azzam T, Rouiller I, Eisenberg A (2009) “Breathing” vesicles. J Am Chem Soc 131:10557–10566PubMedCrossRefGoogle Scholar
  157. 157.
    du Sart GG, Rachmawati R, Voet V, Alberda van Ekenstein G, Polushkin E, ten Brinke G, Loos K (2008) Poly(tert-butyl methacrylate-b-styrene-b-4-vinylpyridine) triblock copolymers: synthesis, interactions, and self-assembly. Macromolecules 41:6393–6399CrossRefGoogle Scholar
  158. 158.
    Bivigou-Koumba AM, Kristen J, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2009) Synthesis of symmetrical triblock copolymers of styrene and n-isopropylacrylamide using bifunctional bis(trithiocarbonate)s as RAFT agents. Macromol Chem Phys 210:565–578CrossRefGoogle Scholar
  159. 159.
    Nottelet B, Vert M, Coudane J (2008) Novel amphiphilic degradable poly(epsilon-caprolactone)-graft-poly (4-vinyl pyridine), poly (epsilon-caprolactone)-graft-poly (dimethylaminoethyl methacrylate) and water-soluble derivatives. Macromol Rapid Commun 29:743–750CrossRefGoogle Scholar
  160. 160.
    You YZ, Hong C, Wang W, Lu W, Pan C (2004) Preparation and characterization of thermally responsive and biodegradable block copolymer comprised of PNIPAAM and PLA by combination of ROP and RAFT methods. Macromolecules 37:9761–9767CrossRefGoogle Scholar
  161. 161.
    Bockstaller MR, Mickiewicz RA, Thomas EL (2005) Block copolymer nanocomposites: perspectives for tailored functional materials. Adv Mater 17:1331–1349CrossRefGoogle Scholar
  162. 162.
    Fahmi A, Pietsch T, Mendoza C, Cheval N (2009) Functional hybrid materials. Mater Today 12:44–50CrossRefGoogle Scholar
  163. 163.
    Oh JK, Park JM (2011) Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36:168–189CrossRefGoogle Scholar
  164. 164.
    Khandare J, Minko T (2006) Polymer-drug conjugates: progress in polymeric prodrugs. Prog Polym Sci 31:359–397CrossRefGoogle Scholar
  165. 165.
    Read ES, Armes SP (2007) Recent advances in shell cross-linked micelles. Chem Commun 29:3021–3035Google Scholar
  166. 166.
    Smith AE, Xu X, McCormick CL (2010) Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization. Prog Polym Sci 35:45–93CrossRefGoogle Scholar
  167. 167.
    Siegwart DJ, Oh JK, Matyjaszewski K (2012) ATRP in the design of functional materials for biomedical applications. Prog Polym Sci 37:18–37CrossRefGoogle Scholar
  168. 168.
    Oh JK, Bencherif SA, Matyjaszewski K (2009) Atom transfer radical polymerization in inverse miniemulsion: a versatile route toward preparation and functionalization of microgels/nanogels for targeted drug delivery applications. Polymer 50:4407–4423CrossRefGoogle Scholar
  169. 169.
    Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477CrossRefGoogle Scholar
  170. 170.
    Oh JK, Siegwart DJ, Lee HI, Sherwood G, Peteanu L, Hollinger JO, Kataoka K, Matyjaszewski K (2007) Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation. J Am Chem Soc 129:5939–5945PubMedCrossRefGoogle Scholar
  171. 171.
    Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301CrossRefGoogle Scholar
  172. 172.
    Bajpai AK, Bajpai J, Saini R, Gupta R (2011) Responsive polymers in biology and technology. Polym Rev 51:53–97CrossRefGoogle Scholar
  173. 173.
    Pasparakis G, Vamvakaki M (2011) Multiresponsive polymers: nano-sized assemblies, stimuli-sensitive gels and smart surfaces. Polym Chem 2:1234–1248CrossRefGoogle Scholar
  174. 174.
    Mano JF (2008) Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater 10:515–527CrossRefGoogle Scholar
  175. 175.
    Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670PubMedCrossRefGoogle Scholar
  176. 176.
    Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Ann Rev Chem Biomol Eng 1:149–173CrossRefGoogle Scholar
  177. 177.
    Ma Y, Tang Y, Billingham NC, Armes SP, Lewis AL (2003) Synthesis of biocompatible, stimuli-responsive, physical gels based on ABA triblock copolymers. Biomacromolecules 4:864–868PubMedCrossRefGoogle Scholar
  178. 178.
    Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:63–249CrossRefGoogle Scholar
  179. 179.
    Cho SH, Jhon MS, Yuk SH, Lee HB (1997) Temperature-induced phase transition of poly(N, N-dimethylaminoethyl methacrylate-co-acrylamide). J Polym Sci, Part B: Polym Phys 35:595–598CrossRefGoogle Scholar
  180. 180.
    Yamamoto SI, Pietrasik J, Matyjaszewski K (2008) Temperature- and pH-responsive dense copolymer brushes prepared by ATRP. Macromolecules 41:7013–7020CrossRefGoogle Scholar
  181. 181.
    Yamamoto SI, Pietrasik J, Matyjaszewski K (2007) ATRP synthesis of thermally responsive molecular brushes from Oligo(ethylene oxide) Methacrylates. Macromolecules 40:9348–9353CrossRefGoogle Scholar
  182. 182.
    Dong H, Matyjaszewski K (2010) Thermally responsive P(M(EO)2MA-co-OEOMA) copolymers via AGET ATRP in miniemulsion. Macromolecules 43:4623–4628CrossRefGoogle Scholar
  183. 183.
    Dong H, Mantha V, Matyjaszewski K (2009) Thermally responsive PM(EO)2MA magnetic microgels via activators generated by electron transfer atom transfer radical polymerization in miniemulsion. Chem Mater 21:3965–3972CrossRefGoogle Scholar
  184. 184.
    Filipcsei G, Fehér J, Zrínyi M (2000) Electric field sensitive neutral polymer gels. J Mol Struct 554:109–117CrossRefGoogle Scholar
  185. 185.
    George PM, LaVan DA, Burdick JA, Chen CY, Liang E, Langer R (2006) Electrically controlled drug delivery from biotin-doped conductive polypyrrole. Adv Mater 18:577–581CrossRefGoogle Scholar
  186. 186.
    Jeon G, Yang SY, Byun J, Kim JK (2011) Electrically actuatable smart nanoporous membrane for pulsatile drug release. Nano Lett 11:1284–1288PubMedCrossRefGoogle Scholar
  187. 187.
    Katz JS, Burdick JA (2010) Light-responsive biomaterials: development and applications. Macromol Biosci 10:339–348PubMedCrossRefGoogle Scholar
  188. 188.
    Narayana Reddy N, Murali Mohan Y, Varaprasad K, Ravindra S, Joy PA, Mohana Raju K (2011) Magnetic and electric responsive hydrogel–magnetic nanocomposites for drug-delivery application. J App Polym Sci 122:1364–1375CrossRefGoogle Scholar
  189. 189.
    Filipcsei G, Csetneki I, Szilagyi A, Zrinyi M (2007) Magnetic field-responsive smart polymer composites. In: Oligomers—polymer composites—molecular imprinting. Springer, Berlin/HeidelbergGoogle Scholar
  190. 190.
    Kang H, Liu H, Zhang X, Yan J, Zhu Z, Peng L, Yang H, Kim Y, Tan W (2011) Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy. Langmuir 27:399–408PubMedCrossRefGoogle Scholar
  191. 191.
    Bousguet A, Ibarboure E, Papon E, Labrugère C, Rodríguez-Hernández J (2010) Structured multistimuli-responsive functional polymer surfaces obtained by interfacial diffusion of Amphiphilic block copolymers. J Polym Sci A Polym Chem 48:1952–1961CrossRefGoogle Scholar
  192. 192.
    Roy D, Cambre JN, Sumerlin BS (2009) Triply-responsive boronic acid block copolymers: solution self-assembly induced by changes in temperature, pH, or sugar concentration. Chem Commun 16:2106–2108Google Scholar
  193. 193.
    Weiss J, Laschewsky A (2011) Temperature-induced self-assembly of triple-responsive triblock copolymers in aqueous solutions. Langmuir 27:4465–4473PubMedCrossRefGoogle Scholar
  194. 194.
    Butun V, Billingham NC, Armes SP (1998) Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer: formation of micelles and reverse micelles in aqueous solution. J Am Chem Soc 120:11818–11819CrossRefGoogle Scholar
  195. 195.
    Butun V, Liu S, Weaver JVM, Bories-Azeau X, Cai Y, Armes SP (2006) A brief review of ‘schizophrenic’ block copolymers. React Funct Polym 66:157–165CrossRefGoogle Scholar
  196. 196.
    Liu SY, Billingham NC, Armes SP (2001) A schizophrenic water-soluble diblock copolymer. Angew Chem Int Ed Engl 40:2328–2331PubMedCrossRefGoogle Scholar
  197. 197.
    Naik SS, Ray JG, Savin DA (2011) Temperature- and pH-responsive self-assembly of poly(propylene oxide)-b-poly(lysine) block copolymers in aqueous solution. Langmuir 27:7231–7240PubMedCrossRefGoogle Scholar
  198. 198.
    Jiang X, Zhao B (2008) Tuning micellization and dissociation transitions of thermo- and ph-sensitive poly(ethylene oxide)-b-poly(methoxydi(ethylene glycol) methacrylate-co-methacrylic acid) in aqueous solution by combining temperature and ph triggers. Macromolecules 41:9366–9375CrossRefGoogle Scholar
  199. 199.
    Xiong DA, Shi L, Jiang X, An Y, Chen X, Lü J (2007) Composite worm-like aggregates formed from a pair of block-copolymers containing hydrogen-bonding donor and acceptor. Macromol Rapid Commun 28:194–199CrossRefGoogle Scholar
  200. 200.
    Liu SY, Armes SP (2002) Polymeric surfactants for the new millennium: a pH-responsive, zwitterionic, schizophrenic diblock copolymer. Angew Chem Int Ed Eng 41:1413–1416CrossRefGoogle Scholar
  201. 201.
    Du J, O’Reilly RK (2010) pH-Responsive vesicles from a schizophrenic diblock copolymer. Macromol Chem Phys 211:1530–1537CrossRefGoogle Scholar
  202. 202.
    Wang L, Liu M, Gao C, Ma L, Cui D (2010) A pH-, thermo-, and glucose-, triple-responsive hydrogels: synthesis and controlled drug delivery. React Funct Polym 70:159–167CrossRefGoogle Scholar
  203. 203.
    Timko BP, Dvir T, Kohane DS (2010) Remotely triggerable drug delivery systems. Adv Mater 22:4925–4943PubMedCrossRefGoogle Scholar
  204. 204.
    Wiradharma N, Zhang Y, Venkataraman S, Hedrick JL, Yanga YY (2009) Self-assembled polymer nanostructures for delivery of anticancer therapeutics. Nano Today 4:302–317CrossRefGoogle Scholar
  205. 205.
    Branco MC, Schneider JP (2009) Self-assembling materials for therapeutic delivery. Acta Biomater 5:817–831PubMedCrossRefGoogle Scholar
  206. 206.
    Onaca O, Enea R, Hughes DW, Meier W (2009) Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery. Macromol Biosci 9:129–139PubMedCrossRefGoogle Scholar
  207. 207.
    Alarcon CDH, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276–285CrossRefGoogle Scholar
  208. 208.
    Calderón M, Quadir MA, Strumia M, Haag R (2010) Functional dendritic polymer architectures as stimuli-responsive nanocarriers. Biochimie 92:1242–1251PubMedCrossRefGoogle Scholar
  209. 209.
    Motornov M, Roiter Y, Tokarev I, Minko S (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35:174–211CrossRefGoogle Scholar
  210. 210.
    York AW, Kirkland SE, McCormick CL (2008) Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery. Adv Drug Deliv Rev 60:1018–1036PubMedCrossRefGoogle Scholar
  211. 211.
    Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648PubMedCrossRefGoogle Scholar
  212. 212.
    Fu R, Fu GD (2011) Polymeric nanomaterials from combined click chemistry and controlled radical polymerization. Polym Chem 2:465–475CrossRefGoogle Scholar
  213. 213.
    Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131PubMedCrossRefGoogle Scholar
  214. 214.
    Sant V, Smith D, Leroux J (2004) Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization. J Control Release 97:301–312PubMedCrossRefGoogle Scholar
  215. 215.
    Yuan W, Yuan J, Zheng S, Hong X (2007) Synthesis, characterization, and controllable drug release of dendritic star-block copolymer by ring-opening polymerization and atom transfer radical polymerization. Polymer 48:2585–2594CrossRefGoogle Scholar
  216. 216.
    Licciardi M, Tang Y, Billingham NC, Armes SP, Lewis AL (2005) Synthesis of novel folic acid-functionalized biocompatible block copolymers by atom transfer radical polymerization for gene delivery and encapsulation of hydrophobic drugs. Biomacromolecules 6:1085–1096PubMedCrossRefGoogle Scholar
  217. 217.
    Karanikolopoulos N, Pitsikalis M, Hadjichristidis N, Georgikopoulou K, Calogeropoulou T, Dunlap JR (2007) pH-responsive aggregates from double hydrophilic block copolymers carrying zwitterionic groups. Encapsulation of antiparasitic compounds for the treatment of Leishmaniasis. Langmuir 23:4214–4224PubMedCrossRefGoogle Scholar
  218. 218.
    Tang Y, Liu SY, Armes SP, Billingham NC (2003) Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers. Biomacromolecules 4:1636–1645PubMedCrossRefGoogle Scholar
  219. 219.
    Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE (2006) Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release 116:150–158PubMedCrossRefGoogle Scholar
  220. 220.
    Du J, O’Reilly RK (2009) Advances and challenges in smart and functional polymer vesicles. Soft Matter 5:3544–3561CrossRefGoogle Scholar
  221. 221.
    Qin S, Geng Y, Discher DE, Yang S (2006) Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide). Adv Mater 18:2905–2909CrossRefGoogle Scholar
  222. 222.
    Tian L, Hammond PT (2006) Comb-dendritic block copolymers as tree-shaped macromolecular amphiphiles for nanoparticle self-assembly. Chem Mater 18:3976–3984CrossRefGoogle Scholar
  223. 223.
    Tian L, Nguyen P, Hammond PT (2006) Vesicular self-assembly of comb-dendritic block copolymers. Chem Commun 33:3489–3491Google Scholar
  224. 224.
    Yu WY, Zhang N (2009) Surface modification of nanocarriers for cancer therapy. Curr Nanosci 5:123–134CrossRefGoogle Scholar
  225. 225.
    Veronese FM, Mero A (2008) The impact of PEGylation on biological therapies. BioDrugs 22:315–329PubMedCrossRefGoogle Scholar
  226. 226.
    Reichelt S, Elsner C, Pender A, Buchmeiser MR (2011) Tailoring the surface of magnetic microparticles for protein immobilization. J Appl Polym Sci 121:3628–3634CrossRefGoogle Scholar
  227. 227.
    Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46:1222–1244PubMedCrossRefGoogle Scholar
  228. 228.
    Lin PC, Ueng SH, Yu SC, Jan MD, Adak AK, Yu CC, Lin CC (2007) Surface modification of magnetic nanoparticle via Cu(I)-Catalyzed alkyne-azide 2+3 cycloaddition. Org Lett 9:2131–2134PubMedCrossRefGoogle Scholar
  229. 229.
    Shim M, Wong Shi Kam N, Chen RJ, Li Y, Dai H (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2:285–288CrossRefGoogle Scholar
  230. 230.
    Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50–56PubMedCrossRefGoogle Scholar
  231. 231.
    Prencipe G, Tabakman SM, Welsher K, Liu Z, Goodwin AP, Zhang L, Henry J, Dai H (2009) PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc 131:4783–4787PubMedCrossRefGoogle Scholar
  232. 232.
    Jiang X, Lok MC, Hennink WE (2007) Degradable-brushed pHEMA–pDMAEMA synthesized via ATRP and click chemistry for gene delivery. Bioconjug Chem 18:2077–2084PubMedCrossRefGoogle Scholar
  233. 233.
    Du JZ, Tang LY, Song WJ, Shi Y, Wang J (2009) Evaluation of polymeric micelles from brush polymer with poly(epsilon-caprolactone)-b-poly(ethylene glycol) side chains as drug carrier. Biomacromolecules 10:2169–2174PubMedCrossRefGoogle Scholar
  234. 234.
    Ma YH, Tang Y, Billingham NC, Armes SP, Lewis AL, Lloyd AW, Salvage JP (2003) Well-defined biocompatible block copolymers via atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine in protic media. Macromolecules 36:3475–3484CrossRefGoogle Scholar
  235. 235.
    Hu YQ, Kim MS, Kim BS, Lee DS (2007) Synthesis and pH-dependent micellization of 2-(diisopropylamino)ethyl methacrylate based amphiphilic diblock copolymers via RAFT polymerization. Polymer 48:3437–3443CrossRefGoogle Scholar
  236. 236.
    Licciardi M, Giammona G, Du J, Armes SP, Tang Y, Lewis AL (2006) New folate-functionalized biocompatible block copolymer micelles as potential anti-cancer drug delivery systems. Polymer 47:2946–2955CrossRefGoogle Scholar
  237. 237.
    Lee SM, Chen H, Dettmer CM, O’Halloran TV, Nguyen ST (2007) Polymer-caged lipsomes: a pH-Responsive delivery system with high stability. J Am Chem Soc 129:15096–15097PubMedCrossRefGoogle Scholar
  238. 238.
    Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl 45:1198–1215PubMedCrossRefGoogle Scholar
  239. 239.
    Tong R, Cheng J (2008) Paclitaxel-initiated, controlled polymerization of lactide for the formulation of polymeric nanoparticulate delivery vehicles. Angew Chem Int Ed Engl 47:4830–4834PubMedCrossRefGoogle Scholar
  240. 240.
    Rettig H, Krause E, Borner HG (2004) Atom transfer radical polymerization with polypeptide initiators: a general approach to block copolymers of sequence-defined polypeptides and synthetic polymers. Macromol Rapid Commun 25:1251–1256CrossRefGoogle Scholar
  241. 241.
    Nicolas J, Mantovani G, Haddleton DM (2007) Living radical polymerization as a tool for the synthesis of polymer-protein/peptide bioconjugates. Macromol Rapid Commun 28:1083–1111CrossRefGoogle Scholar
  242. 242.
    Lele BS, Murata H, Matyjaszewski K, Russell AJ (2005) Synthesis of uniform protein-polymer conjugates. Biomacromolecules 6:3380–3387PubMedCrossRefGoogle Scholar
  243. 243.
    Averick S, Simakova A, Park S, Konkolewicz D, Magenau AJD, Mehl RA, Matyjaszewski K (2012) ATRP under biologically relevant conditions: grafting from a protein. ACS Macro Lett 1:6–10CrossRefGoogle Scholar
  244. 244.
    Peeler JC, Woodman BF, Averick S, Miyake-Stoner SJ, Stokes AL, Hess KR, Matyjaszewski K, Mehl RA (2010) Genetically encoded initiator for polymer growth from proteins. J Am Chem Soc 132:13575–13577PubMedCrossRefGoogle Scholar
  245. 245.
    Averick SE, Magenau AJD, Simakova A, Woodman BF, Seong A, Mehl RA, Matyjaszewski K (2011) Covalently incorporated protein-nanogels using AGET ATRP in an inverse miniemulsion. Polym Chem 2:1476–1478CrossRefGoogle Scholar
  246. 246.
    Averick S, Paredes E, Li W, Matyjaszewski K, Das SR (2011) Direct DNA conjugation to star polymers for controlled reversible assemblies. Bioconjug Chem 22:2030–2037PubMedCrossRefGoogle Scholar
  247. 247.
    Shakya AK, Sami H, Srivastava A, Kumar A (2010) Stability of responsive polymer-protein bioconjugates. Prog Polym Sci 35:459–486CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of CoimbraCoimbraPortugal
  2. 2.GE Power and Water, Water and Process TechnologiesTrevoseUSA
  3. 3.Department of ChemistryCarnegie Mellon UniversityPittsburghUSA
  4. 4.Chemistry DepartmentUniversity of CoimbraCoimbraPortugal

Personalised recommendations