Skip to main content

An Energy Optimization Framework for Sustainability Analysis: Inclusion of Behavioral Parameters as a Virtual Technology in Energy Optimization Models

  • Chapter
  • First Online:

Abstract

This chapter introduces an innovative approach that combines the deductive method used to construct normative energy-economy models and the inductive method of social sciences. Consumer behavior is described via technological attributes and used in virtual process technologies in an energy optimization framework. The main finding is that it is possible to evaluate consumer information and behavior together with technological progress and integrate them on the same modeling platform. The approach eliminates the systematic error on the demand side where the efficiency of demand-side management measures is over optimistic, which may lead to inaccurate decisions and poor policies. Thus, this method paves the way to a new stream in energy modeling.

Research supported by SNF research grant IZERZ0_142217.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bhattacharyya SC, Timilsina GR (2010) A review of energy system models. Int J Energy Sect Manage 4(4):494–518

    Article  Google Scholar 

  • Bottrill C (2007) Internet-based carbon tools for behaviour change. Oxford University Centre for the Environment, Oxford

    Google Scholar 

  • Fragnière E (1995) Choix énergétiques et environnementaux pour le canton de Genève. thèse de doctorat, SES 412, Université de Genève

    Google Scholar 

  • Fragnière E, Haurie A (1996) A stochastic programming model for energy/environment choices under uncertainty. Int J Environ Pollut 6(4–6):587–603

    Google Scholar 

  • Fragnière E, Haurie A, Kanala R (1999) A GIS-based regional energy-environment policy mode. Int J Glob Energy Issues 12(1–6):159–167

    Google Scholar 

  • Fragnière E, Kanala R, Lavigne D, Moresino F, Nguene G (2010) Behavioral and technological changes regarding lighting consumptions: A MARKAL case study. Low Carbon Econ 1(1):8–17

    Article  Google Scholar 

  • Gyberg P, Palm J (2009) Influencing households’ energy behaviour – how is this done and on what premises? Energy Policy 37(7):2807–2813

    Article  Google Scholar 

  • Hondo H, Baba K (2010) Socio-psychological impacts of the introduction of energy technologies: change in environmental behavior of households with photovoltaic systems. Appl Energy 87(1):229–235

    Article  Google Scholar 

  • Loulou R, Lavigne D (1996) MARKAL model with elastic demands: application to GHG emission control. In: Carraro C, Haurie A (eds) Operations research and environmental engineering. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 201–220

    Chapter  Google Scholar 

  • Manne AS, Wene CO (1992) MARKAL-MACRO: a linked model for energy-economy analysis, Brookhaven National Laboratory, BNL-47161, Brookhaven National Laboratory, Upton

    Google Scholar 

  • Nakata T (2004) Energy-economic models and the environment. Prog Energy Combust Sci 30(4). Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0360128504000140

  • Nguene G, Fragnière E, Kanala R, Lavigne D, Moresino F (2011) Socio-markal (Somarkal): first modeling attempts in the Nyon residential and commercial sectors taking into account behavioural uncertainties. Energy Sustain Dev 15(1):73–83

    Article  CAS  Google Scholar 

  • Nye M, Burgess J (2008) Promoting durable change in household waste and energy use behaviour. Retrieved from http://globalactionplanorguk.site.securepod.com/upload/resource/UEA%20EcoTeams%20Research%20Report%20Feb%202008.pdf

  • Ouyang J, Hokao K (2009) Energy-saving potential by improving occupants’ behavior in urban residential sector in Hangzhou City, China. Energy Build 41(7):711–720

    Article  Google Scholar 

  • Räthzel N, Uzzell D (2009) Changing relations in global environmental change. Global Environ. doi:10.1016/j.gloenvcha.2009.05.001

  • Rice RE, Paisley WJ (1981) Campaigns to affect energy behaviour. Public communication campaigns. Sage, Beverly Hills

    Google Scholar 

  • Rydin Y, Moore S, Nye M (2007) Using ecological footprints as a policy driver: the case of sustainable construction planning policy in London. Local Environ 12(1):1–15

    Article  Google Scholar 

  • Turton H, Barreto L (2006) Long-term security of energy supply and climate change. Energy Policy 34:2232–2250

    Article  Google Scholar 

  • UNEP (2008) SBCI buildings and climate change report. Division of Technology, Industry, and Economics, Paris. Retrieved from www.unep.org/Documents.Multilingual/Default.Print.asp?DocumentID=502&ArticleID=5545&l=en

    Google Scholar 

  • Weber S, Baranzini A, Fragnière E (2009) Consumers’ choices among alternative electricity programs in Geneva: an empirical analysis. Int J Global Energy Issues 31(3/4):295–309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Kanala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kanala, R., Turin, N., Fragnière, E. (2013). An Energy Optimization Framework for Sustainability Analysis: Inclusion of Behavioral Parameters as a Virtual Technology in Energy Optimization Models. In: Luo, Z. (eds) Mechanism Design for Sustainability. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5995-4_6

Download citation

Publish with us

Policies and ethics