Modelling Strain Localization by Cohesive (Overlapping) Zones in Tension (Compression): Brittleness Size Effects and Scaling in Material Properties

  • Alberto Carpinteri
  • Marco Paggi


The present paper is a state-of-the-art review of the research carried out at the Politecnico di Torino during the last two decades on the modelling of strain localization. Introducing the elementary cohesive/overlapping models in tension/compression, it will be shown that it is possible to get a deep insight into the ductile-to-brittle transition and into the scaling of the material properties usually detected when testing quasi-brittle material specimens or structures at different size-scales.


Fracture Energy Reinforce Concrete Crack Opening Displacement Linear Elastic Fracture Mechanics Cohesive Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drucker, D.C.: Some implications of work-hardening and ideal plasticity. Quart. Appl. Math. 7, 411–418 (1950)MathSciNetzbMATHGoogle Scholar
  2. 2.
    von Kármán, T., Dunn, L.G., Tsien, H.S.: The influence of curvature on the buckling characteristics of structures. J. Aero. Sci. 7, 276–289 (1940)zbMATHGoogle Scholar
  3. 3.
    von Kármán, T., Tsien, H.S.: The buckling of thin cylindrical shells under axial compression. J. Aero. Sci. 8, 303–312 (1941)Google Scholar
  4. 4.
    Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–114 (1960)CrossRefGoogle Scholar
  5. 5.
    Bilby, B.A., Cottrell, A.H., Swinden, K.H.: The spread of plastic yield from a notch. Proc. R Soc. London A 272, 304–314 (1963)CrossRefGoogle Scholar
  6. 6.
    Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. App. Mech. 7, 55–129 (1962)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 31, 379–386 (1968)CrossRefGoogle Scholar
  8. 8.
    Smith, E.: The structure in the vicinity of a crack tip: a general theory based on the cohesive zone model. Engng. Fract. Mech. 6, 213–222 (1974)CrossRefGoogle Scholar
  9. 9.
    Hillerborg, A., Modeer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite element. Cem. Concr. Res. 6, 773–782 (1976)CrossRefGoogle Scholar
  10. 10.
    Petersson, P.: Crack growth and development of fracture zones in plain concrete and similar materials, Report TVBM-1006, Division of Building Materials, Lund Institute of Technology (1981)Google Scholar
  11. 11.
    Carpinteri, A.: Interpretation of the Griffith instability as a bifurcation of the global equilibrium. In: Shah, S.P. (ed.) Application of Fracture Mechanics to Cementitious Composites (Proc. of a NATO Advanced Research Workshop, Evanston, USA, 1984), pp. 284–316. Martinus Nijhoff Publishers, Dordrecht (1985)Google Scholar
  12. 12.
    Carpinteri, A.: Cusp catastrophe interpretation of fracture instability. J. Mech. Phys. Solids 37, 567–582 (1989)zbMATHCrossRefGoogle Scholar
  13. 13.
    Carpinteri, A.: Decrease of apparent tensile and bending strength with specimen size: two different explanations based on fracture mechanics. Int. J. Solids Struct. 25, 407–429 (1989)CrossRefGoogle Scholar
  14. 14.
    Carpinteri, A.: Post-peak and post-bifurcation analysis on cohesive crack propagation. Engng. Fract. Mech. 32, 265–278 (1989)CrossRefGoogle Scholar
  15. 15.
    Carpinteri, A.: Softening and snap-back instability in cohesive solids. Int. J. Num. Methods Engng. 28, 1521–1537 (1989)CrossRefGoogle Scholar
  16. 16.
    Cen, Z., Maier, G.: Bifurcations and instabilities in fracture of cohesive-softening structures: a boundary elements analysis. Fatigue Fract. Engng. Mater. Struct. 15, 911–928 (1992)CrossRefGoogle Scholar
  17. 17.
    Elices, M., Guinea, G.V., Planas, J.: Prediction of size-effect based on cohesive crack model. In: Carpinteri, A. (ed.) Size-Scale Effects in the Failure Mechanisms of Materials and Structures. E & FN Spon, pp. 309–324 (1996)Google Scholar
  18. 18.
    Carpinteri, A.: Size effects on strength, toughness and ductility. ASCE J. Engng. Mech. 115, 1375–1392 (1989)CrossRefGoogle Scholar
  19. 19.
    Carpinteri, A., Corrado, M., Paggi, M., Mancini, G.: Cohesive versus overlapping crack model for a size effect analysis of RC elements in bending. In: Design, Assessment and Retrofitting of RC Structures. The Proceedings of the 6th Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS), vol. 2, pp. 655–663. Taylor & Francis, Catania (2007)Google Scholar
  20. 20.
    Carpinteri, A.: Fractal nature of material microstructure and size effects on apparent mechanical properties. Mech. Mater. 18, 89–101 (1994)CrossRefGoogle Scholar
  21. 21.
    Carpinteri, A.: Scaling laws and renormalization groups for strength and toughness of disordered materials. Int. J. Solids Struct. 31, 291–302 (1994)zbMATHCrossRefGoogle Scholar
  22. 22.
    Carpinteri, A., Chiaia, B., Cornetti, P.: A scale-invariant cohesive crack model for quasi-brittle materials. Engng. Fract. Mech. 69, 207–217 (2002)CrossRefGoogle Scholar
  23. 23.
    Paggi, M.: Interface Mechanical Problems in Heterogeneous Materials. Ph.D. Thesis, Politecnico di Torino (2005)Google Scholar
  24. 24.
    Paggi, M., Carpinteri, A., Zavarise, G.: A Unified Interface Constitutive Law for the Study of Fracture and Contact Problems in Heterogeneous Materials. In: Wriggers, P., Nackenhorst, U. (eds.) Analysis and Simulation of Contact Problems. LNACM, vol. 27, pp. 297–304. Springer, Berlin (2006)CrossRefGoogle Scholar
  25. 25.
    Carpinteri, A., Paggi, M., Zavarise, G.: Snap-back instability in micro-structured composites and its connection with superplasticity. Strength, Fracture and Complexity 3, 61–72 (2005)Google Scholar
  26. 26.
    Carpinteri, A., Lacidogna, G., Paggi, M.: Acoustic emission monitoring and numerical modelling of FRP delamination in RC beams with non-rectangular cross-section. RILEM Mat. Struct. 40, 553–566 (2007)CrossRefGoogle Scholar
  27. 27.
    Carpinteri, A., Paggi, M., Zavarise, G.: The effect of contact on the decohesion of laminated beams with multiple microcracks. Int. J. Solids Struct. 45, 129–143 (2008)zbMATHCrossRefGoogle Scholar
  28. 28.
    Fairhurst, C., Hudson, J.A., Brown, E.T.: Optimizing the control of rock failure in servo-controlled laboratory test. Rock Mech. 3, 217–224 (1971)CrossRefGoogle Scholar
  29. 29.
    Rokugo, K., Ohno, K., Koyanagi, W.: Automatical measuring system of load-displacement curves including postfailure region of concrete specimen. In: Fracture Toughness and Fracture Energy of Concrete International Conference of Fracture Mechanics of Concrete, Lausanne, Switzerland (1986)Google Scholar
  30. 30.
    Thom, R.: Structural Stability and Morphogenesis, Benjamin, Reading, Massachusetts (1975)Google Scholar
  31. 31.
    Bosco, C., Debernardi, P.G.: Experimental investigation on the ultimate rotational capacity of R.C. beams. Report No. 36, Atti del Dipartimento, Politecnico di Torino, Ingegneria Strutturale (1992)Google Scholar
  32. 32.
    Carpinteri, A., Chiaia, B., Invernizzi, S.: Three dimensional fractal analysis of concrete fracture at the mesolevel. Theor. Appl. Fract. Mech. 31, 163–172 (1999)CrossRefGoogle Scholar
  33. 33.
    Carpinteri, A., Cornetti, P.: Size effects on concrete tensile fracture properties: an interpretation of the fractal approach based on the aggregate grading. J. Mech. Behav. Mater. 13, 233–246 (2002)CrossRefGoogle Scholar
  34. 34.
    Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. John Wiley, Chichester (2003)zbMATHCrossRefGoogle Scholar
  35. 35.
    Carpinteri, A., Ferro, G.: Size effects on tensile fracture properties: A unified explanation based on disorder and fractality of concrete microstructure. Mater. Struct. 27, 563–571 (1994)CrossRefGoogle Scholar
  36. 36.
    Carpinteri, A., Ferro, G.: Scaling behaviour and dual renormalization of experimental tensile softening responses. Mater. Struct. 31, 303–309 (1998)CrossRefGoogle Scholar
  37. 37.
    van Mier, J.G.M., van Vliet, M.R.A.: Effect of strain gradients on the size effect of concrete in uniaxial tension. Int. J. Fract. 94, 195–219 (1999)Google Scholar

Copyright information

© © Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Structural Engineering and GeotechnicsPolitecnico di TorinoTorinoItaly

Personalised recommendations