Skip to main content

Instabilities across the Scales: Simple Models for Shear Banding, Plate Subduction and Mantle Convection in Geodynamics

  • Conference paper
Mechanics Down Under

Abstract

The Earth shows different modes of deformation in response to thermal or gravitational driving forces. The bulk mantle convects like a viscous fluid on the global scale, while the lithosphere is broken into several plates. They show little internal deformation, but change their shapes and relative positions. Oceanic plate material is generated at divergent margins and recycled into the mantle at subduction zones, on a regional scale. The buoyant continental crust resists subduction and develops meter-scale shear bands during deformation.

In this article we review Eulerian finite element (FE) schemes and a particle-in-cell (PIC) FE scheme [15]. Focussing initially on models of crustal deformation at a scale of a few tens of km, we choose a Mohr-Coulomb yield criterion based upon the idea that frictional slip occurs on whichever one of many randomly oriented planes happens to be favourably oriented with respect to the stress field. As coupled crust/mantle models become more sophisticated it is important to be able to use whichever failure model is appropriate to a given part of the system. We have therefore developed a way to represent Mohr-Coulomb failure within a mantle-convection fluid dynamics code.

With the modelling of lithosphere deformation we use an orthotropic viscous rheology (a different viscosity for pure shear to that for simple shear) to define a preferred plane for slip to occur given the local stress field. The simple-shear viscosity and the deformation can then be iterated to ensure that the yield criterion is always satisfied. We again assume the Boussinesq approximation - neglecting any effect of dilatancy on the stress field.

Subduction is modelled as a Rayleigh-Taylor instability with dense oceanic lithosphere sinking into less dense sublithospheric mantle. We use a linear viscous rheology for the mantle in this case. Parts of the lithosphere are viscous, others brittle. The values of the dynamic viscosity are different for lithosphere and mantle. The brittle behaviour of parts of the lithosphere can be modelled in the continuum limit by using a viscoplastic rheology.

Turning to the largest planetary scale, we present an outline of the mechanics of unified models plate-mantle models and then show how computational solutions can be obtained for such models using Escript. The consequent results for different types of convection are presented and the stability of the observed flow patterns with respect to different initial conditions and computational resolutions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barr, A.H.: Superquadrics and angle-preserving transformations. IEEE Computer Graphics and Applications 1(1), 11–23 (1981)

    Article  Google Scholar 

  2. Bird, P., Kong, X.: Computer simulations of california tectonics confirm very low strength of major faults. Geol. Soc. Am. Bull. 106, 159–174 (1994)

    Article  Google Scholar 

  3. Brady, B.H.G., Brown, E.T.: Rock Mechanics. George Allen and Unwin, London (1985)

    Book  Google Scholar 

  4. Bronkhorst, C.A., Kalidindi, S.R., Anand, L.: Polycrystalline plasticity and the evolution of crystallographic texture in fcc metals. Phil. Trans. Royal Soc. A 341, 443–477 (1992)

    Article  Google Scholar 

  5. de Josselin de Jong, G.: The double sliding free rotating model for granular assemblies. Geotechnique 21, 155–163 (1971)

    Article  Google Scholar 

  6. England, P., Houseman, G.: Role of lithospheric strength heterogeneities in the tectonics of tibet and neighbouring regions. Nature 315, 297–301 (1985)

    Article  Google Scholar 

  7. England, P., Houseman, G., Sonder, L.: Length scales for continental deformation in convergent, divergent and strike-slip environments: Analytical and approximate solutions for a thin viscous sheet model. J. Geophys. Res. 90, 3551–3557 (1985)

    Article  Google Scholar 

  8. England, P.C., Houseman, G.A.: The mechanics of the tibetan plateau. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 326, 301–320 (1988)

    Article  Google Scholar 

  9. Gross, L., Bourgouin, L., Hale, A.J., Muhlhaus, H.-B.: Interface modeling in incompressible media using level sets in escript. Physics of the Earth and Planetary Interiors 163, 23–34 (2007)

    Article  Google Scholar 

  10. Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  11. Humphreys, F.J., Hatherly, M.: Recrystallization and related annealing phenomena. Pergamon Press, U.K.(1995)

    Google Scholar 

  12. Karato, S., Wu, P.: Rheology of the upper mantle - a synthesis. Science 260, 771–778 (1993)

    Article  Google Scholar 

  13. Kolymbas, D., Herle, I.: Shear and objective stress rates in hypoplasticity. Int. J. Numer. Anal. Methods Geomech. 27, 733–744 (2003)

    Article  MATH  Google Scholar 

  14. Kong, X., Bird, P.: Thin-shell finite- element models with faults. In: Yin, A., Harrison, T.M. (eds.) The Tectonic Evolution of Asia, pp. 18–34. Cambridge University Press (1996)

    Google Scholar 

  15. Moresi, L., Dufour, F., Muhlhaus, H.B.: A lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. Journal of Computational Physics 184, 476–497 (2003)

    Article  MATH  Google Scholar 

  16. Moresi, L.N., Solomatov, V.S.: Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the earth and venus. Geophysicical Journal International 133, 669–682 (1998)

    Article  Google Scholar 

  17. Muhlhaus, H.-B., Regenauer-Lieb, K.: Towards a self-consistent plate mantle model that includes elasticity: simple benchmarks and application to basic modes of convection. Geophys. J. Int. 163(2), 788–800 (2005)

    Article  Google Scholar 

  18. Muhlhaus, H.-B., Dufour, F., Moresi, L., Hobbs, B.: A director theory for viscoelastic folding instabilities in multilayered rock. Int. J. Solids Structures 39, 3675–3691 (2002)

    Article  Google Scholar 

  19. Muhlhaus, H.B., Moresi, L., Hobbs, B., Dufour, F.: Large amplitude folding in finely layered viscoelastic rock structures. Pure and Applied Geophysics 159, 2311–2333 (2002), doi:10.1007/s00024-002-8737-4

    Article  Google Scholar 

  20. Muhlhaus, H.B., Moresi, L., Cada, M.: Emergent anisotropy and flow alignment in viscous rock. Pure Appl. Geophys. 161, 2451–2463 (2004)

    Article  Google Scholar 

  21. Rudnicki, J.W., Rice, J.R.: Conditions for the localization of deformation in pressure sensitive dilatant materials. J. Mech. Phys. Solids 23, 371–394 (1975)

    Article  Google Scholar 

  22. Solomatov, V.S.: Scaling of temperature- and stress- dependent viscosity convection. Phys. Fluids 7, 266–274 (1995)

    Article  MATH  Google Scholar 

  23. Tackley, P.J.: Three-dimensional simulations of mantle convection with a thermo-chemical basal boundary layer: D”? Americal Geophysical Union (1998)

    Google Scholar 

  24. Tackley, P.J.: Self-consistent generation of tectonic plates in threedimensional mantle convection. Earth Planet. Sci. Lett. 157, 9–22 (1998)

    Article  Google Scholar 

  25. Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics. Blackie Academics and Professional (1995)

    Google Scholar 

  26. Watts, A.B., Bodine, J.H., Ribe, N.M.: Observations of flexure and the geological evolution of the pacific basin. Nature 283, 532–537 (1980)

    Article  Google Scholar 

  27. Watts, A.B., Bodine, J.H., Steckler, M.S.: Observation of flexure and the state of stress in the oceanic lithosphere. J. Geophys. Res. 85, 6369–6376 (1980a)

    Article  Google Scholar 

  28. Zhong, S.J., Gurnis, M.: Controls on trench topography from dynamic-models of subducted slabs. J. Geophys. Res.-Solid Earth 99, 15683–15695 (1994)

    Article  Google Scholar 

  29. Zhong, S.J., Gurnis, M.: Towards a realistic simulation of plate margins in mantle convection. Geophys. Res. Lett. 22, 981–984 (1995)

    Article  Google Scholar 

  30. Zhong, S.J., Gurnis, M.: Mantle convection with plates and mobile, faulted plate margins. Science 267, 838–843 (1995)

    Article  Google Scholar 

  31. Zhong, S.J., Gurnis, M.: Interaction of weak faults and non-newtonian rheology produces plate tectonics in a 3d model of mantle flow. Nature 383, 245–247 (1996)

    Article  Google Scholar 

  32. Zhong, S.J., Gurnis, M., Moresi, L.: Role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle flow models. J. Geophys. Res.-Solid Earth 103, 15255–15268 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Bernd Mühlhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 © Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Mühlhaus, HB., Moresi, L., Davies, M., Gottschald, K., Hale, A. (2013). Instabilities across the Scales: Simple Models for Shear Banding, Plate Subduction and Mantle Convection in Geodynamics. In: Denier, J., Finn, M. (eds) Mechanics Down Under. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5968-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5968-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5967-1

  • Online ISBN: 978-94-007-5968-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics