Skip to main content

Organ Microbiota in Cancer Development: The Holy Grail of Biological Carcinogenesis

  • Chapter
  • First Online:
  • 729 Accesses

Abstract

The problem of the role of human microbiota in cancer development is one of the most attractive in modern biology. It has been proved that microbiota is a key player in a number of vital processes including metabolism, immunity, regulation of apoptosis, growth, proliferation, survival, angiogenesis etc. Our understanding of the role of human microbiota in etiopathogenesis of various diseases has been greatly improved in the recent years, and now microbiota is obviously established as a crucially important part of the human body. Moreover, microbiota possesses both local and distant effects, regulating the homeostasis of various organ systems. However, our understanding of the role of microbiota is only superficial, and a wide spectrum of investigations in this field is required. In this chapter, we shed light on a problem of the significance of oral and gut microbiota (since microbiota of these organs is the most investigated at the moment) in cancer development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen IC, TeKippe EM, Woodford RM et al (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 207(5):1045–1056

    PubMed  CAS  Google Scholar 

  • Andrian E, Grenier D, Rouabhia M (2004) In vitro models of tissue penetration and destruction by Porphyromonas gingivalis. Infect Immun 72(8):4689–4698

    PubMed  CAS  Google Scholar 

  • Azcárate-Peril MA, Sikes M, Bruno-Bárcena JM (2011) The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol 301(3):G401–G424

    PubMed  Google Scholar 

  • Bäckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723

    PubMed  Google Scholar 

  • Bäckhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920

    PubMed  Google Scholar 

  • Balamurugan R, Rajendiran E, George S et al (2008) Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 23(8 Pt 1):1298–1303

    PubMed  CAS  Google Scholar 

  • Bartie KL, Williams DW, Wilson MJ et al (2004) Differential invasion of Candida albicans isolates in an in vitro model of oral candidosis. Oral Microbiol Immunol 19(5):293–296

    PubMed  CAS  Google Scholar 

  • Bernstein H, Bernstein C, Payne CM et al (2005) Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res 589(1):47–65

    PubMed  CAS  Google Scholar 

  • Bloching M, Reich W, Schubert J et al (2007) The influence of oral hygiene on salivary quality in the Ames Test, as a marker for genotoxic effects. Oral Oncol 43(9):933–939

    PubMed  CAS  Google Scholar 

  • Boleij A, Roelofs R, Schaeps RM et al (2010) Increased exposure to bacterial antigen RpL7/L12 in early stage colorectal cancer patients. Cancer 116(17):4014–4022

    PubMed  CAS  Google Scholar 

  • Boquet P (2001) The cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. Toxicon 39(11):1673–1680

    PubMed  CAS  Google Scholar 

  • Boyle P, Ferlay J (2005) Cancer incidence and mortality in Europe, 2004. Ann Oncol 16(3):481–488

    PubMed  CAS  Google Scholar 

  • Byakodi R, Krishnappa R, Keluskar V et al (2011) The microbial flora associated with oral carcinomas. Quintessence Int 42(9):e118–e123

    PubMed  Google Scholar 

  • Candela M, Guidotti M, Fabbri A et al (2011) Human intestinal microbiota: cross-talk with the host and its potential role in colorectal cancer. Crit Rev Microbiol 37(1):1–14

    PubMed  CAS  Google Scholar 

  • Canković M, Bokor-Bratić M (2010) Candida albicans infection in patients with oral squamous cell carcinoma. Vojnosanit Pregl 67(9):766–770

    PubMed  Google Scholar 

  • Castellarin M, Warren RL, Freeman JD et al (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22(2):299–306

    PubMed  CAS  Google Scholar 

  • Cawson RA (1969) Leukoplakia and oral cancer. Proc R Soc Med 62(6):610–615

    PubMed  CAS  Google Scholar 

  • Chen GY, Shaw MH, Redondo G et al (2008) The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res 68(24):10060–10067

    PubMed  CAS  Google Scholar 

  • Farrell JJ, Zhang L, Zhou H et al (2012) Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 61(4):582–588

    PubMed  CAS  Google Scholar 

  • Feng SH, Tsai S, Rodriguez J et al (1999) Mycoplasmal infections prevent apoptosis and induce malignant transformation of interleukin-3-dependent 32D hematopoietic cells. Mol Cell Biol 19(12):7995–8002

    PubMed  CAS  Google Scholar 

  • Fukata M, Chen A, Vamadevan AS et al (2007) Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133(6):1869–1881

    PubMed  CAS  Google Scholar 

  • Ge Z, Schauer DB, Fox JG (2008) In vivo virulence properties of bacterial cytolethal-distending toxin. Cell Microbiol 10(8):1599–1607

    PubMed  CAS  Google Scholar 

  • Gerlic M, Horowitz J, Horowitz S (2004) Mycoplasma fermentans inhibits tumor necrosis factor alpha-induced apoptosis in the human myelomonocytic U937 cell line. Cell Death Differ 11(11):1204–1212

    PubMed  CAS  Google Scholar 

  • Gill SR, Pop M, Deboy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359

    PubMed  CAS  Google Scholar 

  • González-Navajas JM, Fine S, Law J et al (2010) TLR4 signaling in effector CD4+ T cells regulates TCR activation and experimental colitis in mice. J Clin Invest 120(2):570–581

    PubMed  Google Scholar 

  • Gueimonde M, Ouwehand A, Huhtinen H et al (2007) Qualitative and quantitative analyses of the bifidobacterial microbiota in the colonic mucosa of patients with colorectal cancer, diverticulitis and inflammatory bowel disease. World J Gastroenterol 13(29):3985–3989

    PubMed  Google Scholar 

  • Hirose K, Isogai E, Mizugai H et al (1996) Adhesion of Porphyromonas gingivalis fimbriae to human gingival cell line Ca9-22. Oral Microbiol Immunol 11(6):402–406

    PubMed  CAS  Google Scholar 

  • Homann N, Tillonen J, Meurman JH et al (2000) Increased salivary acetaldehyde levels in heavy drinkers and smokers: a microbiological approach to oral cavity cancer. Carcinogenesis 21(4):663–668

    PubMed  CAS  Google Scholar 

  • Hooper SJ, Crean SJ, Fardy MJ, Lewis MA, Spratt DA, Wade WG, Wilson MJ (2007) A molecular analysis of the bacteria present within oral squamous cell carcinoma. J Med Microbiol 56(Pt 12):1651–1659

    PubMed  CAS  Google Scholar 

  • Hooper SJ, Wilson MJ, Crean SJ (2009) Exploring the link between microorganisms and oral cancer: a systematic review of the literature. Head Neck 31(9):1228–1239

    PubMed  Google Scholar 

  • Humblot C, Murkovic M, Rigottier-Gois L et al (2007) Beta-glucuronidase in human intestinal microbiota is necessary for the colonic genotoxicity of the food-borne carcinogen 2-amino-3-methylimidazo[4,5-f]quinolone in rats. Carcinogenesis 28(11):2419–2425

    PubMed  CAS  Google Scholar 

  • Huycke MM, Gaskins HR (2004) Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Exp Biol Med (Maywood) 229(7):586–597

    CAS  Google Scholar 

  • Kado S, Uchida K, Funabashi H et al (2001) Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor beta chain and p53 double-knockout mice. Cancer Res 61(6):2395–2398

    PubMed  CAS  Google Scholar 

  • Katz J, Onate MD, Pauley KM et al (2011) Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma. Int J Oral Sci 3(4):209–215

    PubMed  Google Scholar 

  • Killeen SD, Wang JH, Andrews EJ et al (2009) Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system. Br J Cancer 100(10):1589–1602

    PubMed  CAS  Google Scholar 

  • Kim DH, Jin YH (2001) Intestinal bacterial beta-glucuronidase activity of patients with colon cancer. Arch Pharm Res 24(6):564–567

    PubMed  CAS  Google Scholar 

  • Kim YC, Ko Y, Hong SD et al (2010) Presence of Porphyromonas gingivalis and plasma cell dominance in gingival tissues with periodontitis. Oral Dis 16(4):375–381

    PubMed  CAS  Google Scholar 

  • Kostic AD, Gevers D, Pedamallu CS et al (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22(2):292–298

    PubMed  CAS  Google Scholar 

  • Krogh P (1990) The role of yeasts in oral cancer by means of endogenous nitrosation. Acta Odontol Scand 48(1):85–88

    PubMed  CAS  Google Scholar 

  • Kuboniwa M, Hasegawa Y, Mao S et al (2008) P. gingivalis accelerates gingival epithelial cell progression through the cell cycle. Microbes Infect 10(2):122–128

    PubMed  CAS  Google Scholar 

  • Kumar A, Wu H, Collier-Hyams LS et al (2007) Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J 26(21):4457–4466

    PubMed  CAS  Google Scholar 

  • Kuramitsu HK, Miyakawa H, Qi M et al (2002) Cellular responses to oral pathogens. Ann Periodontol 7(1):90–94

    PubMed  Google Scholar 

  • Kurkivuori J, Salaspuro V, Kaihovaara P et al (2007) Acetaldehyde production from ethanol by oral streptococci. Oral Oncol 43(2):181–186

    PubMed  CAS  Google Scholar 

  • Lara-Tejero M, Galán JE (2002) Cytolethal distending toxin: limited damage as a strategy to modulate cellular functions. Trends Microbiol 10(3):147–152

    PubMed  CAS  Google Scholar 

  • Ley RE, Hamady M, Lozupone C et al (2008) Evolution of mammals and their gut microbes. Science 320(5883):1647–1651

    PubMed  CAS  Google Scholar 

  • Lu X, Gao N, Wang C et al (2002) Oral microflora of 42 patients with oral squamous cell carcinoma. Hua Xi Kou Qiang Yi Xue Za Zhi 20(5):356–360

    PubMed  Google Scholar 

  • Mager DL, Haffajee AD, Devlin PM et al (2005) The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med 3:27

    PubMed  CAS  Google Scholar 

  • Mao S, Park Y, Hasegawa Y et al (2007) Intrinsic apoptotic pathways of gingival epithelial cells modulated by Porphyromonas gingivalis. Cell Microbiol 9(8):1997–2007

    PubMed  CAS  Google Scholar 

  • Marchesi JR, Dutilh BE, Hall N et al (2011) Towards the human colorectal cancer microbiome. PLoS One 6(5):e20447

    PubMed  CAS  Google Scholar 

  • Markowitz VM, Szeto E, Palaniappan K et al (2008) The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions. Nucleic Acids Res 36(Database issue):D528–D533

    PubMed  CAS  Google Scholar 

  • McBain AJ, Macfarlane GT (1998) Ecological and physiological studies on large intestinal bacteria in relation to production of hydrolytic and reductive enzymes involved in formation of genotoxic metabolites. J Med Microbiol 47(5):407–416

    PubMed  CAS  Google Scholar 

  • McConnell BB, Yang VW (2009) The role of inflammation in the pathogenesis of colorectal cancer. Curr Colorectal Cancer Rep 5(2):69–74

    PubMed  Google Scholar 

  • McCullough M, Jaber M, Barrett AW et al (2002) Oral yeast carriage correlates with presence of oral epithelial dysplasia. Oral Oncol 38(4):391–393

    PubMed  CAS  Google Scholar 

  • Mihara J, Miyazawa Y, Holt SC (1993) Modulation of growth and function of human gingival fibroblasts by fibroblast-activating factor derived from Porphyromonas gingivalis W50. Infect Immun 61(2):596–601

    PubMed  CAS  Google Scholar 

  • Moore WE, Moore LH (1995) Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol 61(9):3202–3207

    PubMed  CAS  Google Scholar 

  • Moran JP, Walter J, Tannock GW et al (2009) Bifidobacterium animalis causes extensive duodenitis and mild colonic inflammation in monoassociated interleukin-10-deficient mice. Inflamm Bowel Dis 15(7):1022–1031

    PubMed  Google Scholar 

  • Morita E, Narikiyo M, Yano A et al (2003) Different frequencies of Streptococcus anginosus infection in oral cancer and esophageal cancer. Cancer Sci 94(6):492–496

    PubMed  CAS  Google Scholar 

  • Nagy KN, Sonkodi I, Szöke I et al (1998) The microflora associated with human oral carcinomas. Oral Oncol 34(4):304–308

    PubMed  CAS  Google Scholar 

  • Nakhjiri SF, Park Y, Yilmaz O et al (2001) Inhibition of epithelial cell apoptosis by Porphyromonas gingivalis. FEMS Microbiol Lett 200(2):145–149

    PubMed  CAS  Google Scholar 

  • Narikiyo M, Tanabe C, Yamada Y et al (2004) Frequent and preferential infection of Treponema denticola, Streptococcus mitis, and Streptococcus anginosus in esophageal cancers. Cancer Sci 95(7):569–574

    PubMed  CAS  Google Scholar 

  • Nieminen MT, Uittamo J, Salaspuro M et al (2009) Acetaldehyde production from ethanol and glucose by non-Candida albicans yeasts in vitro. Oral Oncol 45(12):e245–e248

    PubMed  CAS  Google Scholar 

  • Normand S, Delanoye-Crespin A, Bressenot A et al (2011) Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc Natl Acad Sci USA 108(23):9601–9606

    PubMed  CAS  Google Scholar 

  • Nougayrède JP, Homburg S, Taieb F et al (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313(5788):848–851

    PubMed  Google Scholar 

  • O’Grady JF, Reade PC (1992) Candida albicans as a promoter of oral mucosal neoplasia. Carcinogenesis 13(5):783–786

    PubMed  Google Scholar 

  • O’Keefe SJ (2008) Nutrition and colonic health: the critical role of the microbiota. Curr Opin Gastroenterol 24(1):51–58

    PubMed  Google Scholar 

  • O’Keefe SJ, Ou J, Aufreiter S et al (2009) Products of the colonic microbiota mediate the effects of diet on colon cancer risk. J Nutr 139(11):2044–2048

    PubMed  Google Scholar 

  • Prakash S, Rodes L, Coussa-Charley M et al (2011) Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biol Targets Ther 5:71–86

    Google Scholar 

  • Putnins EE, Sanaie AR, Wu Q et al (2002) Induction of keratinocyte growth factor 1 expression by lipopolysaccharide is regulated by CD-14 and toll-like receptors 2 and 4. Infect Immun 70(12):6541–6548

    PubMed  CAS  Google Scholar 

  • Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    PubMed  CAS  Google Scholar 

  • Ramasamy S, Singh S, Taniere P et al (2006) Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation. Am J Physiol Gastrointest Liver Physiol 291(2):G288–G296

    PubMed  CAS  Google Scholar 

  • Rautemaa R, Hietanen J, Niissalo S et al (2007) Oral and oesophageal squamous cell carcinoma – a complication or component of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS-I). Oral Oncol 43(6):607–613

    PubMed  Google Scholar 

  • Reibel J (2003) Prognosis of oral pre-malignant lesions: significance of clinical, histopathological, and molecular biological characteristics. Crit Rev Oral Biol Med 14(1):47–62

    PubMed  Google Scholar 

  • Roessner A, Kuester D, Malfertheiner P et al (2008) Oxidative stress in ulcerative colitis-associated carcinogenesis. Pathol Res Pract 204(7):511–524

    PubMed  CAS  Google Scholar 

  • Roldán MD, Pérez-Reinado E, Castillo F et al (2008) Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 32(3):474–500

    PubMed  Google Scholar 

  • Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323

    PubMed  CAS  Google Scholar 

  • Salcedo R, Worschech A, Cardone M et al (2010) MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med 207(8):1625–1636

    PubMed  CAS  Google Scholar 

  • Saleh M, Trinchieri G (2011) Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol 11(1):9–20

    PubMed  CAS  Google Scholar 

  • Samba-Louaka A, Nougayrède JP, Watrin C et al (2008) Bacterial cyclomodulin Cif blocks the host cell cycle by stabilizing the cyclin-dependent kinase inhibitors p21 and p27. Cell Microbiol 10(12):2496–2508

    PubMed  CAS  Google Scholar 

  • Sansonetti PJ, Di Santo JP (2007) Debugging how bacteria manipulate the immune response. Immunity 26(2):149–161

    PubMed  CAS  Google Scholar 

  • Sasaki M, Ohara-Nemoto Y, Tajika S et al (2001) Antigenic characterisation of a novel Streptococcus anginosus antigen that induces nitric oxide synthesis by murine peritoneal exudate cells. J Med Microbiol 50(11):952–958

    PubMed  CAS  Google Scholar 

  • Sasaki M, Yamaura C, Ohara-Nemoto Y et al (2005) Streptococcus anginosus infection in oral cancer and its infection route. Oral Dis 11(3):151–156

    PubMed  CAS  Google Scholar 

  • Scanlan PD, Shanahan F, Clune Y et al (2008) Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol 10(3):789–798

    PubMed  CAS  Google Scholar 

  • Sears CL (2009) Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev 22(2):349–369

    PubMed  CAS  Google Scholar 

  • Seitz HK, Simanowski UA, Garzon FT et al (1990) Possible role of acetaldehyde in ethanol-related rectal cocarcinogenesis in the rat. Gastroenterology 98(2):406–413

    PubMed  CAS  Google Scholar 

  • Shen XJ, Rawls JF, Randall T et al (2010) Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes 1(3):138–147

    PubMed  Google Scholar 

  • Sobhani I, Tap J, Roudot-Thoraval F et al (2011) Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 6(1):e16393

    PubMed  CAS  Google Scholar 

  • Sugano N, Yokoyama K, Oshikawa M et al (2003) Detection of Streptococcus anginosus and 8-hydroxydeoxyguanosine in saliva. J Oral Sci 45(4):181–184

    PubMed  CAS  Google Scholar 

  • Swidsinski A, Khilkin M, Kerjaschki D et al (1998) Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology 115(2):281–286

    PubMed  CAS  Google Scholar 

  • Takemura A, Matsuda N, Kimura S et al (1998) Porphyromonas gingivalis lipopolysaccharide modulates the responsiveness of human periodontal ligament fibroblasts to platelet-derived growth factor. J Periodontal Res 33(7):400–407

    PubMed  CAS  Google Scholar 

  • Tezal M, Sullivan MA, Hyland A et al (2009) Chronic periodontitis and the incidence of head and neck squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 18(9):2406–2412

    PubMed  Google Scholar 

  • Tillonen J, Homann N, Rautio M et al (1999) Role of yeasts in the salivary acetaldehyde production from ethanol among risk groups for ethanol-associated oral cavity cancer. Alcohol Clin Exp Res 23(8):1409–1415

    PubMed  CAS  Google Scholar 

  • Tlaskalová-Hogenová H, Stěpánková R, Kozáková H et al (2011) The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 8(2):110–120

    PubMed  Google Scholar 

  • Toprak NU, Yagci A, Gulluoglu BM et al (2006) A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect 12(8):782–786

    PubMed  CAS  Google Scholar 

  • Travaglione S, Fabbri A, Fiorentini C (2008) The Rho-activating CNF1 toxin from pathogenic E. coli: a risk factor for human cancer development? Infect Agent Cancer 3:4

    PubMed  Google Scholar 

  • Uittamo J, Siikala E, Kaihovaara P et al (2009) Chronic candidosis and oral cancer in APECED-patients: production of carcinogenic acetaldehyde from glucose and ethanol by Candida albicans. Int J Cancer 124(3):754–756

    PubMed  CAS  Google Scholar 

  • Uronis JM, Mühlbauer M, Herfarth HH et al (2009) Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One 4(6):e6026

    PubMed  Google Scholar 

  • Vannucci L, Stepankova R, Kozakova H et al (2008) Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int J Oncol 32(3):609–617

    PubMed  Google Scholar 

  • Wang T, Cai G, Qiu Y et al (2012) Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 6(2):320–329

    PubMed  CAS  Google Scholar 

  • Williams DW, Bartie KL, Potts AJ et al (2001) Strain persistence of invasive Candida albicans in chronic hyperplastic candidosis that underwent malignant change. Gerodontology 18(2):73–78

    PubMed  CAS  Google Scholar 

  • Wu S, Rhee KJ, Albesiano E et al (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17T cell responses. Nat Med 15(9):1016–1022

    PubMed  CAS  Google Scholar 

  • Yilmaz O, Verbeke P, Lamont RJ et al (2006) Intercellular spreading of Porphyromonas gingivalis infection in primary gingival epithelial cells. Infect Immun 74(1):703–710

    PubMed  CAS  Google Scholar 

  • Yumoto H, Nakae H, Yamada M et al (2001) Soluble products from Eikenella corrodens stimulate oral epithelial cells to induce inflammatory mediators. Oral Microbiol Immunol 16(5):296–305

    PubMed  CAS  Google Scholar 

  • Zhang MM, Cheng JQ, Xia L et al (2011) Monitoring intestinal microbiota profile: a promising method for the ultraearly detection of colorectal cancer. Med Hypotheses 76(5):670–672

    PubMed  Google Scholar 

  • Zoetendal EG, Rajilic-Stojanovic M, de Vos WM (2008) High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57(11):1605–1615

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kutikhin, A.G., Yuzhalin, A.E., Brusina, E.B. (2013). Organ Microbiota in Cancer Development: The Holy Grail of Biological Carcinogenesis. In: Infectious Agents and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5955-8_6

Download citation

Publish with us

Policies and ethics