Skip to main content

HSP70 in Damaged Cells

  • Chapter
  • First Online:
Immunity, Tumors and Aging: The Role of HSP70

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM,volume 6))

Abstract

In a damaged cell HSP70 maintains protein homeostasis. To achieve this, HSP70, together with co-chaperones, prevents protein aggregation, aids in the dissociation of formed protein aggregates, and targets particular “irreparable” proteins for degradation. In addition, because of HIF-1 activation, the restoration of protein homeostasis forms a specific cell defense against hypoxic injury, against free-radical injury owing to an increase in antioxidant activity, and against calcium injury owing to a reduction in the calcium level in the cell. HSP70 can deposit mutant proteins. However, such mutant proteins can be released when denatured proteins appear in the cell. HSP70 blocks apoptosis by inhibiting the release of proapoptotic factors from mitochondria, inhibiting AIF, caspase-9 and JNK activities, as well as by increasing the Bcl-2 level and decreasing the Bax level. HSP70 protects cells from the accidental triggering of apoptosis by restricting DNA-ase folding until the inhibitor binds to this proapoptotic protein. All of the above processes lead to the general conclusion: HSP70 is a component of an intracellular system aimed at maintaining protein homeostasis and protecting damaged cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    p53—a protein product of a tumor suppressor gene, regulates cell growth and proliferation, and prevents unrestrained cell division after chromosomal damage, as from ultraviolet or ionizing radiation.The absence of p53 as a result of a gene mutation increases the risk of developing various cancers.

References

  • Andrabi SA, Kim NS, Yu SW et al (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci USA 103(48):18308–18313

    Article  PubMed  CAS  Google Scholar 

  • Beere HM, Wolf BB, Cain K et al (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2(8):469–475

    Article  PubMed  CAS  Google Scholar 

  • Bernard C (1878) Lectures on the phenomena common to animals and plants. In: Hoff HE, Guillemin R, Guillemin L, Charles C Thomas (1974) (trans: Springfield IL)

    Google Scholar 

  • Chan PH (2004) Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem Res 29(11):1943–1949

    Article  PubMed  CAS  Google Scholar 

  • Creagh EM, Carmody RJ, Cotter TG (2000) Heat shock protein 70 inhibits caspase-dependent and -independent apoptosis in Jurkat T cells. Exp Cell Res 257:58–66

    Article  PubMed  CAS  Google Scholar 

  • Doyle SM, Shorter J, Zolkiewski M, Hoskins JR et al (2007a) Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity. Nat Struct Mol Biol 14(2):114–122

    Article  PubMed  CAS  Google Scholar 

  • Doyle SM, Hoskins JR, Wickner S (2007b) Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. Proc Natl Acad Sci USA 104(27):11138–11144

    Article  PubMed  CAS  Google Scholar 

  • Engels (1987) Anti-Dühring. Marx Engels Collected Works (MECW), London

    Google Scholar 

  • Franzmann TM, Wühr M, Richter K, Walter S, Buchner J (2005) The activation mechanism of Hsp26 does not require dissociation of the oligomer. J Mol Biol 350(5):1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Garrido C, Kroemer G (2004) Life’s smile, death’s grin: Vital functions of apoptosis-executing proteins. Curr Opin Cell Biol 16:639–646

    Article  PubMed  CAS  Google Scholar 

  • Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C (2001) A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21(5):1874–1887

    Article  PubMed  CAS  Google Scholar 

  • Giffard RG, Yenari MA (2004) Many mechanisms for hsp70 protection from cerebral ischemia. J Neurosurg Anesthesiol 16(1):53–61

    Article  PubMed  Google Scholar 

  • Gogvadze V, Orrenius S (2006) Mitochondrial regulation of apoptotic cell death. Chem Biol Interact 163(1–2):4–14

    Article  PubMed  CAS  Google Scholar 

  • Guo F, Sigua C, Bali P et al (2005) Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood 105:1246–1255

    Article  PubMed  CAS  Google Scholar 

  • Gurbuxani S, Schmitt E, Cande C et al (2003) Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene 22:6669–6678

    Article  PubMed  CAS  Google Scholar 

  • Haslbeck M, Walke S, Stromer T et al (1999) Hsp26: a temperature-regulated chaperone. EMBO J 18(23):6744–6751

    Article  PubMed  CAS  Google Scholar 

  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12(10):842–846

    Article  PubMed  CAS  Google Scholar 

  • Haslberger T, Weibezahn J, Zahn R et al (2007) M domains couple the ClpB threading motor with the DnaK chaperone activity. Mol Cell 25(2):247–260

    Article  PubMed  CAS  Google Scholar 

  • Haslbeck M (2002) sHsps and their role in the chaperone network. Cell Mol Life Sci 59(10):1649–1657

    Article  PubMed  CAS  Google Scholar 

  • Hinnerwisch J, Fenton WA, Furtak KJ, Farr GW, Horwich AL (2005) Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121(7):1029–1041

    Article  PubMed  CAS  Google Scholar 

  • Jäättelä M, Wissing D, Kokholm K, Kallunki T, Egeblad M (1998) Hsp70 exertsitsanti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17:6124–6134

    Article  PubMed  Google Scholar 

  • Jiang B, Xiao W, Shi Y, Liu M, Xiao X (2005) Heat shock pretreatment inhibited the release of Smac/DIABLO from mitochondria and apoptosis induced by hydrogen peroxide in cardiomyocytes and C2C12 myogenic cells. Cell Stress Chaperones 10(3):252–262

    Article  PubMed  CAS  Google Scholar 

  • Kalinowska M, Garncarz W, Pietrowska M, Garrard WT, Widlak P (2005) Regulation of the human apoptotic DNase/RNase Endonuclease G: Involvement of Hsp70 and ATP. Apoptosis 10:821–830

    Article  PubMed  CAS  Google Scholar 

  • Kauppinen TM, Swanson RA (2007) The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience 145(4):1267–1272

    Article  PubMed  CAS  Google Scholar 

  • Kelly S, Zhang ZJ, Zhao H et al (2002) Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia: influence of Bcl-2. Ann Neurol 52(2):160–167

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa M, Matsumura Y, Tsuchido T (2000) Small heat shock proteins, IbpA and IbpB, are involved in resistances to heat and superoxide stresses in Escherichia coli. FEMS Microbiol Lett 184(2):165–171

    Article  PubMed  CAS  Google Scholar 

  • Kitamura C, Ogawa Y, Nishihara T, Morotomi T, Terashita M (2003) Transient co-localization of c-Jun N-terminal kinase and c-Jun with heat shock protein 70 in pulp cells during apoptosis. J Dent Res 82(2):91–95

    Article  PubMed  CAS  Google Scholar 

  • Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122(1):189–198

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Kwon HM, Kim YJ, Lee KM, Kim M, Yoon BW (2004) Effects of hsp70.1 gene knockout on the mitochondrial apoptotic pathway after focal cerebral ischemia. Stroke 35(9):2195–2199

    Google Scholar 

  • Lee JS, Lee JJ, Seo JS (2005) HSP70 deficiency results in activation of c-Jun N-terminal Kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. J Biol Chem 280(8):6634–6641

    Article  PubMed  CAS  Google Scholar 

  • Leist M, Jäättelä M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2(8):589–598

    Article  PubMed  CAS  Google Scholar 

  • Liberek K, Lewandowska A, Zietkiewicz S (2008) Chaperones in control of protein disaggregation. EMBO J 27(2):328–335

    Article  PubMed  CAS  Google Scholar 

  • Lum R, Tkach JM, Vierling E, Glover JR (2004) Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J Biol Chem 279(28):29139–29146

    Article  PubMed  CAS  Google Scholar 

  • Luo W, Zhong J, Chang R, Hu H, Pandey A, Semenza GL (2010) Hsp70 and CHIP selectively mediate ubiquitination and degradation of hypoxia-inducible factor (HIF)-1alpha but Not HIF-2alpha. J Biol Chem 285(6):3651–3653

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Newmeyer DD, Mathias S et al (1995) Cell-free reconstitution of Fas-, UV radiation- and ceramide-induced apoptosis. EMBO J 14(21):5191–5200

    PubMed  CAS  Google Scholar 

  • Matsumori Y, Hong SM, Aoyama K et al (2005) Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 25:899–910

    Article  PubMed  CAS  Google Scholar 

  • Matsumori Y, Northington FJ, Hong SM et al (2006) Reduction of caspase-8 and -9 cleavage is associated with increased c-FLIP and increased binding of Apaf-1 and Hsp70 after neonatal hypoxic/ischemic injury in mice overexpressing Hsp70. Stroke 37(2):507–512

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Friberg H, Ferrand-Drake M, Wieloch T (1999) Blockade of the mitochondrial permeability transition pore diminishes infarct size in the rat after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 19(7):736–741

    Article  PubMed  CAS  Google Scholar 

  • Matuszewska M, Kuczyńska-Wiśnik D, Laskowska E, Liberek K (2005) The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. J Biol Chem 280(13):12292–12298

    Article  PubMed  CAS  Google Scholar 

  • Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3(1):100–105

    Article  PubMed  CAS  Google Scholar 

  • Merry DE, Korsmeyer SJ (1997) Bcl-2 gene family in the nervous system. Annu Rev Neurosci 20:245–267

    Article  PubMed  CAS  Google Scholar 

  • Mogk A, Deuerling E, Vorderwülbecke S, Vierling E, Bukau B (2003) Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 50(2):585–595

    Article  PubMed  CAS  Google Scholar 

  • Nakamoto H, Suzuki N, Roy SK (2000) Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria. FEBS Lett 483(2–3):169–174

    Article  PubMed  CAS  Google Scholar 

  • Neupert W, Brunner M (2002) The protein import motor of mitochondria. Nat Rev Mol Cell Biol 3(8):555–565

    Article  PubMed  CAS  Google Scholar 

  • Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jäättelä M (2000) Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci USA 97(14):7871–7876

    Article  PubMed  CAS  Google Scholar 

  • Ouyang YB, Xu LJ, Sun YJ, Giffard RG (2006) Overexpression of inducible heat shock protein 70 and its mutants in astrocytes is associated with maintenance of mitochondrial physiology during glucose deprivation stress. Cell Stress Chaperones 11(2):180–186

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos MC, Sun XY, Cao J, Mivechi NF, Giffard RG (1996) Over-expression of HSP-70 protects astrocytes from combined oxygen-glucose deprivation. NeuroReport 7(2):429–432

    Article  PubMed  CAS  Google Scholar 

  • Park HS, Lee JS, Huh SH, Seo JS, Choi EJ (2001) Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J 20(3):446–456

    Article  PubMed  CAS  Google Scholar 

  • Ravagnan L, Gurbuxani S, Susin SA et al (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3(9):839–843

    Article  PubMed  CAS  Google Scholar 

  • Romero C, Benedí J, Villar A, Martín-Aragón S (2010) Involvement of Hsp70, a stress protein, in the resistance of long-term culture of PC12 cells against sodium nitroprusside (SNP)-induced cell death. Arch Toxicol 84:699–708

    Article  PubMed  CAS  Google Scholar 

  • Rosette C, Karin M (1995) Cytoskeletal control of gene expression: depolymerization of microtubules activates NF-kappa B. Cytoskeletal control of gene expression: depolymerization of microtubules activates NF-kappa B. J Cell Biol 128(6):1111–1119

    Article  PubMed  CAS  Google Scholar 

  • Rogue PJ, Ritz MF, Malviya AN (1993) Impaired gene transcription and nuclear protein kinase C activation in the brain and liver of aged rats. FEBS Lett 334(3):351–354

    Article  PubMed  CAS  Google Scholar 

  • Ruchalski K, Mao H, Li Z et al (2006) Distinct hsp70 domains mediate apoptosis-inducing factor release and nuclear accumulation. J Biol Chem 281:7873–7880

    Article  PubMed  CAS  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2(8):476–483

    Article  PubMed  CAS  Google Scholar 

  • Sakahira H, Nagata S (2002) Co-translational folding of caspase-activated DNase with Hsp70, Hsp40, and inhibitor of caspase-activated DNase. J Biol Chem 277(5):3364–3370

    Article  PubMed  CAS  Google Scholar 

  • Schaupp A, Marcinowski M, Grimminger V, Bösl B, Walter S (2007) Processing of proteins by the molecular chaperone Hsp104. J Mol Biol 370(4):674–686

    Article  PubMed  CAS  Google Scholar 

  • Schlieker C, Weibezahn J, Patzelt H et al (2004) Substrate recognition by the AAA + chaperone ClpB. Nat Struct Mol Biol 11(7):607–615

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Ganguly NK, Chaturvedi G et al (2003) A possible role of HSP70 in mediating cardioprotection in patients undergoing CABG. Mol Cell Biochem 247(1–2):6–31

    Google Scholar 

  • Shinder GA, Lacourse MC, Minotti S, Durham HD (2001) Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J Biol Chem 276(16):12791–12796

    Article  PubMed  CAS  Google Scholar 

  • Slee EA, Harte MT, Kluck RM et al (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144(2):281–292

    Article  PubMed  CAS  Google Scholar 

  • Steel R, Doherty JP, Buzzard K et al (2004) Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J Biol Chem 279(49):51490–51499

    Article  PubMed  CAS  Google Scholar 

  • Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM, Mosser DD (2005) Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 280(46):38729–38739

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Murtuza B, Sammut IA et al (2002) Heat shock protein 72 enhances manganese superoxide dismutase activity during myocardial ischemia-reperfusion injury, associated with mitochondrial protection and apoptosis reduction. Circulation 106(12 Suppl 1):I270–I276

    PubMed  Google Scholar 

  • Sun Y, Ouyang YB, Xu L et al (2006) The carboxyl-terminal domain of inducible Hsp70 protects from ischemic injury in vivo and in vitro. J Cereb Blood Flow Metab 26(7):937–950

    Article  PubMed  CAS  Google Scholar 

  • Szenczi O, Kemecsei P, Miklós Z et al (2005) In vivo heat shock preconditioning mitigates calcium overload during ischaemia/reperfusion in the isolated, perfused rat heart. Pflugers Arch 449(6):518–525

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya D, Hong S, Matsumori Y et al (2003) Overexpression of rat heat shock protein 70 is associated with reduction of early mitochondrial cytochrome C release and subsequent DNA fragmentation after permanent focal ischemia. J Cereb Blood Flow Metab 23(6):718–727

    Article  PubMed  CAS  Google Scholar 

  • Thorburn A (2004) Death receptor-induced cell killing. Cell Signal 16(2):139–144

    Article  PubMed  CAS  Google Scholar 

  • Urushitani M, Kurisu J, Tateno M et al (2004) CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70. J Neurochem 90(1):231–244

    Article  PubMed  CAS  Google Scholar 

  • Weibezahn J, Tessarz P, Schlieker C et al (2004) Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119(5):653–655

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Giffard RG (1997) HSP70 protects murine astrocytes from glucose deprivation injury. Neurosci Lett 224(1):9–12

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407(6805):802–809

    Article  PubMed  CAS  Google Scholar 

  • Zietkiewicz S, Lewandowska A, Stocki P, Liberek K (2006) Hsp70 chaperone machine remodels protein aggregates at the initial step of Hsp70-Hsp100-dependent disaggregation. J Biol Chem 281(11):7022–7099

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Malyshev .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Malyshev, I. (2013). HSP70 in Damaged Cells. In: Immunity, Tumors and Aging: The Role of HSP70. SpringerBriefs in Biochemistry and Molecular Biology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5943-5_3

Download citation

Publish with us

Policies and ethics